首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We modeled tree responses to pruning on the basis of growth rules established on unpruned trees and a simple principle governing root-shoot interactions. The model, which integrates architectural and ecophysiological approaches, distinguishes four types of anatomical organs in a tree: rootstock, main axis, secondary axes and new roots. Tree structure is described by the position of secondary axes on the main axis. The main processes considered are plastochronal activity, branching, assimilate production, respiration and assimilate partitioning. Growth and development rules were based on measurements of two unpruned trees. The model was used to simulate growth of peach trees (Prunus persica (L.) Batsch) in their first growing season. Assuming that the equilibrium between roots and shoots tends to be restored after pruning, the response to removal of the main axis above the twentieth internode in mid-July was simulated and compared to the response measured in three pruned trees. The model fit the unpruned tree data reasonably well and predicted the main traits of tree behavior after pruning. Dry matter growth of the secondary axes of pruned trees was increased so that shoot seasonal carbon balance was hardly modified by pruning. Rhythmicity of growth was enhanced by pruning, and might result from variations induced in the root:shoot ratio. Variation in pruning severity had greater effects than variation in pruning date. A sensitivity analysis indicated that: (1) root-shoot partitioning was a critical process of the model; (2) tree growth was mainly dependent on assimilate availability; and (3) tree shape was highly dependent on the branching process.  相似文献   

2.
Producing high value veneer wood requires that the tree bole be branch-free. This can be accomplished by natural or artificial pruning. Since wild cherry does not self prune well, pruning artificially is the only practical option. The study analysed the effect of conventional whorl-wise pruning and selective pruning, on height growth, diameter growth and secondary shoot development of wild cherry. Four pruning treatments were applied on cherry trees in summer 2007, one group of cherries was left unpruned to serve as a control: treatment C1 (upper 5 whorls left), C2 (upper 3 whorls left), S1 (removal of branches larger than 3 cm or with an angle to the stem < 40°), S2 (removal of branches larger than 2 cm or with an angle to the stem < 40°), N (unpruned). Data showed that height growth was not affected by pruning. In contrast, diameter growth at breast height of the C2 pruned cherry was reduced by approximately 5% (SE = 2.7%) in the year of pruning (trees were pruned in July). This pruning treatment produced significant (p = 0.028) nine percent less diameter growth than the control in the second year following pruning. The diameter increment of the C1 pruned trees with five whorls left after pruning and the selective pruned cherries were only about 4% (SE = 4.0%) smaller than the control after two years. This loss was statistically not significant. Analyses showed that on selective pruned trees the survival rate of secondary shoots was significantly reduced compared to those on whorl-wise pruned trees. Significant differences in the size of the secondary shoots were only found between the C1 and S1 (p < 0.05) pruned trees. We did not find differences in the total number of secondary shoots per tree among pruning treatments. Solely from a tree growth perspective, the moderate whorl-wise pruning treatment C1 and the selective prunings were equally effective in minimizing the reduction of diameter growth and are recommended in practice. However it was found that the survival of secondary shoots was reduced on selective pruned trees although the amount of pruning work needed in selective pruning was slightly greater than conventional moderate pruning.  相似文献   

3.
In August, eight 4-m tall citrus trees were pruned by removing the top third of their canopy. Eight unpruned trees served as controls. Root growth, which was examined nondestructively with minirhizotrons over a four-month period, tended to be less in the pruned than unpruned trees seven days after pruning and this difference was significant (P < 0.05) from 14 to 49 days after pruning. Total reducing and ketone sugars (includes free fructose, sucrose and fructans) in the fine roots were less in pruned than unpruned trees 20 days after pruning, but not thereafter. By 30 days after pruning, at least 20% of the roots of the pruned trees at a soil depth of 9 to 35 cm apparently died. By 63 days after pruning, root length density had recovered to that of the unpruned trees, although starch reserves were 18% less in the fine roots of pruned than unpruned trees at this time. Nine to eleven months after pruning (May to July), total biomass of leaves and fine roots to a depth of 1 m were similar in pruned and unpruned trees. However, fruit biomass harvested in April from pruned trees was only 24% of that in the unpruned trees. In May, nonstructural carbohydrates in the fine and coarse roots of pruned trees were generally greater than in unpruned trees, possibly reflecting previous differences in fruit production.  相似文献   

4.
In alley cropping systems, fast growing leguminous trees are pruned to reduce competition with crops for light and to provide organic inputs for crop nutrition. Tree regrowth depends on non-structural carbohydrate reserves in the remaining tree parts. In this study, the dynamics of starch and soluble carbohydrates in roots and stems of completely pruned (all shoots removed), partially pruned (one branch retained on the pruned stump) and unpruned Erythrina poeppigiana (Walp.) O.F. Cook and Gliricidia sepium (Jacq.) Kunth ex Walp. trees were studied under humid tropical conditions in Turrialba, Costa Rica. Measurements on starch and soluble carbohydrates in roots and stems were made at 0, 2, 6 and 12 weeks after pruning during both a “rainy” and a “dry” season. In general, the dynamics of non-structural carbohydrates in roots and stems of pruned E. poeppigiana and G. sepium trees were similar. Starch concentration was highest in unpruned trees and higher in roots than in stems of pruned trees. The effect of pruning intensity was first observed in stems, and starch reserves were more depleted in stems than in roots, an effect more evident during the “dry” season. The critical tree regrowth stage for starch mobilisation was that of vigorous sprout development at six or four weeks after pruning particularly in completely pruned trees. At this time, fine root biomass and length and nodule biomass in pruned trees decreased. Survival of fine roots and nodules was greater in partially pruned than in completely pruned trees. Starch accumulation in roots recommenced at 12 weeks after pruning in G. sepium, and later than 12 weeks after pruning in E. poeppigiana roots. This study showed that E. poeppigiana responded better to pruning regimes than G. sepium. Recovery of trees after pruning is better when trees are partially pruned than when completely pruned.  相似文献   

5.
Proe MF  Mead DJ  Byrne D 《Tree physiology》2000,20(10):653-661
Stem injection of (15)N-labeled ammonium sulfate was used to determine effects of pruning on canopy nitrogen dynamics in open-grown Pinus radiata D. Don in New Zealand. Trees were planted in July 1990 and the isotope introduced in December 1994. Tree crowns were divided into three zones: base section, from which branches of pruned trees were removed; mid section, between the pruned zone and the height of the trees at the start of the year in which they were pruned; and top section, which grew predominantly after the isotope was applied. Pruning removed 32% of the green crown length, representing 75% of foliage biomass. Needles were sampled from each region of the crown until July 1996. Branch growth was used to predict foliage biomass for each sampling occasion. Approximately 45% of the applied isotope was recovered from needles sampled in December 1994 (1 week after application and immediately before pruning), two-thirds of which occurred in needles in the base section. Thereafter, changes in isotope content of needles in the base section of unpruned trees largely reflected foliage biomass fluctuations and dilution of the isotope by continued uptake from the unlabeled soil nitrogen pool. Recovery of isotope in needles from the mid-crown section increased by 58 and 86% from December 1994 to July 1995 in control and pruned trees, respectively. Within this crown section, there was evidence of isotope translocation from old to new needles, with both isotope dilution and efflux observed in the needle cohorts that had been present at the time the isotope was applied. Therefore, isotope dynamics did not reflect the dynamics of the total nitrogen pool in the mid-crown section. By July 1996, a small proportion of the applied isotope was recovered from the new foliage formed in the top section of the crown. Within the top section, isotope dynamics closely matched total nitrogen fluxes. Pruning the lower crown did not affect nitrogen dynamics elsewhere in the crown for the following 18 months.  相似文献   

6.
Seedlings of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and western red cedar (Thuja plicata J. Donn ex D. Don) were grown at high (250 mg l(-1)) and low (20 mg l(-1)) nitrogen (N) supply for a year. Before the second growing season, half of the seedlings in each nutrient treatment were allocated to the other treatment. Half of the seedlings in each nutrient treatment then had all growing points removed. Biomass and N, phosphorus (P) and potassium (K) concentrations of old and new shoots and roots were measured three times in the second year to test the interaction of current-year and previous-year nutrient supply on biomass and nutrient allocation in these two species with different growth habits. Pruned seedlings served as controls. Unpruned seedlings of both species increased in height throughout the second growing season, except for Douglas-fir in the N250 --> N20 treatment. Repeated pruning did not prevent new shoot growth, but resulted in a 12 to 52% reduction in biomass of new shoots and new and old roots. Seedlings receiving a low N supply in the first growing season were more severely affected by pruning than seedings receiving a high N supply. Growth was reduced more by pruning in western red cedar than in Douglas-fir. Concentrations of N, P and K were higher in pruned seedlings than in unpruned seedlings. Although dry weights of all plant parts in all treatments increased throughout the second growing season, some retranslocation of N, P and K was observed from old shoots of both species in the N250 --> N20 and N20 --> N20 treatments after August. Quantities of N, P and K retranslocated were greatest in seedlings grown the previous year in the high-N treatment.  相似文献   

7.
Fifteen, 1-year-old Populus maximowiczii Henry x P. nigra L. 'MN9' trees were decapitated and allowed to sprout. After 8 weeks, all had 6 to 10 coppice shoots. All shoots, except the tallest (dominant) shoot, were removed from five of the trees (pruned treatment), and shoot growth, gas exchange and carbohydrate status were compared in the pruned and unpruned trees. Although photosynthetic rate of recently mature leaves of pruned trees was approximately 50% greater than that of leaves on the dominant shoot of unpruned trees, and the dry weight of leaves of pruned trees was 37% greater than that of the leaves on the dominant shoot of unpruned trees, the shoot dry matter relative growth rate did not differ between treatments. Concentrations of water-soluble carbohydrates and starch in the uppper stem and leaves of the dominant shoot were similar in pruned and unpruned trees. However, relative to that of the dominant shoot in unpruned trees, the lower stem in pruned trees was depleted in both soluble carbohydrates and starch. Starch deposition, assessed as the quantity of (14)C-starch in tissues 24 h after a fully expanded source leaf was labeled with (14)CO(2), was 3.9 times greater in roots of pruned trees than in roots of unpruned trees. We conclude that early removal of all but the dominant shoot reduces the carbohydrate status of the roots and the lower portion of the stem by eliminating the excised shoots as a source of photosynthate.  相似文献   

8.
Pruning of agroforestry trees, while reducing shade of the crops, usually reduces both biomass production and nitrogen fixation. Short pruning cycles are often not sustainable on the long run, because tree production declines over subsequent pruning cycles. We compared biomass and labile carbohydrate dynamics of Erythrina lanceolata Standley (Papilionaceae) shade trees under total and partial pruning regimes in a vanilla (Vanilla planifolia L.) plantation in South-western Costa Rica. The highest biomass production was measured in the unpruned control, followed by trees with 50% of the leaf pruned every three months, while total pruning every six months resulted in the lowest biomass pruduction. In the more productive treatments, a higher proportion of the production was in branches. Because, the N content of woody branches was high, they were important for nitrogen cycling. In the partial pruning treatment more nitrogen was returned to the soil from litter and woody branches than from pruned leaf. Sugar concentrations were not different between treatments and the dynamics of non-structural carbohydrates (sugar and starch) seems to depend more on plant phenology than pruning treatment. However, the starch concentrations in the total pruning were lower than in the other treatments.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

9.
We examined the effect of early and intense pruning on light intensity under the canopy, individual growth, diameter–height relationships, and epicormic shoot dynamics in young hybrid larch (Larix gmelinii var. japonica × L. kaempferi) to establish a new effective management method for hybrid larch plantations. The objective is to produce high-quality wood while reducing silviculture costs using a combination of low-density planting and early and intense pruning. In a young hybrid larch plantation, we pruned branches to two different heights (2 and 4 m above ground level) using a no-pruning treatment as a control. Although the growth rates were lower in the heavy pruning treatment (4 m above the ground level) than in other treatments in the year following pruning, when measured 4 years later, growth did not differ between treatments. The number of epicormic shoots increased in the year following pruning, as did the relative photosynthetic photon flux density (rPPFD). The number of epicormic shoots was also dependent on the size of individual trees. However, survival of epicormic shoots was not sufficiently high to be problematic for high-quality timber production. If branches are pruned carefully such that the rPPFD does not rise above 20%, the emergence of epicormic shoots can also be controlled. Our results indicate that early and intense pruning is an effective component of a new management system for hybrid larch plantations.  相似文献   

10.
Tree root pruning is a potential tool for managing belowground competition when trees and crops are grown together in agroforestry systems. We investigated the effects of tree root pruning on shoot growth and root distribution of Alnus acuminata (H.B. & K.), Casuarina equisetifolia L., Grevillea robusta A. Cunn. ex R. Br., Maesopsis eminii Engl. and Markhamia lutea (Benth.) K. Schum. and on yield of adjacent crops in sub-humid Uganda. The trees were 3 years old at the commencement of the study, and most species were competing strongly with crops. Tree roots were pruned 41 months after planting by cutting and back-filling a trench to a depth of 0.3 m, at a distance of 0.3 m from the trees, on one side of the tree row. The trench was reopened and roots recut at 50 and 62 months after planting. We assessed the effects on tree growth and root distribution over a 3 year period, and crop yield after the third root pruning at 62 months. Overall, root pruning had only a slight effect on aboveground tree growth: height growth was unaffected and diameter growth was reduced by only 4%. A substantial amount of root regrowth was observed by 11 months after pruning. Tree species varied in the number and distribution of roots, and C. equisetifolia and M. lutea had considerably more roots per unit of trunk volume than the other species, especially in the surface soil layers. Casuarina equisetifolia and M. eminii were the tree species most competitive with crops and G. robusta and M. lutea the least competitive. Crop yield data provided strong evidence of the redistribution of root activity following root pruning, with competition increasing on the unpruned side of tree rows. Thus, one-sided root pruning will be useful in only a few circumstances.  相似文献   

11.
人工整形对观赏果树生长发育的影响   总被引:1,自引:0,他引:1  
为了科学而有效地利用苹果树资源,以促进休闲观光农业的发展,采用不同的整形处理方法,就苹果树的树体造型及其造型后的生长发育状况进行了试验与观测,结果表明:双环处理的致矮效应最好;"S"树形最为均衡,其平均干粗明显地高于其它处理,其长、中、短枝的比例适宜;双环处理的高效叶最多,其新梢能够及时停止生长,树体积累的养分多,对形成花芽有利;双环、单环和"S"形处理能够促使苹果树形成优美独特的景观。  相似文献   

12.
为了评价人工剪梢防治微红梢斑螟对松树生长的影响,分别在当年5月份和7月份对微红梢斑螟危害过的马尾松、湿地松幼林实施人工剪梢防治微红梢斑螟幼虫.结果表明:人工剪梢防治微红梢斑螟对松树生长的影响与剪梢时间和树种有关.人工剪梢防治对马尾松、湿地松地径生长均有一定的促进作用,其中5月份剪梢的马尾松地径增长最明显,达14.87%...  相似文献   

13.
Fine root and nodule production and turnover in pruned 2- and 8-yr-old Erythrina poeppigiana (Walp.) O.F. Cook trees were estimated under humid tropical conditions by applying the compartment flow model (CFM) to fine root and nodule biomass and necromass measured in sequentially taken core samples. Shoot pruning intensities compared were complete pruning (i.e., complete removal of shoots) and partial pruning (i.e., retention of one branch on the pruned stump). The CFM provided reasonable estimates of nodule dynamics but did not apply to fine root data. Over a five-month observation period, nodule production in completely and partially pruned 2-yr-old trees was 58.2 and 115 g tree–1, respectively, and the corresponding values in 8-yr-old trees were 26.8 and 26.4 g tree–1. Senescent nodules and fine roots pass to soil organic matter via decomposition. Partially and completely pruned 2-yr-old trees added 95.4 and 50.4 g tree–1 decomposed nodules to soil, respectively. The respective value for 8-yr-old trees were 26.7 and 36.5g tree–1. Nodule and fine root turnover was compensated for by new production at 10–14 weeks after pruning. The retention of a branch on the pruned E. poeppigiana tree stump allows better fine root and nodule survival, and enhances tree biomass production.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

14.
Colophospermum mopane, commonly known as mopane, produces secondary metabolites during the growing season. However, there is still insufficient knowledge on the quantity of secondary metabolites and the effect of browsers on the concentration of secondary metabolites. A pruning experiment was conducted in the Musina Nature Reserve, Limpopo province, South Africa, to simulate the effect of browsers on the concentration of secondary metabolites in mopane leaves. The twigs from 40 selected experimental mopane trees were pruned back 50 mm from their tips using a hand shear. The total amount of leaf and shoot biomass removed from branches of selected experimental trees was less than 10%. Three independent samples composed of seven mopane leaves per 40 mopane trees were randomly collected from the canopies of experimental and control trees per sampling event. The dried leaves from each three independent samples were then mixed separately and a pooled sample of 10 g per treatment per sample cycle (55 d) was used for determination of total phenols (TP), condensed tannins (CT) and protein-precipitating tannins (PPT). Results showed that <10% pruning does not have an effect on the amount of secondary metabolites in the mopane leaves. The concentration of TP, CT and PPT increased during leaf flush in October and then declined as the leaves matured and aged. It is concluded that the amount of secondary metabolites in mopane leaves is not dependent on <10% pruning, but appeared to be associated with leaf growth stages. The ability of mopane to produce secondary metabolites has implications on the seasonal diet composition and distribution of browsers in mopane woodland.  相似文献   

15.
Three controlled water supply treatments were applied to 1-year-old peach trees grown in root observation boxes. The treatments were: I(0), growth medium maintained at 50% field capacity; I(1), water supplied when daily net tree stem diameter change was negative or zero for 1 day; I(3) as for I(1) except that water was applied after net daily stem diameter change was negative or zero for 3 consecutive days. Trees in treatment I(0) had the greatest mean daily first-order shoot growth rates, and trees in treatment I(3) had the lowest shoot growth rates. Because leaf production rate (apparent plastochron) of first-order shoots was unaffected by treatment, differences in shoot length were due to differences in internode extension and not to the number of internodes. Trees in treatment I(0) had a greater number of second-order shoot axes than trees in treatment I(1) or I(3). Furthermore, an increase in the rate of growth of the first-order shoot axis was associated with an increased tendency for branching (i.e., the development of sylleptic second-order shoots). Increased leaf length was also associated with more frequent watering. Trees in treatment I(0) had the greatest root lengths and dry weights, and this was attributed to a greater number of first-and second-order (lateral) root axes compared with trees in the I(1) and I(3) treatments. The extension rate and apical diameter of first-order roots were reduced by the I(3) treatment. The density of second-order roots along primary root axes was not affected by any of the treatments.  相似文献   

16.
The effect of root and shoot pruning on early growth of hybrid poplars   总被引:1,自引:0,他引:1  
Planting stock type and quality can have an important impact on early growth rates of plantations. The goal of this study was to evaluate early growth and root/shoot development of different planting materials in typical heavy clay soils of northwestern Quebec. Using one-year-old bareroot hybrid poplar dormant stock, four planting materials were compared: (1) regular bareroot stock, (2) rootstock (stem pruned before planting), (3) whips (roots pruned before planting), and (4) cuttings (30 cm stem sections taken from the basal portion of bareroot trees, i.e. roots and shoot pruned). Rooted stock types (bareroot and rootstock) produced, on average, 1.2 times larger trees than unrooted stock types (cuttings and whips). However, shoot-pruned stock types (rootstocks and cuttings) reached similar heights and basal diameters as unpruned stock types (bareroots and whips), during the first growing season. Shoot pruning reduced leaf carbon isotopic ratios, suggesting that unpruned stock types were water-stressed during the first growing season. The stress was most likely caused by early leaf development while root growth occurred later in the summer. We conclude that shoot pruning bareroot stock is a useful management option to reduce planting stress without compromising early growth rates of hybrid poplars.  相似文献   

17.
Hydraulic and light environments have variation within the crown in well-grown trees. Shoot morphology and shoot hydraulics were compared between the upper and lower crown or among branching patterns in well-grown Quercus crispula Blume. Shoots in the upper crown had longer and thicker axes and lower water potential than did shoots in the lower crown. Hydraulic conductance from the soil to the shoot did not differ between the upper crown and the lower crown. Shoots in the upper crown are exposed to hydraulic stress, and shoots in the lower crown are under shade stress. Shoot morphology and shoot hydraulic traits (i.e., higher Huber value and higher hydraulic conductivity) in the upper crown affected the hydraulic conductance of shoots. Shoots in the lower crown showed larger light-receiving leaf area per leaf biomass investment, which is an adaptive morphology under shaded environments. Shoot morphology and shoot hydraulics were not correlated to branching pattern significantly, but shoots with higher branching intensity in the upper crown represented trends for higher hydraulic conductivity. These results reveal that shoot morphological and physiological characteristics in the upper crown reduce hydraulic stress, and those in the lower crown reduce shade stress. I conclude that vertical position within a crown affects both morphological and physiological acclimation for light acquisition and hydraulic conductance, and that hydraulic architecture is associated with crown architecture.  相似文献   

18.
通过对无患子春梢进行不同强度的修剪处理,结果表明:轻度修剪最有利于新梢的萌发,进行轻剪处理的标准枝,平均新梢数为5.67条,极显著高于中剪和重剪处理的标准枝,是不修剪处理组的2.73倍。进行中度修剪的标准枝上萌发的新梢,其基径和梢长的生长情况均明显高出不修剪或经过轻剪和重剪处理的标准枝;经轻剪处理的标准枝,其平均开花枝数和平均坐果枝数分别为3.75条和2.58条,较未做修剪处理的标准枝1.33条的开花枝数和0.83条的坐果枝数,分别高出了181.95%和210.84%;较中剪处理组高出了80.29%和63.29%,较重剪处理组则高出了220.51%和180.43%;各处理组标准枝的新梢开花枝率和结果枝率则是随着修剪强度的增强而呈递增趋势;修剪强度对各指标的关联序为:新梢平均梢长新梢平均基径平均结果枝数结果枝平均坐果数平均新梢数平均开花枝数。  相似文献   

19.
The effects of two pruning regimes on the above-ground biomass allocation and nodulation of Gliricidia sepium (Jacq.) Walp. (Leguminosae: Robinieae) were studied in a cut-and-carry forage production system under humid tropical conditions in Guadeloupe, French Antilles. The grass layer composed of a mixture dominated by Paspalum notatum Flügge (80%) and Digitaria decumbens Stent. The pruning regimes were partial pruning (ca. 50%) every two months and complete pruning every six months. The complete pruning caused an almost complete turnover of N2 fixing nodules. The nodule biomass decreased after the partial pruning, but the turnover was not complete. The nodule to foliage biomass ratio followed the same pattern under both treatments, and the values of the ratio converged towards the end of the experimental period. The maxima of standing nodule biomass were 7.2 and 13.0 kg ha−1 in the partially and completely pruned trees, respectively. The cumulative leaf fodder harvest was higher under partial pruning management, due to smaller litter loss. The branch biomass production was higher under complete pruning management. Grass production was not affected by the pruning pattern of G. sepium. It was concluded that the partial pruning management produces more fodder in the studied association, and the nodulation probably adjusts to the canopy N requirements. The potential N release to soil in the turnover of nodules of G. sepium (max. 0.82 kg ha−1) is negligible compared to the N export in tree and grass fodder harvest, 190 and 215 kg ha−1 in partially and completely pruned plots, respectively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Tree pruning is a common management practice in agroforestry for mulching and reducing competition between the annual and perennial crop. The below-ground effects of pruning, however, are poorly understood. Therefore, nutrient dynamics and root distribution were assessed in hedgerow plantings of Acacia saligna (Labill.) H.L. Wendl. after tree pruning. Pruning to a height of 1.5 m was carried out in March and September 1996. In July and October 1996, the fine root distribution (< 2 mm) and their carbohydrate contents were determined at three distances to the tree row by soil coring. At the same time, foliar nutrient contents were assessed, whereas nutrient leaching was measured continuously. The highest root length density (RLD) was always found in the topsoil (0–0.15 m) directly under the hedgerow (0–0.25 m distance to trees). Pruning diminished the RLD in the acacia plots at all depths and positions. The relative vertical distribution of total roots did not differ between trees with or without pruning, but live root abundance in the subsoil was comparatively lower when trees were pruned than without pruning. In the dry season, the proportion of dead roots of pruned acacias was higher than of unpruned ones, while the fine roots of unpruned trees contained more glucose than those of pruned trees. Pruning effectively reduced root development and may decrease potential below-ground competition with intercropped plants, but the reduction in subsoil roots also increased the danger of nutrient losses by leaching. Leaching losses of such mobile nutrients as NO3 were likely to occur especially in the alley between pruned hedgerows and tended to be higher after pruning. The reduced size of the root system of pruned acacias negatively affected their P and Mn nutrition. Pruning also reduced the function of the trees as a safety net against the leaching of nutrients for both NO3 and Mn, though not for other studied elements. If nutrient capture is an important aim of an agroforestry system, the concept of alley cropping with pruning should be revised for a more efficient nutrient recycling in the system described here.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号