首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four groups of 10 horses (mares) each were treated with a 1% solution of ivermectin (200 micrograms/kg of body weight) in a propylene glycol-glycerol formal base orally, a 1% solution of ivermectin (200 micrograms/kg) in a propylene glycol-glycerol formal base via nasogastric tube, a 1.87% paste of ivermectin (200 micrograms/kg) orally, or a 22.7% paste of oxibendazole (10 mg/kg) orally. Fecal examinations were done before treatment and on posttreatment days (PTD) 14, 28, 42, 56, and 70. Strongyle egg per gram counts and sugar flotation fecal examinations were performed. Results of fecal examinations before treatment were similar in all horses. All horses treated with ivermectin had similar percentages of reductions in mean strongyle egg per gram counts after treatment; 100% on PTD 14, 28, and 56 and 93.4% to 98.7% on PTD 70. All ivermectin treatment groups had 0 horses detected as passing strongyle eggs on PTD 14 and 28, 0 to 2 on PTD 42, 3 to 5 on PTD 56, and 8 to 9 on PTD 70. Horses treated with oxibendazole had 99.9%, 99.7%, 92.9% 78.6%, and 54.5% reductions in mean strongyle egg per gram counts and 5, 7, 8, 9, and 9 horses detected as passing strongyle eggs on PTD 14, 28, 42, 56, and 70, respectively. Adverse reactions to treatment were not observed.  相似文献   

2.
By collecting fecal samples every 2 weeks beginning at 2 months of age, 32 foals from a single Texas farm were monitored. The foals were administered ivermectin paste at the time of the first collection and again monthly. When foals had Parascaris egg counts higher 2 weeks after ivermectin treatment than at treatment, they were administered pyrantel pamoate at the manufacturer's recommended dose (6.6 mg/kg) or at twice the recommended dose (13.2 mg/ kg) when tapeworm eggs were also detected. An elevation or only minimal reduction (less than 75%) in Parascaris egg counts was seen 2 weeks after ivermectin treatment until the foals were 8 months of age, at which time there was an 85% reduction in fecal egg count after treatment. When pyrantel was administered at the manufacturer's recommended dose, a 42% to 84% reduction in egg counts occurred, but at 13.2 mg/kg there was a 98% to 100% reduction in fecal egg counts 2 weeks posttreatment. However, pyrantel failed to control strongylate egg counts even at the elevated dose, whereas ivermectin reduced strongylate fecal egg counts by greater than 99%, determined 2 weeks posttreatment. Pyrantel, but not ivermectin, lowered Parascaris egg counts. Ivermectin, but not pyrantel, lowered strongyle egg counts 2 weeks post administration. A single drug for all ages of horses approach to parasite control requires rethinking. Combinations of drugs or more careful evaluation of anthelmintics in foals may be necessary for continued parasite control.  相似文献   

3.
Three anthelmintic pastes were compared in terms of their ability to suppress the output of parasite eggs in the faeces of 108 grazing horses at four sites in Britain; the horses were treated once with either ivermectin, fenbendazole or pyrantel. At each site, the horses grazed together throughout the trials which took place during the summers of 1985 and 1986. The median periods before parasite eggs reappeared in faeces were 70 days for ivermectin, 14 days for fenbendazole and 39 days for pyrantel embonate. Geometric mean faecal egg counts in the groups treated with ivermectin and pyrantel were significantly less (P less than 0.05) than in the fenbendazole group on days 21, 28, 35 and 42 after treatment. On days 49, 56, 63 and 70 the mean egg counts in the ivermectin group were significantly lower (P less than 0.05) than those in either of the other groups. The results indicated that in order to ensure minimal contamination of pastures, grazing horses treated with ivermectin paste would have required a second treatment approximately 10 weeks after the first, and to achieve similar control with fenbendazole or pyrantel embonate, a second treatment would have been required after approximately two weeks and six weeks, respectively.  相似文献   

4.
The efficacy of an oral formulation of ivermectin plus praziquantel in the reduction of nematode and cestode egg counts in horses was assessed in 273 horses under field conditions at 15 sites in North America (n = 6) and Europe (n = 9). Horses were confirmed by fecal examination to have natural infections of strongyles (100%) and tapeworms (76%). Replicates of four horses were formed at each site, and in each replicate three animals received ivermectin (0.2 mg/kg body weight) plus praziquantel (1 mg/kg body weight) oral paste and one animal remained untreated or received vehicle paste. Fecal samples were collected for fecal nematode and cestode egg counting before and 7, 8, 9, 14, 15, and 16 days after treatment. Horses treated with ivermectin plus praziquantel oral paste had significantly (P <.01) lower posttreatment strongylid and cestode egg counts (reductions of 98% or more) than controls. Combined site analyses revealed that 95% or 96% of the horses positive for cestode eggs before treatment that were treated with ivermectin plus praziquantel were negative for cestode eggs at each posttreatment fecal examination. No adverse reactions attributable to ivermectin plus praziquantel oral paste treatments were observed. The results of the studies demonstrated that ivermectin plus praziquantel paste was highly effective in reducing egg shedding by gastrointestinal nematodes and cestodes, and no adverse reactions were observed in horses treated under field conditions.  相似文献   

5.
The impact of a late fall treatment on the spring rise of fecal egg counts was evaluated in a controlled study with Canadian horses treated with 2 different dewormers immediately after removal from pasture for winter housing. The horses were stabled until the end of the trial period. Seventeen weanlings, 20 yearlings, and 15 2-year-old horses located in Ontario, which were presumed to be naturally infected with cyathostomins after pasture grazing, were randomly allocated to either a group treated with 0.4 mg/kg of moxidectin and 2.5 mg/kg of praziquantel or a group treated with 0.2 mg/kg of ivermectin and 1.5 mg/kg of praziquantel. Three weeks after treatment, all strongyle fecal egg counts were reduced to zero for both treatment groups. However, at 5 months post-treatment, mean geometric fecal egg counts were statistically higher for the yearlings and 2-year-old horses treated with ivermectin than for the yearlings and 2-year-old horses treated with moxidectin (P < 0.0001).  相似文献   

6.
Thirty resident horses at a boarding stable in Alberta were used to evaluate the relative efficacies of ivermectin, oxibendazole, and pyrantel pamoate in reducing fecal egg output in adult horses under routine management conditions during spring and early summer, and to more clearly define the duration of suppression of fecal egg production following anthelmintic treatment. Horses were blocked according to pretreatment egg counts and randomly assigned to one of three treatments: pyrantel pamoate at 6.6 mg/kg body weight; oxibendazole at 10 mg/kg body weight; or ivermectin at 200 μg/kg body weight. All treatments were administered orally as a paste on day 0.Fecal samples were collected for examination by the modified Wisconsin procedure before treatment, and then at 4-11 day intervals up to day 72.

Very few if any strongyle eggs were found in the feces of any horses up to day 35. On days 42, 50 and 57, the geometric mean egg count for the ivermectin group was significantly (p<0.05) lower than that for the oxibendazole or pyrantel pamoate groups. Based on a survival curve analysis of the data, the mean number of days for recurrence of eggs in the feces was significantly longer for the ivermectin group than for the oxibendazole and pyrantel pamoate groups.

Under conditions encountered in this study, the posttreatment interval to resumption of fecal egg out-put in horses treated with ivermectin was eight to nine weeks, compared with five to six weeks for horses treated with oxibendazole or pyrantel pamoate.

  相似文献   

7.
The prevalence of benzimidazole-resistant small strongyles was determined in a survey, conducted on 14 thoroughbred studs, which compared the faecal egg counts of groups of horses before and after treatment with the recommended doses of cambendazole (20 mg kg-1 b.w.) or febantel (6 mg kg-1 b.w.). Benzimidazole-resistant cyathostomes were found on all farms examined. Pyrantel pamoate (19 mg kg-1 b.w.), oxibendazole (10 mg kg-1 b.w.) and ivermectin (0.2 mg kg-1 b.w.) reduced the strongyle egg counts on these studs by 97-100% at 2 weeks post-treatment. However, 6 weeks after dosing the reduction of the strongyle egg output had decreased to an average of 67.8% (8.7-97.1%) with pyrantel pamoate and 51.2% (0-95.8%) with oxibendazole, whereas ivermectin still suppressed the egg counts by 98.2% (95-100%).  相似文献   

8.
Ivermectin, a derivative of one of the avermectin compounds, was administered at 200 mcg per kg of body weight in an oral paste formulation to 80 mixed-breed ponies of both sexes and various ages. Twenty similar ponies received oral paste vehicle. Anthelmintic activity was determined by comparing fecal egg counts taken before and 14 days after ivermectin treatment to the counts of fecal samples from vehicle-treated controls. Commonly used equine vaccines were administered at the time of treatment. Sixteen of the 20 vehicle-treated ponies had positive counts prior to treatment and 17 were positive 14 days after treatment; 66 of the 80 ivermectin-treated ponies had positive counts prior to treatment; all 80 ponies had zero counts 14 days after treatment. The eggs were identified as strongylid in all the positive ponies while three ponies also hadOxyuris equi eggs prior to treatment.No adverse reactions were attributable to ivermectin oral paste treatment or concurrent vaccine administration.  相似文献   

9.
Eighty horses were involved in a comparative, controlled, and randomised field study conducted in Australia and Brazil. This study was undertaken to address the duration of efficacy (by faecal egg count reduction) of four anthelmintic pastes and to measure the time required between treatments on horses naturally infected by gastrointestinal nematodes. The treatment interval was based on the egg reappearance period (ERP), defined as "the period after treatment when horses have reached a positive egg count equal or superior to 200 eggs per gram (epg) of faeces". Horses were ranked according to pre-treatment faecal egg counts and randomly allocated on Day 0 to one of the four treatment groups (n=16). Group A received a combination of ivermectin at 200 microg/kg and praziquantel at 1.5mg/kg, Group B received an ivermectin paste at 200 microg/kg, Group C received a reference product containing ivermectin at 200 microg/kg, Group D received a moxidectin paste at 400 microg/kg, and Group E received a placebo. Horses were individually faecal sampled at weekly interval from Days 0 to 70 after treatment and coprocultures were made on pooled samples at the pre-treatment time on D-7 in Brazil and D-6 in Australia.The nematode population was mainly composed of small strongyles (Cyathostominae, Gyalocephalus spp., Triodontophorus spp.). All products were efficient (>90% efficacy) until Day 42 with no statistical difference between groups. From Day 49 onwards, Group C reached the threshold, while Group B exceeded this threshold on Day 56. Groups A and D remained below 200 epg for the entire study period (70 days). The interval between two anthelmintic treatments can vary according to the threshold. The ERP was defined as the period after treatment while the output of eggs is negligible or considered as acceptable. The mean number of days calculated to recurrence of 200 epg and more was, respectively, 60 days for product A, 56 days for products B and C, and 64 days for product D. If treatments are combined with other methods of limiting exposure to infective larvae on pasture, the number of treatments required will be reduced even further.  相似文献   

10.
Horses, mules and donkeys are indispensable farming and working animals in many developing countries, and their health status is important to the farmers. Strongyle parasites are ubiquitous in grazing horses world-wide and are known to constitute a threat to equine health. This study determined the prevalence of strongyle infection, the efficacy of ivermectin and fenbendazole treatment, and strongyle re-infection rates of working horses during the dry months in Nicaragua. One hundred and five horses used by farmers for transport of people and goods were randomly allocated into three treatment groups, i.e., the IVM group treated with ivermectin, the FBZ group treated with fenbendazole and the control group treated with placebo. Determined by pre-treatment faecal egg counts (FECs), horses showed a high prevalence (94%) of strongyle parasites with high intensities of infection (mean FEC of 1117 eggs per gram (EPG) with an SD of 860 EPG, n=102). Body condition scores of all horses ranged from 1.5 to 3.5 with a mean of 2.4 (scales 1-5). Fourteen days after treatment faecal egg count reductions (FECRs) were 100% and 94% in the IVM and the FBZ groups, respectively. The egg reappearance period (ERP) defined as the time until the mean FEC reached 20% of the pre-treatment level, was estimated as 42 days for the FBZ group and 60 days for the IVM group. Individual faecal cultures were set up and the larval differentiation revealed a 36% prevalence of Strongylus vulgaris before treatment (n=45). In the FBZ group, 25% of the horses were S. vulgaris-positive 70 days post treatment compared to 11% in the IVM group. Our results indicate that strongyle infection intensities in Nicaragua are high and that S. vulgaris is endemic in the area. Furthermore, efficacies and ERPs of IVM and FBZ were within the expected range with no signs of anthelmintic resistance.  相似文献   

11.
Thirty-six young horses were allocated to three similar groups. Horses in Group 1 were treated with moxidectin gel on Days 0, 90, and 180, Group 2 horses received ivermectin paste on Days 0, 60, 120, and 180, and horses in Group 3 were untreated controls. All horses were maintained on a common pasture for the first 180 days. Immediately after the final scheduled deworming, each group was moved to a separate, clean pasture where it remained until Day 360. At monthly intervals, fecal egg counts, body weights, body condition scores, and pasture larval counts were measured. The cumulative costs of both deworming regimens were calculated. Young horses treated three times at 90-day intervals with moxidectin gel had significantly lower monthly fecal egg counts than untreated controls from Days 30 through 300. Horses given ivermectin paste four times at 60-day intervals had significantly lower egg counts than controls 30 days after each treatment and 60 days after the third dose. Average daily gains of treated horses were significantly greater than controls from Days 120 through 360 (moxidectin) and from Days 210 through 360 (ivermectin). Quarterly moxidectin treatments reduced egg counts more effectively and cost less than ivermectin given bimonthly.  相似文献   

12.
A gel formulation containing moxidectin (20 g/kg) and praziquantel (125 g/kg) reduced the geometric mean faecal strongyle egg count in horses to below 100 eggs per gram of faeces (epg) for at least 12 weeks despite their being exposed continuously to reinfection from pasture grazed by treated and untreated horses. The geometric mean egg count of horses treated with a proprietary paste containing abamectin (3.7 g/kg) and praziquantel (46.2 g/kg) increased steadily from six weeks after the treatment, peaking at over 820 epg after 12 weeks. Relative to the efficacy of the abamectin/praziquantel treatment, the reduction in mean faecal egg count compared with the pretreatment counts was significantly (P<0.05) better in the horses treated with moxidectin and praziquantel from eight weeks after the treatment. Both products eliminated tapeworms from horses in a non-invasive modified critical trial.  相似文献   

13.
A study for about a 30-month period was done to compare strongyle control programs, using per os treatments of ivermectin (IVE) paste exclusively or alternation of 4 antiparasitic paste compounds: IVE, oxfendazole (OFZ), oxibendazole (OBZ), or pyrantel pamoate (PRT). Every 8 weeks, 1 group of horses (barn C; n = 14 to 16) was given IVE paste exclusively, and a second group (barn E; n = 16) was given the 4 antiparasitic pastes on an alternating schedule. Worm eggs and larvae per gram of feces (epg and lpg, respectively) values were determined every 2 weeks during the investigation. This study in grazing horses (mares and fillies), naturally infected with internal parasites, was conducted during the period between Oct 22, 1987 and Feb 8, 1990, with an additional observation on Mar 28, 1990. For barn-C horses, treated exclusively with IVE (200 micrograms/kg of body weight) 14 times, 2-week posttreatment mean strongyle epg and lpg (small strongyle) values were reduced 99 to 100%. Mean strongyle epg and lpg (small strongyle) values for each 2-week sample period remained low (less than 20) throughout the study period, except for 1 moderate transient increase in July 1988. For the entire study period, the aggregate mean strongyle epg value was 12 and the lpg value was 6. Two-week posttreatment mean strongyle epg and lpg (small strongyle) values for barn-E horses, treated alternately with therapeutic (approx) dosage of IVE (200 micrograms/kg; 4 times), OFZ (10 mg/kg; 5 times), OBZ (10 mg/kg; 4 times), or PRT (6.6 mg base/kg; 2 times), varied within and between compounds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Epidemiological approach to the control of horse strongyles   总被引:2,自引:0,他引:2  
An investigation of the spring rise in strongyle egg output of grazing horses on two commercial horse farms in northern USA in 1981 and 1982 revealed two distinct spring and summer rises in faecal egg counts, with peaks in May and August/September. There was a marked rise in the concentration of infective larvae on pasture two to four weeks after the peaks in egg output, so that grazing horses were at serious risk from June onwards and pasture larval counts on one farm did not fall to low levels until June of the following year. The spring and summer rises in faecal egg counts appeared to be seasonal in nature, to be derived largely from worms developing from previously ingested larvae, rather than from newly ingested larvae, and to be unrelated to the date of foaling. An epidemiological approach to strongyle control based on prophylactic treatments in the spring successfully eliminated the spring rise in egg output but was inadequate to control the summer rise or subsequent escalation of pasture infectivity in September. It was, nevertheless, superior to a conventional treatment programme at eight week intervals, using the same drug, pyrantel pamoate. Prophylactic spring/summer treatments proved to be much more effective. Both pyrantel pamoate at four week intervals and ivermectin at eight week intervals kept faecal egg counts at low levels during spring and summer. As few as two ivermectin treatments (11 May, 6 July) resulted in a sixfold reduction in pasture larval counts on 9 November and 3 January for the treated group (8872, 8416 stage three larvae [L3]/kg) compared to the control group (52,824, 50,984 L3/kg).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Thirteen Standardbred horses, two to five years of age, were treated with ivermectin paste per os at 200 μg/kg of body weight and 13 were untreated. Two weeks after treatment, previously untreated horses were given the paste. Fecal samples were collected from all horses at the time of treatment and periodically thereafter up to 14 weeks and were examined for nematode eggs using the Cornell-McMaster dilution and the Cornell-Wisconsin double centrifugation procedures.

All horses consumed the paste readily and had no signs of toxicosis. Strongyle eggs were found in the feces of all horses before treatment but not at two to three weeks after treatment. At five to six weeks after treatment only two horses had eggs in the feces. At eight, ten, 12 and 14 weeks after treatment 27, 69, 88 and 100% of the horses examined, respectively, had a few strongyle eggs but these were no greater than 18% of that of the pretreatment samples. Ivermectin oral paste, therefore, appeared to be highly effective against both adult and immature strongyles.

  相似文献   

16.
Objective To compare the efficacy of moxidectin to ivermectin, oxibendazole and morantel against some gastrointestinal nematodes in horses.
Design Faecal egg count reduction after treatment.
Procedure A farm was selected where the population of small strongyles in horses was known to be resistant to oxibendazole. Horses were allocated to treatment groups based on faecal egg counts. After treatment, faecal samples were taken up to 109 days after treatment and faecal egg counts estimated. Faecal cultures were used to estimate the contribution of small and large strongyles to the faecal egg counts at each sampling.
Results Moxidectin (0.4 mg/kg) suppressed faecal egg counts for 109 days after treatment in most horses compared to 40 days with ivermectin (0.2 mg/kg), 13 days with morantel (9.4 mg/kg) and less than 13 days with oxibendazole (10 mg/kg). Most of the faecal egg count was attributable to small strongyles based on faecal culture, although Strongylus vulgaris was present in some samples in low numbers. Oxibendazole resistance in small strongyles was confirmed and a less than expected efficacy of morantel was also seen.
Conclusion Moxidectin was highly effective in reducing faecal egg counts after treatment for at least 12 weeks and up to 16 weeks in most horses. These horses were infected with a population of small strongyles known to be resistant to oxibendazole and possibly morantel. The duration of the reduction in faecal egg counts after treatment with moxidectin (0.4 mg/kg) was at least twice that of ivermectin (0.2 mg/kg) and greater than four times that for morantel and oxibendazole.  相似文献   

17.
Control of horse parasites often omits application of measures to eradicate the free-living stages in pastures and frequently relies on chemotherapy only. Selective therapy was used for Spanish Sport horses grazing either in the same pasture (continuous) or in rotated meadows. In each group, equines exceeding a cutoff value of 300 strongyle eggs per gram of feces received ivermectin or moxidectin. Efficacy of the treatment was assessed by estimating reduction of fecal egg counts and the number of horses shedding parasite eggs (PHR). Coprocultures revealed presence of the cyathostomins Cyathostomum and Gyalocephalus spp. In all treated groups, a 100% value for both reduction of fecal egg counts and PHR against cyathostomins was obtained, and PHR values ranged from 100% to 12%. The longest strongyle egg reappearance period was observed in horses undergoing rotation grazing and receiving ivermectin (9 weeks), compared with a 6-week period recorded for the other treated equines. Our results seem to point that the efficacy of selective therapy in equine herds could be reduced if the horses with fecal egg counts below the threshold value (thus not receiving chemotherapy) remain grazing in the same pastures with the treated ones. It is strongly suggested that interested parties consider performing periodic fecal analyses to monitor fecal egg counts, together with the percentage of horses passing eggs in feces, to improve the effect of this procedure.  相似文献   

18.
Commercial preparations of fenbendazole (Safe-Guard, Intervet), ivermectin (Eqvalan, Merial) or moxidectin (Quest, Fort Dodge) were administered once to horses scheduled for routine parasiticide treatment. In total, 93 horses from six cooperating farms were used in the study. Computer generated, random allocation of horses to treatment group was conducted at each farm. Fecal egg counts were determined for all horses on trial days 0, 56, 84 and 112, with corresponding calendar dates that were unique to each farm. Only strongyle egg counts from animals which were positive at day 0 were used for analysis of variance and comparisons. Counts for the three treatment groups were similar at day 0, moxidectin相似文献   

19.
Fifty horses from a herd known to have benzimidazole-resistant small strongyles were treated with febantel (6 mg/kg), combinations of febantel (6 mg/kg) and piperazine citrate (25 or 55 mg base/kg), thiabendazole (44 mg/kg), or placebo (0.6 ml of water/kg). Pretreatment and 7-day posttreatment fecal examinations were done. Fecal cultures, strongyle egg per gram (epg) counts, sugar flotation fecal examinations, and in vitro testing for benzimidazole resistance were performed. Results of fecal examinations before treatment were similar in all horses, and results of testing were positive for benzimidazole resistance. Horses treated with febantel and piperazine at all dosages had significantly lower mean strongyle epg counts and greater percentage reduction in mean strongyle epg counts (99.7% to 99.9%) 7 days after treatment, compared with those determined for horses treated with febantel, thiabendazole, or placebo. Adverse reactions to treatment were not observed.  相似文献   

20.
A study was undertaken at the Texas A&M Horse Center to evaluate and compare the effectiveness of three anthelmintics—ivermectin, fenbendazole, and a combination of ivermectin and pyrantel pamoate—on fecal egg count reductions of cyathostomes and Parascaris equorum in 30 naturally infected foals. The foals were randomized into three treatment groups, with individuals being rerandomized after each 8-week observation period. The treatments of ivermectin and fenbendazole were given at the manufacturer's recommended doses, and the pyrantel treatment was given at two times the manufacturer's recommended dose. Fecal egg counts were performed at the time of treatment and at 2-week intervals after treatment for a total of 8 weeks. Each foal received a total of three treatments during the course of the study. Fecal egg counts were performed by a modified McMaster's test, with a sensitivity of 25 eggs per gram of feces, and by the modified Wisconsin double centrifugal flotation technique, with a sensitivity of 0.2 eggs per gram of feces. Fecal egg reduction percentages were calculated. Analysis of the results showed that ivermectin, either used alone or with pyrantel, was a more effective anthelmintic for cyathostome (small strongyle) control than fenbendazole. Fenbendazole and pyrantel showed a higher initial reduction in Parascaris egg counts when compared with the ivermectin-only-treated group, but this difference lessened over time. The use of the combination treatment showed the best results for controlling both parasites, indicating that a combination of anthelmintics may be necessary to control parasites on some equine farms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号