首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To utilize forest resources in areas affected by fallout from the Fukushima Daiichi Nuclear Power Plant accident, it is important to understand the mechanisms of 137Cs movement through the stem wood of contaminated trees. Understanding the mechanism of absorption and migration of 137Cs to stem wood is necessary for clues to the future prediction of the transition of 137Cs to xylem. In the present study, radial variations in 137Cs concentration were investigated in Japanese cedar (Cryptomeria japonica D. Don) trees collected 1 year and 10 months after the accident. Additionally, the relationship between 137Cs concentration and potassium (K) content was established. Trees with a higher moisture content and lower lightness value in heartwood tended to have a higher 137Cs concentration in the heartwood. In these trees, 137Cs concentration peaked at the heartwood–sapwood boundary and gradually decreased toward the pith. By contrast, K content within the heartwood remained nearly constant along the radial direction. The heartwood-to-sapwood ratio of 137Cs concentration was significantly positively correlated with that of K content. Based on these results, we suggest that 137Cs movement from sapwood to heartwood might be related to the K content ratio of heartwood and sapwood.  相似文献   

2.
Absorption of radiocesium (137Cs and 134Cs) through bark, and its subsequent translocation into wood and needles, has been suggested as a potential source of tree contamination, but the process is not well understood. Field experiments were conducted to confirm whether Cs could enter a Japanese cedar tree through the bark and how Cs moves within a tree. Stable Cs (133Cs) was applied to the bark at 1.2-m height on 10- and 26-year-old Japanese cedars. The 133Cs concentrations were determined in the bark, sapwood, and heartwood (for 26-year-old cedar only) of stem disks from several heights, as well as in current-year needles from the canopy. The 133Cs concentrations were considerably higher in the sapwood and heartwood of stem disks from 1.2-m height in treated trees than in untreated trees, suggesting that 133Cs penetrated the bark to enter the wood. The average 133Cs concentrations were higher in the heartwood than the sapwood, indicating 133Cs accumulation in the heartwood. High 133Cs concentrations in the needles of treated trees implied acropetal movement of 133Cs to actively growing organs. Our results demonstrate that Cs can enter Japanese cedar trees through the bark and that Cs is transported radially to the heartwood and vertically to the apex.  相似文献   

3.
Several iron-rich wood samples were investigated using Mössbauer spectroscopy to obtain information on the chemical state of the iron species contained in them. The Mössbauer spectrum of Japanese cedar (Cryptomeria japonica D. Don) wood containing iron species that originated from rusted nails exhibited a symmetrical doublet from a high-spin Fe(III) species, which is expected to be γ-FeOOH (lepidocrocite). Mössbauer absorption attributable to high-spin Fe(III) was observed for ancient buried wood samples of both Japanese cedar and Japanese cypress (Chamaecyparis obtusa Endlicher). Moreover, Mössbauer measurement indicated that the ancient buried Japanese cedar also possessed high-spin Fe(II) species.  相似文献   

4.
The chemical compositions of the dichloromethane extracts of inner and outer barks from six Pinus species (P. elliotii, P. oocarpa, P. caribeae, P. merkusii, P. montezumae, and P. insularis) grown in Indonesia were investigated by GC and GC–MS. Generally, the amounts of extractive contents were higher in the inner bark than in the outer bark except for P. merksuii. Fatty acids, monoterpenes, sesquiterpenes, resin acids, triterpenoids, and steroids were detected and quantified. Inner and outer barks differed not only in content of these compounds but also in their composition. Fatty acids and alcohols were the major classes of lipophilic compounds in the outer bark of P. caribeae, P. insularis, and P. montezumae. Steroids and triterpenoids were the dominant compounds identified in the inner bark of P. elliotii, P. insularis, and P. merkusii. Resin acids were the most abundant group in the inner bark of P. oocarpa whereas monoterpenes and sesquiterpenes were recorded in minor quantities in both bark layers of all species.  相似文献   

5.
Variations in intrinsic wood properties [growth ring width (GRW), specific gravity (SG), fiber length (FL), and microfibril angle (MFA)] of 17–19-year-old Melia azedarach trees grown in two sites in northern Vietnam were investigated for effective utilization of the wood. Five discs were collected at 0.3-, 1.3-, 3.3-, 5.3-, and 7.3-m heights above the ground. The estimated mean GRW, SG, FL, and MFA were 7.44 mm, 0.548, 1.07 mm, and 14.65°, respectively. There were significant (P < 0.05) differences among trees and between sites in SG, FL, and MFA. Longitudinal position significantly (P < 0.05) influenced GRW and SG. Radial position was highly (P < 0.001) significant to all the wood properties and contributed the highest (GRW: 52.58%, SG: 58.49%, FL: 77.83%, and MFA: 26.20%) of the total variations. FL and SG increased from pith to bark, while GRW and MFA decreased from pith to bark. Fiber length increment (FLI) tends to stabilize between 7th and 10th rings. This should be taken into account when processing logs. The results of this study, therefore, provide a basis for determining management strategies appropriate to structural timber production of M. azedarach plantation trees in northern Vietnam.  相似文献   

6.
Transmittance and reflectance of visible light by sugi wood (Cryptomeria japonica) were investigated in the longitudinal (L) and tangential (T) directions. Transmittance was the highest in the L direction and reflectance was the highest in the T direction, suggesting that structural anisotropy influences transmittance and reflectance. Intra-ring variations observed with a microspectrometer indicated that T transmittance was higher for latewood than for earlywood, but there was no such trend in for L transmittance in which the highest levels occurred near the annual ring boundaries, on either the earlywood or latewood side, and the lowest at the transition from earlywood to latewood. Dependence of L transmittance on wavelength also showed variations according to the intra-ring position. The increasing of transmittance of earlywood at wavelengths?<?500 nm with increasing wavelength was observed, but this was not confirmed for latewood because of absorption by lignin. These observations supported a previously published finding, which was based on measurements in the radial direction, that the number of internal cell wall reflections, rather than density, determines wood lightness. Indeed, in the L direction, most of the incident light passes through lumens in earlywood and through cell walls in latewood, while it is subjected to numerous internal reflections at the interface between lumens and cell walls. This was further confirmed by the transmittance of earlywood being greatly decreased by radial compression.  相似文献   

7.
Recently, Acacia crassicarpa has been planted in peatland areas with acidic soil in Indonesia for use in pulp and paper materials. Its bark is not suitable to produce bleached pulp; hence, it is discarded as waste. Meanwhile, in South Africa and other countries, Acacia mearnsii has been planted for a long time, and its bark extracts have been used as a leather tanning agent. First, the structure of condensed tannin from the bark waste of A. crassicarpa is characterized. The yield of the extracts obtained from A. crassicarpa using a 70% acetone aqueous solution (7% based on bark weight) is less than that obtained from A. mearnsii (34%). A novel flavan dimer from the condensed tannin, specific to A. crassicarpa, is isolated from the bark extracts. To the best of our knowledge, this dimer is a new compound as evidenced from pyrolysis–gas chromatography–mass spectrometry and nuclear magnetic resonance analyses; it corresponds to a gallocatechin–catechin flavan dimer with the absence of one oxygen atom at the 3C of the pyran ring. In addition, 2,4,6-trimethoxybenzoic acid methyl ester is identified as a novel pyrolysis product obtained from the cleavage of the pyran ring.  相似文献   

8.
In this work, pretreatment of wood meals using a recycled ionic liquid (IL), 1-ethyl-3-methylimidazolium acetate ([Emim]Ac), enhanced glucose liberation by enzymatic saccharification, without dissolution of cellulose and lignin. In contrast, previous studies on IL pretreatment have mostly focused on lignocellulosic dissolution to regenerate cellulose and removing lignin. Softwood (Cryptomeria japonica) was pretreated with [Emim]Ac at 60–100 °C for 2–8 h without collecting regenerated cellulose. The pretreatment did not have a strong effect on wood component dissolution (weight of residues: 91.7–98.8%). The residues contained relatively high amounts of lignin (26.6–32.6%) with low adsorption of [Emim]Ac (0.9–2.7%). Meanwhile, the crystallinity index (C r I) of cellulose in the wood was significantly reduced by pretreatment, from 50.9% to 28.4–37.1%. In spite of the high lignin contents in the residues, their glucose liberation values by enzymatic saccharification using a cellulase mixture were 3–16 times greater than that of untreated wood. A good correlation was found between the saccharification effectiveness of pretreated samples and the C r I. Although lignin dissolved in [Emim]Ac continued to accumulate after repeated use of [Emim]Ac, the pretreatment was found to be effective for three consecutive cycles without the need to remove the dissolved materials.  相似文献   

9.

Key message

Accurate evaluation of genetic performances of trees is crucial in order to improve the efficiency of forest tree breeding. We revealed that spatial analysis is effective for predicting individual tree breeding values at the forward selection stage of Cryptomeria japonica D. Don (sugi) breeding program by using a novel validation approach.

Context

In the process of selecting genetically superior trees for breeding, appropriate handling of environmental effects is important in order to precisely evaluate candidate trees. Spatial analysis has been an effective statistical approach for genetic evaluation at sites with heterogeneous microenvironments. However, the efficiency of spatial analysis on forward selection has not been validated on a practical scale to date.

Aims

This study aimed to reveal the effectiveness of spatial analysis, which incorporates spatially autocorrelated residuals into mixed models, for the prediction of breeding values at the forward selection stage by validation using progeny or clonal tests of forward-selected individuals.

Methods

Tree height was analyzed by ordinary randomized complete block design models and spatial models incorporating spatially autocorrelated residuals in a linear mixed model framework, and model selection was conducted at thirty Cryptomeria japonica D. Don breeding population sites having various topographical ruggedness. For validation, three clonal tests and one progeny test of individuals selected from three and four breeding populations, respectively, were used. The effectiveness of forward selection using the two models was evaluated based on the correlation between individual breeding values at the stage of forward selection and genotypic and breeding values that were estimated by clonal and progeny tests.

Results

Spatial models were more predictive than ordinary models in all cases. Spatial correlation parameters tend to increase with the topographical ruggedness index of each site. The correlation coefficients between breeding values at the time of forward selection and genotypic or breeding values evaluated in succeeding clonal and progeny tests were significantly higher in spatial models than in ordinary models in six out of nine cases.

Conclusion

Validation using progeny and clonal tests of forward-selected individual trees revealed that spatial analysis is more effective for the evaluation of genetic performance of individuals at the stage of forward selection in Cryptomeria japonica.
  相似文献   

10.
Niche differentiation, in terms of time and space, has been reported within a community of ambrosia beetles (Coleoptera: Scolytidae and Platypodidae) in a tree trunk. Two platypodid ambrosia beetles, Platypus quercivorus (Murray) and Platypus calamus Blandford, utilize a similar height range with respect to the Quercus serrata Murray (Fagaceae) trunk. The sapwood and heartwood (i.e., wood types) are known to differ in their physical and chemical characteristics. The objective of this study was to determine the differences among ambrosia beetles, in terms of wood type preferences, in a Q. serrata tree trunk. We analyzed the horizontal distribution patterns of ambrosia beetles within two mature Q. serrata tree trunks. Platypus calamus and the other ambrosia beetles [P. quercivorus, Ambrosiodmus lewisi (Blandford), Ambrosiophilus atratus Eichhoff, and Xyleborus sp.] showed different horizontal distribution patterns within the wood. The former tended to utilize the heartwood, whereas the latter utilized the sapwood. These results suggest that the wood type can be regarded as one of the niche dimensions of ambrosia beetles in a Q. serrata trunk.  相似文献   

11.
Changes in the morphology and functions of vacuoles provide useful information about the mechanism of cell death. In the present study, we monitored the morphology and contents of vacuoles during the death of ray parenchyma cells in the conifer Cryptomeria japonica. In differentiating xylem, ray parenchyma cells had large central vacuoles. In sapwood, vacuoles in ray parenchyma cells contained proteins, an indication that one of the main functions of these vacuoles might be protein storage. A dramatic decrease in the protein content of some vacuoles was detected in the intermediate wood before the initiation of vacuole rupture. Although vacuole rupture was detected from the intermediate wood to the outermost heartwood, some vacuoles were obviously enlarged in the inner intermediate wood. Condensed nuclei were first observed after the rupture of these large vacuoles in ray parenchyma cells. It seems plausible that the autolysis of the contents of ray parenchyma cells might be caused by the rupture of the enlarged vacuoles in the inner intermediate wood.  相似文献   

12.
Four strains of the termite mushroom Termitomyces eurrhizus collected in Japan were surveyed for their wood decaying properties in three softwood and two hardwood species, in comparison with the white-rot fungus Trametes versicolor and the brown-rot fungus Fomitopsis palustris. All strains of T. eurrhizus degraded only the surfaces of the wood samples, and differences in mass-loss rates between heartwood and sapwood were generally not significant. Higher mass-loss rates were generally obtained in softwood than in hardwood. The results of chemical analyses of decayed wood samples indicated that T. eurrhizus does not have high lignin-degradation ability, even though it is categorized as a white-rot fungus. These results clearly suggest the unique physiological characteristics of T. eurrhizus.  相似文献   

13.
We developed a new system for measuring the NO2 sorption ability of Japanese cedar (Cryptomeria japonica) wood by referring to Japanese Industrial Standard for JIS R 1701-1 (Test method for air purification performance of photocatalytic materials, Japanese Standard Association, Tokyo, 2004). Aeration experiments were conducted using plated specimen, particle specimen, discoid specimen and wood powder with consideration of aeration condition and surface area which can contact with NO2 gas. In the plated specimen, the NO2 sorption ability was greatly affected by the thickness of longitudinal direction, and high NO2 sorption ability of the transverse section was observed within a thickness range from the surface to ca. 3 mm. The average NO2 sorption volume for discoid specimen for 5 h was approx. five times larger than that those for the plated and particle specimens, which the thickness of longitudinal direction was 1.5 mm. This means that the NO2 sorption effect was especially high under the condition where the NO2 gas passed through tracheid. Also, it was suggested that the interface area between NO2 gas and specimen influenced to the NO2 sorption ability. Furthermore, it was confirmed that the NO2 sorption volume in discoid specimen and the grain size below 0.25–0.50 mm of wood powder reached the greatest.  相似文献   

14.
Within-stem variations in the mechanical properties of 17–19-year-old Melia azedarach planted in two sites in northern Vietnam were examined by destructive and nondestructive methods. Wood samples were collected from 10, 50, and 90% of the radial length from pith on both sides (North and South) at 0.3, 1.3, 3.3, 5.3, and 7.3 m heights above the ground. The mean values in whole trees of wood density (WD), modulus of rupture (MOR), modulus of elasticity (MOE), and dynamic modulus of elasticity (Ed) at 12% moisture content were 0.51 g/cm3, 78.58 MPa, 9.26 GPa, and 10.93 GPa, respectively. Within the stem, the radial position was a highly (p?<?0.001) significant source of variation in mechanical properties. MOR, MOE, and Ed increased from pith to bark. WD had a strong positive linear relationship with both MOR (r?=?0.85, p?<?0.001) and MOE (r?=?0.73, p?<?0.001). This suggests that it is potentially possible to improve mechanical properties through controlling WD. MOR had also a strong linear relationship with Ed (r?=?0.84, p?<?0.001). This indicates that Ed is a good indicator to predicting the strength of wood if the density of measured element is known. Besides, the stress wave method used in this study provides relatively accurate information for determining the stiffness of Melia azedarach planted in northern Vietnam.  相似文献   

15.

Key message

The invasion of moso bamboo ( Phyllostachys edulis (Carriere) J. Houzeau) into neighboring Cryptomeria japonica (L. f.) D. Don plantations significantly altered soil P status and dynamics. This alteration in phosphorus dynamics must be considered when assessing the ecological consequence of moso bamboo invasion in subtropical China.

Context

Moso bamboo is a native species that commonly invades into adjacent forests in Asia. Such invasions may significantly alter soil chemical characteristics because moso bamboo has very different traits compared with the tree species it displaces. However, few studies have investigated the effects of moso bamboo invasion on soil phosphorus (P) dynamics.

Aims

The objective of this study was to investigate the effects of moso bamboo invasion on soil P dynamics. Specifically, we quantified soil total P, available P, acid phosphatase activity (APA), and microbial biomass P (MBP) in moso bamboo-invaded coniferous stands and compared them to uninvaded stands and pure moso bamboo stands.

Methods

We compared seasonal dynamics of soil P (e.g., total P, available P, APA, and MBP) over a 24-month period among three stand types at Lushan mountain in subtropical China: Cryptomeria japonica plantation (CR), Cryptomeria japonica plantation invaded by Phyllostachys edulis (PH-CR), and Phyllostachys edulis stand (PH).

Results

Total soil P concentration was significantly lower in PH-CR than in CR and PH stands, but soil available P concentration was significantly lower in CR and PH stands. Soil APA was significantly higher in PH-CR than in CR and PH stands. Similarly, soil MBP concentration was higher in PH-CR than in CR and PH stands. Also, soil total P, available P, APA, and MBP concentrations displayed seasonal fluctuations in PH-CR, but remained relatively stable in CR and PH stands during the 2 years.

Conclusion

The invasion of moso bamboo into adjacent C. japonica stands significantly increased soil available P, acid phosphatase activity, and microbial biomass phosphorus, but decreased soil total P. The implication of these changes to ecosystem composition, structure, and function must be explicitly considered in managing moso bamboo invasion in subtropical China.
  相似文献   

16.
The influence of moisture content (MC) on the orthotropic viscoelasticity of Chinese fir wood (Cunninghamia lanceolata [Lamb.] Hook.) has been examined in low temperature environment. Storage modulus E′ and loss modulus E″ of wood with six different levels of MC ranging from 0.6 to 22.0% were determined from ??120 to 40 °C and at multi-frequency range of 0.5, 1, 2, 5, and 10 Hz using a TA instruments® Dynamic Mechanical Analyzer (DMA 2980). The results showed that a distinct moisture dependency is exhibited by the orthotropic viscoelastic behaviour of Chinese fir wood. With the exception of some apparent activation energy (ΔE) for β-relaxation process, the E′ decreased and the E″ peak temperatures moved towards lower temperature and the ΔE for α-relaxation process became lower with MC increasing in all orthotropic directions, whereby individual decline of E′ and the E″ peak temperatures were affected by MC to different degrees. Besides, a little E″ peak at around 0 °C was only seen in L direction, which could be attributed to the melting of frozen water. Furthermore, the dynamic viscoelastic behavior of wood is also dependent on the measurement frequency. The findings suggest that the orthotropic structure and moisture content have an important influence on the viscoelastic performance in low temperature environment.  相似文献   

17.
At present tapped wood of black pines (Pinus nigra var. austriaca) is mainly combusted. The priority of material use over thermal recycling has led to some considerations regarding the utilization of tapped wood. The high content of extractives suggests a higher natural durability, and therefore, the suitability for outdoor applications. Tapped and not tapped wood boards from black pine (sapwood and heartwood) were subjected to weathering tests to find out its resistance against abiotic stress. Additionally tapped wood particles with a high content of resin were exposed to weathering and to composting. Weathering caused roughness to increase. Infrared spectral characteristics revealed the differences before and after tapping and weathering. Principal component analyses supported the grouping according to the chemical changes. In heartwood the lignin band at 1510 cm??1 disappears and the typical resin band at 1688 cm??1 decreases considerably. The lignin band of resinous parts is affected neither by weathering nor by composting. However, the resin band shows an intensity decrease and broadening due to weathering and disappears during composting.  相似文献   

18.
An unidentified Fomitiporia sp. causes severe white-rot on stems of a cultivar “Sanbu-sugi” of the Japanese cedar, Cryptomeria japonica. The influence of the fungus on tree health and wood properties was determined. Bark from dead branches and xylem from living branches contained more glucose than bark from living branches and xylem from dead branches. Tree heights at which annual rings were disconnected were 2, 4 and 6 m at ages 37, 15 and 24 years old, respectively. The pH values of damaged parts were lower than those of non-damaged parts, and the damaged parts were clearly identified using bromocresol green solution. Weight loss of sapwood during 60 days of fungal degradation was 1.4 %, which was less than that by a saprophyte, Trametes versicolor. The amount of polyphenols in the heartwood from damaged tree stems was less than that from non-damaged stems. Degraded parts were less stiff than the non-degraded sapwood as measured with a wood-decay tester, Pilodyn. Our observations indicate that damaged stems are chemically and physically inferior to non-damaged stems.  相似文献   

19.
Indonesia’s pulp and paper industry needs a large area of sustainably grown plantations to support its continued development. Acacia mangium has been the key species underpinning the pulp and paper industries in Sumatra, however increased disease pressure on A. mangium is expected to require large-scale conversion of Acacia plantations to Eucalyptus in the near future. The effect of such a large scale change in plantation species on soil moisture, for both tree production, and catchment hydrology is unknown. In this study we sought to characterize the impacts of plantation species (Acacia or Eucalyptus) and nitrogen management, on soil moisture, soil water depletion and depth to groundwater under stands of Acacia mangium and Eucalyptus pellita over the first 2–3 years after establishment. The study was conducted in experiments at four sites in Sumatra, Indonesia. Soil moisture and soil water depletion were not influenced by plantation species or fertilizer treatment. Soil moisture content and soil water depletion were strongly influenced by shallow groundwater at two of the four sites, however depth to groundwater did not influence stem growth. Results from the field trials cautiously suggest that large scale conversion of Acacia mangium to Eucalypt species in these regions is unlikely to result in increased moisture stress, nor is conversion of plantation species likely to lead to substantial differences in catchment hydrology. This study demonstrated the importance of conducting multi-site studies when investigating biophysical relationships in forest/plantation systems.  相似文献   

20.
Volatile organic compounds (VOCs) released from Chamaecyparis formosensis, Cryptomeria japonica, Cunninghamia lanceolata, Chamaecyparis obtusa var. formosana, and Taiwania cryptomerioides five major building and interior decoration timbers and their essential oil components were analyzed using GC–MS and TD/GC–MS/FID. Results showed that C. obtusa var. formosana had the highest yield of essential oil (3.42%), followed by C. formosensis (3.14%), while C. japonica had the lowest yield (0.95%). Moreover, oxygenated sesquiterpene was the highest relative content in all five essential oils and their main constituents were trans-myrtanol (18.04%), 1-epi-cubenol (15.99%), cedrol (62.26%), α-cadinol (26.42%), and α-cadinol (27.98%), respectively. In terms of emission quantity of top VOC, the results showed the decreasing order of C. formosensis (myrtenal, 74.21 mg/m2)?>?T. cryptomerioides (thujopsene, 12.00 mg/m2)?>?C. lanceolata (α-cedrene, 10.27 mg/m2)?>?C. obtusa var. formosana (α-pinene, 8.05 mg/m2)?>?C. japonica (α-cedrene, 4.25 mg/m2). C. formosensis had a greater amount of VOCs emitted and hence gave off more fragrance than C. obtusa var. formosana initially. However, after indoor exposure of 24 weeks, the VOC emission quantity of C. obtusa var. formosana exceeded that of C. formosensis. α-Cedrene and thujopsene were the top two major VOCs of both C. lanceolata and T. cryptomerioides. However, they both showed a trend of decrease in emission with prolonged exposure. All five plantation timbers showed good antifungal, antimicrobial, antibacterial, and antitermitic properties, making them ideal materials for interior decoration. Not only do they have strong bioactivities, they can also provide a fragrant and healthy living environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号