首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Starches from eight soft wheat samples (two parent lines and six offspring) were isolated; relationships between their structures and properties were examined. Branch chain‐length distributions of amylopectins were determined by using high‐performance anion exchange chromatography equipped with an amyloglucosidase reactor and a pulsed amperometric detector (HPAEC‐ENZ‐PAD). Results showed that the average chain length of the eight samples varied at DP 25.6–26.9. Starch samples of lines 02, 60, 63, 95, and 114 consisted of amylopectins with more long chains (DP ≥ 37) and longer average chain length (DP 26.2–26.9) than that of other samples. These starch samples of longer branch chain length displayed higher gelatinization temperatures (55.3–56.5°C) than that of other samples (54.4–54.9°C) and higher peak viscosity (110–131 RVU) and lower pasting temperature (86.3–87.6°C) than others (83–100 RVU and 88.2–88.9°C, respectively). The Mw of amylopectins, determined by using high‐performance size exclusion chromatography equipped with multiangle laser‐light scattering and refractive index detectors (HPSEC‐MALLS‐RI), were similar for all samples (6.17 × 108 to 6.97 × 108). There were no significant differences in amylose and phosphorus contents between samples. These results indicated that physical properties of wheat starch were affected by the branch‐chain length of amylopectin.  相似文献   

2.
The unit chain compositions of debranched foxtail, proso, pearl, and finger millet amylopectins and their ϕ,β‐limit dextrins were analyzed by high‐performance anion‐exchange chromatography. The ϕ,β‐limit dextrins reflected amylopectin internal chain profiles. The amylopectins had average chain lengths ranging from 17.94 to 18.12. The ranges of external chain length, internal chain length, and total internal chain length of the millet amylopectins were 11.85–12.33, 4.75–5.09, and 11.64–12.28, respectively. The relative molar concentration of B‐chains in the amylopectins was close to 50% in all samples. Significant differences were, however, observed in the proportions of very short “fingerprint” B‐chains (Bfp, degree of polymerization 3–7) and the major group of short B‐chains (BSmajor): foxtail and proso millets possessed high amounts of Bfp‐chains, whereas finger and pearl millets had higher amounts of BSmajor‐chains, suggesting possible differences in the fine structure of the clusters and building blocks of the amylopectins. Millet amylopectin can be classified structurally as type 2.  相似文献   

3.
The molecular structure and pasting properties of starches from eight buckwheat cultivars were examined. Rapid viscograms showed that buckwheat starches had similar pasting properties among cultivars. The actual amylose content was 16–18%, which was lower than the apparent amylose content (26–27%), due to the high iodine affinity (IA) of amylopectin (2.21–2.48 g/100 g). Amylopectins resembled each other in average chain‐length (23–24) and chain‐length distributions. The long‐chains fraction (LC) was abundant (12–13% by weight) in all the amylopectins, which was consistent with high IA values. The amyloses were also similar among the cultivars in number‐average DP 1,020–1,380 with 3.1–4.3 chains per molecule. The molar‐based distribution indicated that all the amyloses comprised two molecular species differing in molecular size, although the weight‐based distribution showed a single species. A comparison of molecular structures of buckwheat starches to cereal starches indicated buckwheat amylopectins had a larger amount of LC, and their distributions of amylose and short chains of amylopectin on molar basis were similar to those of wheat and barley starches.  相似文献   

4.
Starch was isolated from 95 sorghum landraces from Zimbabwe using an alkali steep and wet‐milling procedure. The physicochemical properties of sorghum starch were examined for potential use in Southern Africa. All the landraces evaluated had a normal endosperm indicated by the amylose content of the starches. Starch properties were not correlated to most of the physical grain quality traits evaluated. Grain hardness was weakly correlated to starch gel adhesiveness (r = 0.36) and amylose content (r = 0.38) (P < 0.001). The mean peak viscosity (PV) of the sorghum starches was 324 Rapid Visco Analyser units (RVU) compared with 238 RVU in a commercial corn starch sample; PV was 244–377 RVU. Some landraces had low shear‐thinning starches, implying good paste stability under hot conditions. Pasting properties were highly correlated among the sorghum starches. The starch gel hardness showed considerable variation (44–71 g) among the landraces. Gelatinization peak temperatures were 66–70°C. The thermal properties of starches were not correlated with starch swelling and pasting properties. Genotype grouping by highest and lowest values in each category would allow selection of sorghums based on a specific attribute depending on the desired end use.  相似文献   

5.
Proteolysis during cereal germination is vital both to seedling growth and the success of commercial malting and brewing. In this study, proteinases in proteolytic extracts from seeds and germinated grains of 11 Botswana sorghum cultivars were analyzed and partially characterized by one‐dimensional electrophoresis on SDS‐PAGE gels containing incorporated gelatin. Proteinase polymorphism was detected in both germinated and ungerminated sorghum grains. Fifteen distinct proteinase bands, with Mr values of 27,000–100,000 were detected in sorghum malt extract, while ungerminated sorghum displayed a maximum of four bands (Mr ≈ 78,000–100,000). Band numbers and identity varied markedly according to cultivar. More proteinase bands were detected at pH 4.6, than at pH 6.2 and 7.0, suggesting pH optima considerably below neutrality. Cysteine‐proteinases constituted a higher proportion (9 of 15) of the detected sorghum malt proteinases and were most detectable at pH 4.6. Multiple representatives were also detected for both serine‐ and metallo‐proteinases, although these were more active at pH 6.2 and 7.0. 1‐10 Phenanthroline inhibited malt metallo‐proteinase more strongly than EDTA, suggesting that these enzymes were most probably zinc‐dependent. Aspartyl‐proteinases were not detected, probably because of the substrate employed. Results indicate that the sorghum proteinase system is complex.  相似文献   

6.
Weight-average molecular weight (Mw) and chain length of eight amylopectins isolated from one Australian, two United States, and five Korean wheats were measured using multiangle laser light scattering (MALLS) and refractive index (RI) detectors operated in a microbatch mode, and in a high-performance size-exclusion chromatography (HPSEC) mode. The Mw of amylopectins measured in the microbatch mode ranged from 29 × 106 to 349 × 106. Three amylopectins (Geuru, Tapdong and WW) showed significantly high Mw values over 200 × 106. The Mw measured by HPSEC mode with MALLS-RI detectors (42 × 106 to 73 × 106) were significantly less than those obtained in the microbatch mode with exception of dark northern spring hard wheat (DNS) amylopectin, indicating the possible variation of Mw by the analysis mode. Root-mean square of the radius of gyration (Rg) also was greater when the microbatch mode was used (122–340 vs. 95–116 nm). Chain length distributions of debranched amylopectins of different cultivars, measured by the HPSEC-MALLS-RI system, were similar. Weight average degrees of polymerization (DPw) of A, B1, and larger B chains (B≥2) had ranges of 13–22, 26–46, and 58–73, respectively, and mass ratios of A and B chains ranged from 0.7 to 1.1.  相似文献   

7.
Summary In a series of short-term experiments root systems of young sorghum and millet plants inoculated with N2-fixing bacteria were exposed to 15N2-enriched atmospheres for 72 h. The plants were grown in a normal atmosphere for up to 22 days after the end of the exposure to allow them to take up the fixed N2. Environmental conditions and genotypes of sorghum and millet were selected to maximise N2-fixation in the rhizosphere. Detectable amounts of fixed N (> 16 g/plant) were rapidly incorporated into sorghum plants grown in a sand/farmyard manure medium, but measurable fixation was found on only one occasion in plants grown in soil. N2 fixation was detectable in some experiments with soil-grown millet plants but the amounts were small (2–4 g/plant) and represented less than 1 % of plant N accumulated over the same period. In many cases there was no detectable 15N2 incorporation despite measurable increases in ethylene concentration found during an acetylene reduction assay.Published as ICRISAT Journal Article No. JA 740  相似文献   

8.
The purpose of this study was to analyze the effects of silicon (Si) nutrition on sorghum growth under drought. The present study investigated the distribution of Si in plant parts under stress conditions and its effects on physiological and growth traits. The study was conducted during 2 years (2007–2009) at PMAS Arid Agriculture University, Rawalpindi, Pakistan. Polyethylene glycol (PEG) 6000 (–4.0, –6.0, –8.0, and –10.0 Mpa) solution was used to screen drought-tolerant (Johar1) and drought-susceptible (SPV462) sorghum (Sorghum bicolor L.) cultivars, which were replicated three times with Si sources of potassium silicate (K2SiO3) (Si300: 300 ml L?1) and control (Si0) treatments. The results showed that drought-tolerant cultivars accumulated maximum Si under Si treatment versus Si absence, which resulted increased leaf water potential, leaf area index, Soil Plant Analysis Development (SPAD) chlorophyll, net assimilation, and relative growth rate over SPV462. Similarly, Si accumulation in leaves conserved transpiration and leaf water potential, verifying Si nutrition as a defense for plants under drought.  相似文献   

9.
Starch was extracted from 10 sorghum genotypes and physicochemical properties (amylose content and pasting, textural, and thermal properties) were evaluated. The amylose content was 24–30%. DC‐75 starch had the highest peak viscosity (380 Rapid Visco Analyser units). Gelatinization peak temperature occurred over a narrow range (67–69°C). Genotypes Kasvikisire and SV2 produced white starches. Starches from other genotypes were different shades of pink. The starch noodles prepared were, accordingly, either white or pink. Cooking enhanced the pink coloration of noodles. Cooking loss, noodle rehydration, and elasticity were evaluated. Cooking loss was low (mean 2.4%). Noodle elasticity was highly correlated with starch pasting properties of hot paste viscosity (HPV) (r = 0.81, P < 0.01) and cold paste viscosity (CPV) (r = 0.75, P < 0.01). Noodle rehydration was significantly correlated to the initial swelling temperature of starch (Ti) (r = ‐0.91, P < 0.001) and gelatinization peak temperature (Tp) (r = 0.69, P < 0.05). The findings suggest a potential area of food application for sorghum genotypes of different grain colors. Evaluation of starch properties could be a good starting point for selecting sorghum genotypes with superior noodle‐making properties.  相似文献   

10.
The molecular structure and some physicochemical properties of starches from two high‐amylose cultivars of barley, high‐amylose Glacier A (HAG‐A) and N (HAG‐N), were examined and compared with those of a normal cultivar, Normal Glacier (NG). The true amylose contents of HAG‐A, HAG‐N, and NG were 41.0, 33.4, and 23.0%, respectively. Iodine affinities before and after defatting of starch, and thermograms of differential scanning calorimetry, indicated that HAG‐A and HAG‐N starches had a higher proportion of amylose‐lipid complex than did NG starch. The amylopectins from HAG‐A and HAG‐N were similar to NG amylopectin in average chain length (18–19), β‐amylolysis limit (β‐AL 56–57%), number‐average degrees of polymerization (DPn 6,000–7,500) and chain length distribution. Very long chains (1–2%) were found in amylopectins from all cultivars. HAG‐A amylopectin had a larger amount of phosphorus (214 ppm) than the others. The amyloses from HAG‐A and HAG‐N resembled NG amylose in DPn (950–1,080) and β‐AL (70–74%). However, HAG‐A and HAG‐N had a larger number of chains per molecule (NC 2.4–2.7) than NG amylose (1.8) and contained the branched amylose with a higher NC (9.5–10.6) than that of NG amylose (5.8), although molar fractions of the branched amylose (15–20%) were similar.  相似文献   

11.
High‐intensity ultrasound (sonication) was investigated as a method to rapidly purify starch from sorghum and other cereal grains. To improve the process, buffers were optimized to solubilize sorghum proteins in combination with the sonication. Protein content and starch color were determined to evaluate the efficiency of the extraction process. Sonication times, SDS concentration, different types and concentrations of reducing agents (sodium metabisulfite, dithiothreitol, and β‐mercaptoethanol), and centrifugation speeds of the starch washing procedure were tested. Protein content of isolated sorghum starch was reduced to 0–0.14% (db) after 2 min of sonication (using any of the reducing agents tested). Sodium metabisulfite was chosen as the preferred reducing agent because of its lower toxicity and odor compared with other reducing agents tested. The optimum conditions for producing high‐purity sorghum starches (0.06% protein) were obtained using the following conditions: 2 min of sonication time with 12.5 mM sodium borate buffer, pH 10, containing 0.5% SDS (w/v) and 0.5% sodium metabisulfite (w/v) using 1,500 rpm centrifugation speed during starch washing. Starches separated by this method showed significantly less protein content and b values (yellowness) compared with starches separated by enzymatic methods or methods using NaCl solutions and protein extraction buffers with multiple washing steps, both of which take several hours to complete. Differential scanning calorimetry thermogram values for starches isolated by three different methods showed similar patterns, except that starches obtained with the enzymatic method had slightly higher values of To, Tp, and ΔH. Other cereal starches from whole wheat meal, wheat flour, corn, rice, and barley were also obtained rapidly using sonication.  相似文献   

12.
Development of high‐protein digestibility (HPD)/high‐lysine (hl) sorghum mutant germplasm with good grain quality (i.e., hard endosperm texture) has been a major research objective at Purdue University. Progress toward achieving this objective, however, has been slow due to challenges posed by a combination of genetic and environmental factors. In this article, we report on the identification of a sorghum grain phenotype with a unique modified endosperm texture that has near‐normal hardness and possesses superior nutritional quality traits of high digestibility and enhanced lysine content. These modified endosperm lines were identified among F6 families developed from crosses between hard endosperm, normal nutritional quality sorghum lines, and improved HPD/hl sorghum mutant P721Q‐derived lines. A novel vitreous endosperm formation originated in the central portion of the kernel endosperm with opaque portions appearing both centrally and peripherally surrounding the vitreous portion. Kernels exhibiting modification showed a range of vitreous content from a slight interior section to one that filled out to the kernel periphery. Microstructure of the vitreous endosperm fraction was dramatically different from that of vitreous normal kernels in sorghum and in other cereals, in that polygonal starch granules were densely packed but without the typically associated continuous protein matrix. We speculate that, due to the lack of protein matrix, such vitreous endosperm may have more available starch for animal nutrition, and possibly have improved wet‐milling and dry‐grind ethanol processing properties. The new modified endosperm selections produce a range that approaches the density of the vitreous parent, and have lysine content and protein digestibility comparable to the HPD/hl opaque mutant parent.  相似文献   

13.
Sorghum procyanidins were characterized and quantified from two brown sorghum varieties and their processed products by normal phase HPLC with fluorescence detection. The DP of the procyanidins was determined by thiolysis. Quantification was done by using purified oligomeric and polymeric cocoa procyanidins as external standards. Sorghum procyanidins were composed mostly of high MW (DP > 10) polymers. Significant differences were observed in levels as well as distribution of the different MW procyanidins between the sorghums. Processing of the sorghum brans into cookies and bread significantly reduced the levels of procyanidins; this effect was more pronounced in the higher MW polymers. Cookies had a higher retention of procyanidins (42-84%) than bread (13-69%). Extrusion of sorghum grain resulted in an increase in the levels of procyanidin oligomers with DP /= 6. This suggests a possible breakdown of the high MW polymers to the lower MW constituents during extrusion. Processing changes not only the content of procyanidins in sorghum products but also the relative ratio of the different molecular weights.  相似文献   

14.
Kisra is a naturally lactic acid bacteria‐ and yeast‐fermented sorghum thin pancake‐like flatbread produced in Sudan. Kisra has considerable potential as the basis for development of a gluten‐free sandwich wrap. To help direct cultivar selection for commercial production of these products, two white, tan plant non‐tannin Type I, one white Type II tannin, and one red Type III tannin sorghum cultivars were evaluated with respect to kisra protein quality and physical characteristics. Kisra from the non‐tannin sorghums were flexible and had an open‐textured structure with many regular gas cells, whereas those from the tannin sorghums were more brittle, denser in structure, and contained far fewer and smaller gas cells. Kisra from the tannin sorghums had the lowest reactive lysine content, in vitro protein digestibility, and Protein Digestibility Corrected Amino Score (PDCAAS), with values being lowest for the Type III sorghum. PDCAAS of kisra from the Type III sorghum was only 0.12, less than half of that from the Type I sorghums. As the tannins in tannin sorghums adversely affect kisra protein quality and physical characteristics, white tan plant, non‐tannin sorghum cultivars are most suitable for kisra production and for development of wrap‐type sorghum‐based baked goods.  相似文献   

15.
Genetic and phenotypic diversity among randomly selected 36 downy-mildew-resistant sorghum accessions were assessed, the former using 10 simple sequence repeat (SSR) marker loci and the latter using 20 phenotypic traits. The number of alleles (a j ) at individual loci varied from five to 14 with an average of 8.8 alleles per locus. Nei's gene diversity (H j ) varied from 0.59 to 0.92 with an average of 0.81 per locus. High gene diversity and allelic richness were observed in races durra caudatum (H j = 0.76, a j = 4.3) and guinea caudatum (H j = 0.76, a j = 3.8) and in east Africa (H j = 0.78, a j = 7.2). The regions were genetically more differentiated than the races as indicated by Wright's F st. The pattern of SSR-based clustering of accessions was more in accordance with their geographic proximity than with their racial likeness. This clustering pattern matched little with that obtained from phenotypic traits. The inter-accession genetic distance varied from 0.30 to 1.00 with an average of 0.78. Inter-accession phenotypic distance varied from 0.01 to 0.55 with an average of 0.33. Eleven accession-pairs had phenotypic distance of more than 0.50 and genetic distance of more than 0.70. These could be used as potential parents in a sorghum downy mildew resistance-breeding program.  相似文献   

16.
The amylopectin (AP) branching pattern is a fundamental feature of AP fine structure but a little‐studied one. In this work, we followed enzyme digestion over time for AP from three maize genotypes (wx, du wx, and AP of ae VII). The objective was to describe differences in the progress of β‐amylolysis and in subsequent debranching of β‐limit dextrins (β‐LD). During the progress of β‐amylolysis, changes in the distribution of short residual chains show that the enzyme favors hydrolysis farthest from branch points. On treating β‐LD with isoamylase (IA) alone, debranching was incomplete. Using IA and pullulanase (PUL) sequentially, a similar increase in the DP 5–7 region and the peak at DP 6 were observed for all samples, indicating a common element in the branching pattern. This similarity suggests that, despite differences in the proportion of short to long B chains, the most closely associated branch points may be arranged in a similar way for these AP. We suggest that the increase in DP 6 after PUL digestion would result from debranching of linear DP 6 residual B chains that originally had two branch points, consistent with interior segment length (ISL) of 1 or 2.  相似文献   

17.
The availability of soil nitrogen (N) is usually quantified by the amount of mineralized N as determined after several weeks of soil incubation. Various alternative methods using chemical solvents have been developed to extract the available organic N, which is easily mineralized. We compared one such solution, neutral phosphate buffer (NPB), with conventional incubation and 0.01 M–CaCl2 extraction, as measures of soil N available to two major cereal crops of the semiarid tropics, based on the total N uptake by plants in a pot experiment. Mineralized N had the highest correlation with N uptake by pearl millet (Pennisetum glaucum L., r = 0.979***) and sorghum (Sorghum bicolor [L.] Moench, r = 0.978***). NPB‐extractable N was also highly correlated with N uptake (pearl millet, r = 0.876***; sorghum, r = 0.872***). Only one major peak was detected when NPB extracts were analyzed using size‐exclusion high‐performance liquid chromatography, regardless of soil properties. In addition, the organic N extracted with NPB was characterized by determining the content of peptidoglycan, the main component of bacterial cell walls. Although the characteristics of NPB‐extractable organic N are still unclear, it offers a promising quick assay of available N.  相似文献   

18.
A second unusually high viscosity peak appeared at the cooling stage (50°C) of a Rapid Visco‐Analyser (RVA) profile of short‐term stored (two months at room temperature) whole grain sorghum flour, while freshly ground flour had a typical pasting curve with one viscosity peak at the 95°C holding period. The formation of the second viscosity peak was caused by liberation of free fatty acids (FFA), mainly palmitic (15.6%), oleic (41.9%), and linoleic (37.9%) acids from stored flour. After the flour samples were pretreated with pepsin or the protease thermolysin, the second peak disappeared in the presence of FFA while the high viscosity was partially retained, indicating that flour protein was another essential component to the production of the actual peak. Effects of dithiothreitol (DTT), pH, and NaCl on RVA profiles of stored flour suggested that disulfide‐linked protein and electrostatic interaction are required for the peak production. In the presence of sufficient FFA, similar cooling stage viscosity peaks appeared in the RVA profiles of flour samples from maize, rice, millet, and wheat; thus, the effect was not unique to sorghum flour. Coinciding with previously reported findings from our laboratory of a three‐component interaction and discernable complex in a model system, a similar three‐component (starch, protein, and FFA) interaction was revealed in natural flour systems resulting in formation of an unusual and notably high cooling stage viscosity peak. Practical applications and an interaction mechanism are discussed.  相似文献   

19.
Based on experiments conducted during 1988–2009 on rainfed pearl millet/sorghum with 9 treatments in Vertisols, an efficient treatment for sustainable productivity is identified. Twenty kg of nitrogen (N) from farmyard manure (FYM) + 20 kg N (urea) + 10 kg phosphorus (P) ha?1 in pearl millet and 40 kg N (urea) + 20 kg P + 25 kg zinc sulfate (ZnSO4) ha?1 in sorghum gave maximum yield and rainwater-use efficiency, whereas 20 kg N (FYM) + 20 kg (urea) + 10 kg P ha?1 in pearl millet and 40 kg (urea) + 20 kg P ha?1 in sorghum and gave maximum soil N, P, and potassium (K) over years. The regression model of 20 kg N (crop residue) + 20 kg N (urea) + 10 kg P ha?1 gave maximum R2 for predicting sorghum equivalent yield separately through precipitation and soil variables, whereas 20 kg N (FYM) + 20 kg N (urea) + 10 kg P ha?1 gave maximum R2 under combined model of both variables. Treatment of 20 kg N (FYM) + 20 kg N (urea) + 10 kg P ha?1 was superior for attaining maximum sorghum equivalent yield of 1062 kg ha?1, net returns of Rs. 4805 ha?1, benefit/cost (BC) ratio of 1.50, and 127 kg ha?1 of soil N, 10.3 kg ha?1 of soil P, and 386 kg ha?1 of soil K over years.  相似文献   

20.
Effects of debranching time, storage time, and storage temperature on production and structural properties of slowly digestible starch (SDS) were investigated. Waxy sorghum starch was hydrolyzed by isoamylase for various times (0–24 hr), and the variously debranched products were stored at ‐30, 1, and 30°C for 1–6 days. Optimal conditions for SDS production were isoamylase treatment for 8 hr and storage at 1°C for three days, resulting in SDS content of 27.0% in the optimum product. Microscopic observation revealed that rapidly digestible starch (RDS) and SDS were removed from the edges and surfaces of the optimum product by α‐amylase digestion. Digestion conditions that removed RDS and SDS resulted in a residue with a higher transition temperature and enthalpy than raw starch on a differential scanning calorimetric thermogram. Removal of RDS alone did not cause distinct decrements of peak temperature (Tp) and enthalpy (ΔH) compared with stored starch. The optimum SDS product showed an amorphous type of X‐ray diffractogram. Digestive removal of RDS from the optimum product gave a residue with X‐ray peaks similar to B type, which supports that it is partly crystalline. Removal of RDS and SDS gave broader peaks in the X‐ray pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号