首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 136 毫秒
1.
Eight recently developed 15.B congenic lines of chickens were tested for Marek's disease (MD) resistance by intra-abdominal injection of cell-associated preparations of MD virus of a virulent strain (JM), a very virulent strain (Md5), or Md5 after vaccination with turkey herpesvirus (HVT) strain FC126. Chickens of the 15.N congenic line (B15B21 or B21B21) were very resistant to JM-induced MD, in contrast to chickens homozygous for the B-haplotypes 2, 5, 12, 13, 15, or 19. After Md5 infection, more than 88% of the chickens in all of the congenic lines developed MD. However, when chickens were vaccinated with HVT before being inoculated with Md5, the B5 and B12 homozygotes were more resistant to MD than were the B2, B13, or B19 homozygotes, and B15 and B21 homozygotes had intermediate resistance. B5B5 and B2B5 F2 chicks inoculated with HVT and Md5 had a lower prevalence of MD than B2B2 sibs. These results demonstrate that a protocol involving HVT vaccination of chicks followed by infection with very virulent MD virus will allow the detection of B-haplotypes determining MD resistance, some of which are not detectable in unvaccinated chicks challenged with virulent MD.  相似文献   

2.
Two experiments were conducted to study the cell-mediated cytotoxicity of peripheral blood leukocytes (PBL) from chickens inoculated with Marek's disease virus (MDV) against a Marek's disease-derived lymphoblastoid cell line (MSB-1) and to associate the cytotoxicity with incidence of disease. In experiment I, moderately susceptible random-bred, specific-pathogen-free chickens were inoculated with MDV (group 1), vaccinated with a herpesvirus of turkeys (HVT) and inoculated with MDV (group 2), vaccinated with HVT and inoculated with chicken kidney cells (CKC; group 3), and inoculated with CKC only (group 4). Cytotoxic activity in the PBL was detected initially during the first week after MDV inoculation and periodically throughout the observation period (groups 1, 2, and 3). Throughout the observation period, the magnitude of cytotoxic activity was similar in PBL from groups 1 and 2 chickens. The PBL from both surviving and fatally infected chickens (groups 1 and 2) were similarly cytotoxic when sampled during the first 16 days after MDV inoculation. In experiment II, inbred genetically susceptible (line 7) and resistant (line 6) chickens were used. Cytotoxic activity of PBL of significantly greater magnitude was associated with a lower mortality or incidence of gross lesions (or both) in MDV-inoculated line 6 (group B) and HVT-vaccinated and MDV-inoculated line 7 (group C) chickens compared with activity of PBL from MDV-inoculated line 7 (group A) chickens. The cytotoxic activity of PBL from individual inbred chickens did not correlate with the outcome of the infection.  相似文献   

3.
Marek's disease (MD) is a lymphoproliferative disease of domestic chickens caused by a highly infectious, oncogenic alpha-herpesvirus known as Marek's disease virus (MDV). MD is presently controlled by vaccination. Current MD vaccines include attenuated serotype 1 strains (e.g., CVI988/Rispens), avirulent serotype 2 (SB-1), and serotype 3 (HVT) MDV strains. In addition, recombinant MDV strains have been developed as potential new and more efficient vaccines to sustain the success of MD control in poultry. One of the candidate recombinant MDV strains, named rMd5deltaMeq, was derived from Md5, a very virulent strain of MDV lacking the MDV oncogene Meq. Our earlier reports suggest that rMd5deltaMeq provided protection equally well or better than commonly used MD vaccines in experimental and commercial lines of chickens challenged with very virulent plus (vv+) strains of MDV. In this study, maternal antibody-positive (trial 1) and negative (trial 2) chickens from a series of relatively MD resistant lines were either vaccinated with the rMd5deltaMeq or CVI988/Rispens followed by infection of a vv+ strain of MDV, 648A, passage 10. This report presents experimental evidence that the rMd5deltaMeq protected significantly better than the CVI988/Rispens (P < 0.01) in the relatively resistant experimental lines of chickens challenged with the vv+ strain of MDV. Together with early reports, the rMd5deltaMeq appeared to provide better protection, comparing with the most efficacious commercially available vaccine, CVI988/Rispens, for control of MD in lines of chickens regardless of their genetic background.  相似文献   

4.
Earlier studies have shown that the B haplotype has a significant influence on the protective efficacy of vaccines against Marek's disease (MD) and that the level of protection varies dependent on the serotype of MD virus (MDV) used in the vaccine. To determine if the protective glycoprotein gene gB is a basis for this association, we compared recombinant fowlpox virus (rFPV) containing a single gB gene from three serotypes of MDV. The rFPV were used to vaccinate 15.B congenic lines. Nonvaccinated chickens from all three haplotypes had 84%-97% MD after challenge. The rFPV containing gB1 provides better protection than rFPV containing gB2 or gB3 in all three B genotypes. Moreover, the gB proteins were critical, since the B*21/*21 chickens had better protection than chickens with B*13/*13 or B*5/*5 using rFPV with gB1, gB2, or gB3. A newly described combined rFPV/gB1gEgIUL32 + HVT vaccine was analyzed in chickens of lines 15 x 7 (B*2/*15) and N (B*21/*21) challenged with two vv+ strains of MDV. There were line differences in protection by the vaccines and line N had better protection with the rFPV/gB1gEgIUL32 + HVT vaccines (92%-100%) following either MDV challenge, but protection was significantly lower in 15 X 7 chickens (35%) when compared with the vaccine CVI988/Rispens (94%) and 301B1 + HVT (65%). Another experiment used four lines of chickens receiving the new rFPV + HVT vaccine or CVI988/Rispens and challenge with 648A MDV. The CVI 988/Rispens generally provided better protection in lines P and 15 X 7 and in one replicate with line TK. The combined rFPV/gB1gEgIUL32 + HVT vaccines protected line N chickens (90%) better than did CVI988/Rispens (73%). These data indicate that rFPV + HVT vaccines may provide protection against MD that is equivalent to or superior to CVI988/ Rispens in some chicken strains. It is not clear whether the rFPV/gB1gEgIUL32 + HVT vaccine will offer high levels of protection to commercial strains, but this vaccine, when used in line N chickens, may be a useful model to study interactions between vaccines and chicken genotypes and may thereby improve future MD vaccines.  相似文献   

5.
OBJECTIVES: To examine the effects of varying the doses of turkey herpesvirus (HVT) vaccine and Marek's disease virus (MDV) challenge at two intervals after vaccination on the protection of chickens against challenge with MDV. DESIGN AND PROCEDURE: Experiment 1, a dose response study, consisted of 11 doses of HVT vaccine administered at hatch followed by challenge with 100 plaque forming units (pfu) of MDV 5 days post vaccination. Experiment 2, a 2 x 6 x 2 factorial design, included two HVT vaccine types, six different doses of HVT vaccine and 50 pfu and 200 pfu of MDV challenge 2 days post vaccination. All chickens were reared up to day 56 post challenge when all survivors were killed humanely. Dead and killed chickens were examined for gross MD tumours. RESULTS: Experiment 1 showed a significant positive linear relationship between dose of HVT vaccine and protective index in chickens challenged 5 days post vaccination. However the range of protective index observed was limited. In Experiment 2 neither HVT vaccine provided significant protection at any dose. There was no significant effect of vaccine type or MDV challenge dose on overall protection against challenge. Chickens challenged with 200 pfu of MDV had significantly higher mortality and MD incidence than those with 50 pfu. CONCLUSIONS: HVT vaccine dose had a significant impact on protective index, but vaccination to challenge interval appeared to have greater impact on the protective efficacy of vaccination. A fourfold increase in challenge dose increased mortality rate and incidence of MD.  相似文献   

6.
Dilution of Marek's disease (MD) vaccines is a common practice in the field to reduce the cost associated with vaccination. In this study we have evaluated the effect of diluting MD vaccines on the protection against MD, vaccine and challenge MD virus (MDV) kinetics, and body weight when challenged with strains Md5 (very virulent MDV) and 648A (very virulent plus MDV) by contact at day of age. The following four vaccination protocols were evaluated in meat-type chickens: turkey herpesvirus (HVT) at manufacturer-recommended full dose; HVT diluted 1:10; HVT + SB-1 at the manufacturer-recommended full dose; and HVT + SB-1 diluted 1:10 for HVT and 1:5 for SB-1. Vaccine was administered at hatch subcutaneously. One-day-old chickens were placed in floor pens and housed together with ten 15-day-old chickens that had been previously inoculated with 500 PFU of either Md5 or 648A MDV strains. Chickens were individually identified with wing bands, and for each chicken samples of feather pulp and blood were collected at 1, 3, and 8 wk posthatch. Body weights were recorded at 8 wk for every chicken. Viral DNA load of wild-type MDV, SB-1, and HVT were evaluated by real time-PCR. Our results showed that dilution of MD vaccines can lead to reduced MD protection, reduced relative body weights, reduced vaccine DNA during the first 3 wk, and increased MDV DNA load. The detrimental effect of vaccine dilution was more evident in females than in males and was more evident when the challenge virus was 648A. However, lower relative body weights and higher MDV DNA load could be detected in chickens challenged with strain Md5, even in the absence of obvious differences in protection.  相似文献   

7.
An enzyme-linked immunosorbent assay (ELISA) was applied to evaluate the antibody response of commercial White Leghorn chickens to vaccination against Marek's disease (MD) at hatch (day 0) with serotype-1 (Rispens), -2 (SB-1), or -3 (turkey herpesvirus, HVT) vaccine virus and to challenge on day 21 with MD virus. Antigens for the test were whole chicken embryo fibroblast cells infected with Rispens, SB-1, or HVT. The chickens were progeny of stock that had been vaccinated with HVT, and on day 21 the nonvaccinated group had higher levels of maternal antibodies to HVT than to other antigens (P < 0.05). Only SB-1 vaccine had induced antibodies by day 21, and this was detected only against homologous antigens. On day 49, all three vaccines had induced higher levels of antibodies to homologous than to heterologous antigens. Marek's Disease virus (MDV) induced antibodies to all three antigens, but challenging vaccinated chicks did not significantly increase levels of antibodies on day 81 to any of the three antigens. It was concluded that an ELISA using whole cells as antigens would have potential value for monitoring the antibody response induced by MD vaccines and virulent MDV.  相似文献   

8.
Chickens were vaccinated with the herpesvirus of turkeys (HVT) at embryonation day 17 or 18 or at hatch and various responses of the 2 vaccinated groups were compared. In embryo-vaccinated chickens, HVT titers were high in the lungs before HVT could be isolated from other tissues. Seemingly, embryos acquired infection via the respiratory tract. In hatch-vaccinated chickens, HVT was first isolated from spleen and then from other tissues. Titers of recoverable HVT in tissues of embryo-vaccinated chickens were higher than in those of hatch-vaccinated chickens, particularly during the 1st week of age. Anti-HVT antibodies and natural killer cell reactivity in spleen effector cells were comparably increased in both vaccinated groups. Embryo vaccination with HVT did not cause progressive lesions, reduction in body weight gain, or impairment of humoral and cellular immune functions. Seemingly, HVT can be used safely as an embryonal vaccine in chickens.  相似文献   

9.
Bursa- and thymus-dependent functions were examined in Marek's disease (MD)-susceptible normal chickens and in chickens treated with 5 and 16 mg of cyclophosphamide (CY) at the time of hatching. Chickens not exposed to Marek's disease virus (MDV) and treated with CY temporarily lost mitogenic response to concanavalin A but regained full response after 5 weeks. Bursa-dependent functions, such as presence of germinal centers in spleen and cecal tonsils, morphologic features of bursa, and sheep red blood cell antibody response were completely lost in chickens treated with 16 mg of CY and only partly retained in chickens treated with 5 mg of CY. In chickens exposed to MDV, the degree of thymus-dependent spleen cell mitogenic response was directly related to frequency and severity of MD. Chickens treated with 16 mg of CY had a mild mitogenic depression and low frequency and severity of MD lesions, whereas those treated with 5 mg of CY and those not treated had marked mitogenic depression and high frequency and severity of MD. Suppressions of bursa- and thymus-dependent functions by MDV alone were also evident when comparing MDV-exposed and nonexposed chickens. The results also indicate that presence of small, residual amounts of humoral factor(s) may enhance MDV oncogenesis.  相似文献   

10.
N2a and P2a chickens, resistant and susceptible to Marek's disease (MD), respectively, were used to examine relationships between major histocompatibility complex (MHC)-restricted cytotoxic T lymphocytes (CTL) and natural killer (NK)-like cell activity with resistance to infection with Marek's disease virus (MDV). Ten-day-old chickens were infected with MDV and euthanatized at selected times to evaluate for NK cell and MHC-restricted cytotoxicity. The N2a MDV-infected chickens had an early cell-mediated immune response characterized by a sustained NK-like cytotoxicity that coincided with a measurable MHC-cytotoxicity that was lower than controls. Although MHC-restricted and NK cell cytotoxicity was demonstrated in P2a MDV-infected chickens at 8 dpi, both abruptly decreased and remained low for the remainder of the 20-day experiment. The critical time point that may determine the resistance to MD appears to be within the first 2 weeks post-infection. Improvement of the chicken NK cell activity may be a good candidate for both selection and immunomodulation MD control programs.  相似文献   

11.
The efficacies of trivalent (Md11/75C + SB-1 + HVT), bivalent (SB-1 + HVT), and turkey herpesvirus (HVT) vaccines against Marek's disease (MD) were compared in commercial broiler flocks in four trials involving 11 farm locations and 486,300 chickens. In all four trials, chickens receiving polyvalent vaccines had lower leukosis (MD) condemnation rates than chickens vaccinated with HVT alone; when data were summarized for each vaccine type in each trial, condemnation rates for the bivalent- or trivalent-vaccinated groups were 56-96% (mean 78%) lower than those for HVT-vaccinated chickens. Polyvalent vaccination was clearly mor efficacious than HVT in 8 of 11 individual farms, although it did not always reduce leukosis condemnations to acceptable levels. Body weights of chickens vaccinated with polyvalent vaccines did not differ consistently from those vaccinated with HVT. Chickens inoculated with the trivalent vaccine had slightly lower overall leukosis condemnation rates (0.24%) than those inoculated with the bivalent vaccine (0.45%) in trials 1-3, where direct comparisons were made. Bivalent vaccines containing either 1,500 or 200 plaque-forming units of SB-1 virus were equally effective; thus, HVT may need to be supplemented with only small amounts of SB-1 to obtain the benefits of protective synergism. SB-1 virus did not appear to carry over from polyvalent-vaccinated flocks to subsequent HVT-vaccinated flocks in the same houses, even when old litter was used.  相似文献   

12.
Very virulent Marek's disease viruses (vvMDV), defined as isolates against which the herpesvirus of turkey (HVT) vaccine provide poor protection, have been isolated from poultry flocks in both the United States and Europe. Twenty-one samples from vaccinated Australian flocks, experiencing problems with excessive Marek's disease (MD), were tested for the presence of transmissible MD viruses (MDV). Of the 16 samples which contained a transmissible agent, 14 were pathogenic in chickens, based on the development of MD lesions or depression of the bursa/body weight ratio. Of the pathogenic isolates which have been successfully typed 10 were serotype 1, and one was serotype 2 MDV. Pathogenicity of isolates varied. Several isolates caused tumours in 20-30% of both vaccinated and unvaccinated chickens. Two isolates, MPF6 and MPF23, caused tumours in more than 50% of chickens. When MPF6 and MPF23 were tested in vaccine trials bivalent vaccine gave no better protection against development of MD lesions than a monovalent vaccine. Isolate MPF23 was so pathogenic that lesions were produced in all chickens, regardless of the vaccine protocol used. Therefore vvMDV have been isolated in Australia, and unlike the vaccines tested overseas, bivalent Australian vaccines do not appear to provide greater protection against these vvMDV.  相似文献   

13.
One-day-old White Leghorn and broiler chicks with maternal antibody to turkey herpesvirus (HVT) were vaccinated with 300 or 1,000 plaque-forming units (PFU) of cell-free or cell-associated HVT vaccine and challenged with virulent Marek's disease virus (MDV) by contact exposure. Broiler chicks receiving 300 PFU of cell-associated HVT had a 3.3% incidence of MD lesions, whereas only 2.0% of those receiving 1,000 PFU had macroscopic lesions. Broiler chicks vaccinated with 300 PFU of cell-free vaccine had 6.8% gross lesions, and 0.67% of the birds receiving 1,000 PFU had MD lesions. Unvaccinated broiler chickens had a 28.3% incidence of MD lesions. Unvaccinated White Leghorn chickens had a 48.9% incidence of macroscopic lesions, whereas 5.4% of the birds receiving 300 PFU of cell-associated HVT had gross lesions, and 8.3% of the birds vaccinated with 1,000 PFU had lesions. In contrast, 6.7% of the chicks vaccinated with 300 PFU of cell-free HVT had MD lesions, and only 4.0% of those receiving 1,000 PFU of cell-free HVT had macroscopic lesions.  相似文献   

14.
A homologue of interleukin-8, viral interleukin-8 (vIL-8) has been identified in the genome of Marek's disease virus (MDV). This protein attracts peripheral blood mononuclear cells in vitro although its role in the pathogenesis of Marek's disease (MD) is not known. P chickens, genetically susceptible to MD, and N chickens, genetically resistant to the disease, were inoculated with either RB1B MDVor RB1BvIL-8smGFP, a vIL8 knockout RB1B MDV, to assess the role of vIL8 in the pathogenesis of MD. The tumor incidence was highest in the P birds given the RBIB virus, where the incidence was 100%. Tumor incidence in N birds given RB1B was 41.5%. Thirty-one percent of the P birds given RB1BvIL-8smGFP developed tumors, and no N bird given RB1BvIL-8smGFP developed tumors. Histologically, the tumors from RB1B-inoculated birds were larger and more invasive and had a more homogeneous cellular composition than those from RB1BvIL-8smGFP-inoculated birds, which were best described as microtumors. These microtumors did not obliterate the normal architecture of the tissues, and in contrast to the RBIB tumors, moderate numbers of heterophils were admixed with the proliferating lymphocytes. Susceptible birds receiving RB1B had the highest viral titers throughout the study, followed by the resistant birds inoculated with RB1B. P and N birds receiving RB1BvIL-8smGFP virus had consistently lower levels of viremia than their RB1B-inoculated counterparts although virus could be recovered from the birds during all stages of MD. In addition, the RB1BvIL-8smGFP virus was detected in birds held in contact with the inoculated group, although no tumors developed in contact control birds. This result indicates that RB1BvIL-8smGFP replicates in vivo but not as well as RB1B and that vIL8 is not essential for the completion of the pathogenesis of MD.  相似文献   

15.
We recently reported a comparison of glycoprotein-encoding genes of different Marek's disease virus pathotypes (MDVs). One mutation found predominantly in very virulent (vv)+MDVs was a 12-bp (four-amino acid) deletion in the glycoprotein L (gL)-encoding gene in four of 23 MDV strains examined (three were vv+MDVs and one was a vvMDV). This mutation was noted in the gL of the TK (615K) strain, but not in the RL (615J) strain of MDV. These strains have identical mutations in the meq gene characteristic of vv+MDVs but can be distinguished by the mutation in the gL-encoding gene. The TK strain was originally isolated from vaccinated chickens and appeared to confer or enhance horizontal transmission of the vaccine virus, herpesvirus of turkeys (HVT). Because the molecular basis for increased virulence of MDV field strains is unknown, we hypothesized that one mechanism might be by coreplication of MDV-1 strains with HVT and that it could be mediated by the mutation of gL, an essential component of the glycoprotein H/L complex. In this study, we compared the pathogenicity of TK (615K) and RL (615J) strains of MDV in the presence and absence of simultaneous HVT coinfection. MDV infections were monitored at the levels of viremia (for both MDV-1 and HVT), clinical signs of MD, tumor incidence, and mortality in 1) inoculated chickens, 2) chickens exposed at 1 day of age, 3) chickens exposed at 2 wk of age, and 4) chickens exposed to both TK/HVT- and RL/HVT-infected chickens at 6 wk of age. We found high incidences of clinical MD signs in all inoculated treatment groups and all chickens exposed to TK and RL viruses, regardless of the presence of HVT. The median time to death of chickens exposed to TK1HVT-infected chickens, however, was lower than the other treatment groups for contact-exposed chickens. Although this difference was not considered to be statistically significant to a rigorously interpreted degree because of the removal of chickens for sampling from the test groups, these data suggest that replication of the TK strain and HVT, when coadministered, might incrementally affect the virulence of MDV-1 strains. The strict correlation of this enhancement of virulence with the mutation in gL, however, requires additional experiments with genetically identical MDV background strains.  相似文献   

16.
17.
Comparison of blood and feather pulp (FP) samples for the diagnosis of Marek's disease (MD) and for monitoring Marek's diseases vaccination in chickens (serotypes 2 and 3 vaccines) by real time-PCR was evaluated. For diagnosis of MD, quantification of serotype 1 Marek's disease virus (MDV) DNA load was evaluated in 21 chickens suffering from MD. For each chicken, samples of blood and FP were collected and MDV DNA load was quantified. Solid tumors are the sample of choice for MD diagnosis by real time-PCR and, hence, 14 solid tumors were included in the study as positive controls. Load of MDV DNA in FP was equivalent to that detected in solid tumors (threshold cycle [Ct] ratio above 1.7). MDV DNA load in blood samples was lower than in solid tumors and FP samples. Nonetheless, there was a statistically significant correlation of the results obtained from FP and blood (r = 0.92). Results of the Pearson correlation test showed that Ct ratio values of 1.7 in FP correspond to Ct ratio values of 1.2 in peripheral blood. For monitoring vaccines, serotypes 2 and 3 MDV DNA load was evaluated in blood and FP samples of vaccinated chickens. Serotype 2 MDV DNA load was evaluated in samples of blood and FP from 34 chickens vaccinated with SB-1 strain. Serotype 3 MDV DNA load was evaluated in blood and FP samples from 53 chickens vaccinated with HVT strain. For both serotypes, frequency of positive samples and load of vaccine DNA was higher in FP than in blood samples. There was not a statistically significant correlation between the load of SB-1 DNA (r = 0.17) or HVT DNA (r = -0.04) in FP and blood. Our results show that the load of serotypes 1, 2, and 3 DNA is higher in FP than in blood. Diagnosis of MD could be done using both FP and blood samples. Monitoring of MD vaccination by real time-PCR required the use of FP samples. There were a high percentage of false negative samples when using blood to detect serotypes 2 and 3 MDV by real time-PCR.  相似文献   

18.
Recombinant strains of herpesvirus of turkeys (HVT) were constructed that contain either the fusion protein gene or the hemagglutinin-neuraminidase gene of Newcastle disease virus (NDV) inserted into a nonessential gene of HVT. Expression of the NDV antigens was regulated from a strong promoter element derived from the Rous sarcoma virus long terminal repeat. Recombinant HVT strains were stable and fully infectious in cell culture and in chickens. Chickens receiving a single intra-abdominal inoculation at 1 day of age with recombinant HVT expressing the NDV fusion protein had an immunological response and were protected (> 90%) against lethal intramuscular challenge at 28 days of age with the neurotropic velogenic NDV strain Texas GB. Recombinant HVT expressing the NDV hemagglutinin-neuraminidase provided partial protection (47%) against the same challenge. Chickens vaccinated with recombinant HVT vaccines had low levels of protection against NDV replication in the trachea when challenged ocularly. Recombinant HVT vaccines and the parent HVT strain provided similar levels of protection to chickens challenged with the very virulent RB1B strain of Marek's disease virus, indicating that insertion of foreign sequences into the HVT genome did not compromise the ability of HVT to protect against Marek's disease.  相似文献   

19.
To demonstrate the relationship between tumour development and virus replication, eight specific-pathogen-free pullets of line P2 (Group P; 14 weeks old) and five adult chickens (Group A; 96 weeks old) were inoculated with virulent Marek's disease virus (vMDV). Five chickens of Group P died or were euthanised due to moribund condition following the development of neoplastic lesions between days 53 and 91. On histopathological examination, these lesions were characterised by the proliferation of lymphoid cells of variable size. On analysis by polymerase chain reaction (PCR), the MDV meq gene was detected in Group P from day 21, and it was continuously identified in five chickens until they died or were euthanised. Abnormal signs and histopathological changes were not observed in chickens of Group A. The MDV meq gene was temporarily detected in some chickens of Group A, but it remained almost undetectable throughout the experimental period. In older chickens inoculated with vMDV, the onset of MD lymphoma development tended to be delayed as compared with the young chicks. The relationship between MD lymphoma development and virus replication in older chickens has been suggested. Our data might indicate the underlying existence of an age-related resistance to vMDV challenge.  相似文献   

20.
Chicken eggs at embryonation day (ED) 18 or newly hatched chicks were inoculated with turkey herpesvirus (HVT), Marek's disease virus (MDV), or virus-free diluent and, at intervals after inoculation, tissue homogenates of virus-exposed and virus-free chickens or chicken embryos were examined for interferon (IFN) activity. Homogenates of lung, thymus and spleen specimens from chickens given HVT at ED 18 had IFN activity. Activity of IFN in the lungs was studied further. Homogenates of lung specimens from chickens exposed to HVT at hatching also had IFN activity, although the concentration of IFN was lower than that in chickens given HVT at ED 18. The pathogenic isolates of MDV (JM-MDV), but not the attenuated (Md11/75C-MDV) or nonpathogenic (SB1-MDV) isolates, inoculated at ED 18 also induced high lung IFN activity. Exposure to a combination of HVT and SB1-MDV induced IFN activity comparable with that in chickens given HVT alone. The IFN activity in homogenates of lung specimens from virus-exposed chickens was species specific and heat and pH stable, but was destroyed by trypsin treatment. Occasionally, low IFN activity also was detected in homogenates of tissue specimens from virus-free chickens or chicken embryos. This IFN activity could have been produced constitutively or may have been induced by substances (inducers) in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号