首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rates of degradation of seven organophosphate nematicides and insecticides were examined in two soils known to show accelerated biodegradation of fenamiphos and one soil known to show accelerated biodegradation of chlorpyrifos. The results indicated that several organophosphate insecticides and one nematicide were susceptible to cross-enhanced degradation in the soil showing accelerated biodegradation of chlorpyrifos. No cross-enhancement was observed in the two soils showing accelerated degradation of fenamiphos. Fumigation resulted in the complete inhibition of pesticide degradation in all soils. The data suggested that the cross-enhancement of selected pesticides in chlorpyrifos-degrading soil was dependent on the structural similarity of the compounds. Mechanisms of degradation of pesticide in soil support this hypothesis, where structurally similar compounds (diazinon, parathion, coumaphos and isazofos) were hydrolysed by microbial activity in chlorpyrifos-degrading soil but the degradation products were accumulated. Enhanced degradation of chlorpyrifos and fenamiphos was found to be stable in the laboratory condition for a period of one year.  相似文献   

2.
A phenanthrene-degrading bacterial strain Pseudomonas sp. GF3 was examined for plant-growth promoting effects and phenanthrene removal in soil artificially contaminated with low and high levels of phenanthrene (0, 100 and 200 mg kg−1) in pot experiments. Low and high phenanthrene treatments significantly decreased the growth of wheat. Inoculation with bacterial strain Pseudomonas sp. GF3 was found to increase root and shoot growth of wheat. Strain GF3 was able to degrade phenanthrene effectively in the unplanted and planted soils. Over a period of 80 days the concentration of phenanthrene in soil in which wheat was grown was significantly lower than in unplanted soil (p<0.05). At the end of the 80-d experiments, 62.2% and 42.3% of phenanthrene had disappeared from planted soils without Pseudomonas sp. GF3 when the phenanthrene was added at 100 and 200 mg kg−1 soil, respectively, but 84.8% and 70.2% of phenanthrene had disappeared from planted soils with the bacterial inoculation. The presence of vegetation significantly enhances the dissipation of phenanthrene in the soil. There was no significant difference in soil polyphenol oxidase activities among the applications of 0, 100 and 200 mg kg−1 of phenanthrene. However, the enzyme activities in planted and unplanted soils inoculated with the strain Pseudomonas sp. GF3 were significantly higher than those of non-inoculation controls. The bacterial isolate was also able to colonize and develop in the rhizosphere soil of wheat after inoculation.  相似文献   

3.

Purpose

Chlorpyrifos can be effectively adsorbed by drinking water treatment residuals (WTR), ubiquitous and non-hazardous by-products of potable water production. The major metabolite 3,5,6-trichloro-2-pyridinol (TCP) was found to be much more mobile and toxic than its parent chlorpyrifos. To assess the feasibility of WTR amendment for attenuation of chlorpyrifos and TCP pollution, the sorption/desorption and degradation behavior of chlorpyrifos and TCP in WTR-amended agricultural soils was examined in the present study.

Materials and methods

Two representative agricultural soils were sampled from southern and northern China, respectively. The soils were amended with WTR at the rates of 0, 2, 5, and 10 % (w/w). Batch sorption/desorption test were applied to investigate the sorption/desorption characteristics of chlorpyrifos and TCP in WTR-amended soils. The influence of WTR amendment on chlorpyrifos degradation and TCP formation was evaluated using the incubation test, and its effect on the soil bacterial abundance was further studied through DNA extraction and PCR amplification.

Results and discussion

Results showed that WTR amendment (0–10 %, w/w) significantly enhanced the retention capacity of chlorpyrifos and TCP in both soils examined (P < 0.05). Fractionation analyses further demonstrated that the bioavailability of chlorpyrifos was considerably reduced by WTR amendment, resulting in a decreased chlorpyrifos degradation rate. The WTR amendment also significantly reduced the mobility of TCP formed in chlorpyrifos-contaminated soils (P < 0.001). The chlorpyrifos toxicity to soil bacteria community was largely mitigated following WTR amendment, resulting in increased total bacterial abundance.

Conclusions

Results obtained in the present study indicate a great deal of potential for the beneficial reuse of WTR as soil amendments for chlorpyrifos and TCP pollution control.
  相似文献   

4.
The transport of the spores of Pasteuria penetrans was studied in three contrasted textured soils (a sandy, a sandy-clay and a clay soils), cultivated with tomato, inoculated with juveniles of Meloidogyne javanica and watered with 25 or 150 mm day−1. One month after inoculation of the nematodes, 53% of the spores inoculated were leached by water flow in the sandy soil but only 14% in the sandy-clay soil and 0.1% in the clay soil. No nematodes survived in the clay soil, while the population was multiplied both in the sandy and in the sandy-clay soils. But juveniles of M. javanica were more infected by P. penetrans in the sandy-clay soil than in the sandy soil. Comparing different combinations of bare soils containing 1.1-57% of clay showed that the best spore percolation and retention balance occurred in soils amended with 10-30% clay. However, the spore recoveries decreased when the soil was enriched with more than 30% clay. The role of clay particles on the extractability of spores and on their availability to attach to the nematode cuticle in the soil is discussed.  相似文献   

5.
Forest soils contain the largest carbon stock of all terrestrial biomes and are probably the most important source of carbon dioxide (CO2) to atmosphere. Soil CO2 fluxes from 54 to 72-year-old monospecific stands in Rwanda were quantified from March 2006 to December 2007. The influences of soil temperature, soil water content, soil carbon (C) and nitrogen (N) stocks, soil pH, and stand characteristics on soil CO2 flux were investigated. The mean annual soil CO2 flux was highest under Eucalyptus saligna (3.92 μmol m−2 s−1) and lowest under Entandrophragma excelsum (3.13 μmol m−2 s−1). The seasonal variation in soil CO2 flux from all stands followed the same trend and was highest in rainy seasons and lowest in dry seasons. Soil CO2 flux was mainly correlated to soil water content (R2 = 0.36-0.77), stand age (R2 = 0.45), soil C stock (R2 = 0.33), basal area (R2 = 0.21), and soil temperature (R2 = 0.06-0.17). The results contribute to the understanding of factors that influence soil CO2 flux in monocultural plantations grown under the same microclimatic and soil conditions. The results can be used to construct models that predict soil CO2 emissions in the tropics.  相似文献   

6.
The chemical composition and quantity of plant inputs to soil are primary factors controlling the size and structure of the soil microbial community. Little is known about how changes in the composition of the soil microbial community affect decomposition rates and other ecosystem functions. This study examined the degradation of universally 13C-labeled glucose, glutamate, oxalate, and phenol in soil from an old-growth Douglas-fir (Pseudotsuga menziesii)—western hemlock (Tsuga heterophylla) forest in the Oregon Cascades that has experienced 7 y of chronic C input manipulation. The soils used in this experiment were part of a larger Detritus Input and Removal Treatment experiment and have received normal C inputs (control), doubled wood inputs, or root and litter input exclusion (no inputs). Soil from the doubled wood treatment had a higher fungal:bacterial ratio, and soil from the no inputs treatment had a lower fungal:bacterial ratio, than the control soil. Differences in the utilization of the compounds added to the field-manipulated soils were assessed by following the 13C tracer into microbial biomass and respiration. In addition, 13C-phospholipid fatty acids (PLFA) analysis was used to examine differential microbial utilization of the added substrates. Glucose and glutamate were metabolized similarly in soils of all three litter treatments. In contrast, the microbial community in the double wood soil respired more added phenol and oxalate, whereas microbes in the no inputs soil respired less added phenol and oxalate, than the control soil. Phenol was incorporated primarily into fungal PLFA, especially in soil of the double wood treatment. The addition of all four substrates led to enhanced degradation of soil organic matter (priming) in soils of all three litter treatments, and was greater following the addition of phenol and oxalate as compared to glucose and glutamate. Priming was greater in the no inputs soil as compared to the control or doubled wood soils. These results demonstrate that altering plant inputs to soil can lead to changes in microbial utilization of C compounds. It appears that many of these changes are the result of alteration in the size and composition of the microbial community.  相似文献   

7.
Long-term effects of high Cd concentrations on enzyme activities, microbial biomass and respiration and bacterial community structure of soils were assessed in sandy soils where Cd was added between 1988 and 1990 as Cd(NO3)2 to reach concentrations ranging from 0 to 0.36 mmol Cd kg−1 dry weight soil. Soils were mantained under maize and grass cultivation, or ‘set-aside’ regimes, for 1 year. Solubility of Cd and its bioavailability were measured by chemical extractions or by the BIOMET bacterial biosensor system. Cadmium solubility was very low, and Cd bioavailability was barely detectable even in soils polluted with 0.36 mmol Cd kg−1. Soil microbial biomass carbon (BC) was slightly decreased and respiration was increased significantly even at the lower Cd concentration and as a consequence the metabolic quotient (qCO2) was increased, indicating a stressful condition for soil microflora. However, Cd-contaminated soils also had a lower total organic C (TOC) content and thus the microbial biomass C-to-TOC ratio was unaffected by Cd. Alkaline phosphomonoesterase, arylsulphatase and protease activities were significantly reduced in all Cd-contaminated soils whereas acid phosphomonoesterase, β-glucosidase and urease activites were unaffected by Cd. Neither changes in physiological groups of bacteria, nor of Cd resistant bacteria could be detected in numbers of the culturable bacterial community. Denaturing gradient gel electrophoresis analysis of the bacterial community showed slight changes in maize cropped soils containing 0.18 and 0.36 mmol Cd kg−1 soil as compared to the control. It was concluded that high Cd concentrations induced mainly physiological adaptations rather than selection for metal-resistant culturable soil microflora, regardless of Cd concentration, and that some biochemical parameters were more sensitive to stress than others.  相似文献   

8.
Phosphorus losses by surface runoff from agricultural lands have been of public concern due to increasing P contamination to surface waters. Five representative commercial citrus groves (C1-C5) located in South Florida were studied to evaluate the relationships between P fractions in soils, surface runoff P, and soil phosphatase activity. A modified Hedley P sequential fractionation procedure was employed to fractionate soil P. Soil P consisted of mainly organically- and Ca/Mg-bound P fractions. The organically-bound P (biological P, sum of organic P in the water, NaHCO3 and NaOH extracts) was dominant in the acidic sandy soils from the C2 and C3 sites (18% and 24% of total soil P), whereas the Ca/Mg-bound P (HCl-extractable P) accounted for 45-60% of soil total P in the neutral and alkaline soils (C1, C4 and C5 soils). Plant-available P (sum of water and NaHCO3 extractable P fractions) ranged from 27 to 61 mg P kg−1 and decreased in the order of C3>C4>C1>C2>C5. The mean total P concentrations (TP) in surface runoff water samples ranged from 0.51 to 2.64 mg L−1. Total P, total dissolved P (TDP), and PO43−-P in surface runoff were significantly correlated with soil biological P and plant-available P forms (p<0.01), suggesting that surface runoff P was directly derived from soil available P pools, including H2O- and NaHCO3- extractable inorganic P, water-soluble organic P, and NaHCO3- and NaOH-extractable organic P fractions, which are readily mineralized by soil microorganisms and/or enzyme mediated processes. Soil neutral (55-190 mg phenol kg−1 3 h−1) and natural (measured at soil pH) phosphatase activities (77-295 mg phenol kg−1 3 h−1) were related to TP, TDP, and PO43−-P in surface runoff, and plant-available P and biological P forms in soils. These results indicate that there is a potential relationship between soil P availability and phosphatase activities, relating to P loss by surface runoff. Therefore, the neutral and natural phosphatase activities, especially the natural phosphatase activity, may serve as an index of surface runoff P loss potential and soil P availability.  相似文献   

9.
海藻酸钠固定化细菌对毒死蜱的降解特性   总被引:2,自引:0,他引:2  
毒死蜱的生产和使用日趋广泛,由其造成的环境污染和危害不容忽视。微生物是影响有机磷农药在环境中降解的最主要因素,也被认为是降解有机磷农药最可靠而高效的途径。固定化技术是提高微生物降解农药效率的有效方法之一。本研究以海藻酸钠为载体,采用注射器滴定法将蜡状芽孢杆菌(Bacillus cer-eus)HY-1用海藻酸钠溶胶包埋,研究了反应时间、固定化菌接入量、pH和毒死蜱初始浓度对毒死蜱降解的影响以及固定化菌的重复使用效果。结果表明:海藻酸钠固定化菌能够高效降解基础培养基中的毒死蜱,制备固定化小球海藻酸钠溶胶的最适浓度为2.5%(w/v),小球的平均粒径为3 mm。在培养时间为60 h时,固定化菌对100 mg·L-1毒死蜱的降解率达到最大。固定化小球接入量为160 g·L-1时,对100 mg·L-1毒死蜱的降解率最高。固定化菌对毒死蜱的降解有着较宽泛的pH适应范围,碱性环境更有利于其对毒死蜱的有效降解。当毒死蜱初始浓度为80 mg·L-1和100 mg·L-1时,固定化菌对毒死蜱的降解率较高,达90%左右。固定化菌可重复利用降解毒死蜱,当利用4次后,固定化小球虽已发生崩解,但对100 mg·L-1毒死蜱的降解率仍高达47%。因此,海藻酸钠固定化蜡状芽孢杆菌对水体中毒死蜱的降解率较高,环境适应性较强,固定化菌可在毒死蜱污染的净化去毒方面发挥重要作用。  相似文献   

10.
Soil loss tolerance limit is defined as the threshold upper limit of soil erosion that can be allowed without degrading long term productivity of specific soils. In India a default soil loss tolerance limit (SLTL) of 11.2 Mg ha− 1 yr− 1 is followed for planning soil conservation activities. The objective of this investigation is to provide a methodology to estimate quantitative SLTL for the Shivalik–Himalayan region in India for suggesting suitable soil conservation measures. A quantitative model was used to integrate potential soil indicators such as infiltration rate, bulk density, water stable aggregate, organic carbon and fertility status to assess soil quality governing soil resistibility to erosion. Scaling functions were used to convert soil parameters to unit less 0 to 1 scale. Normalized values of soil parameters were then multiplied by assigned weights based on relative importance and sensitivity analysis of each indicator. Soils were grouped into 1, 2 and 3 depending on overall additive score. A general guideline developed by the USDA-Natural Resource Conservation Service (NRCS) was followed with certain modifications in depth category for estimation of SLTLs. Soil loss tolerance limits varied from 2.5 to 12.5 Mg ha− 1 yr − 1 compared to single value of 11.2 Mg ha− 1 yr − 1 being followed earlier. Consideration of the newly estimated SLTLs would facilitate site specific conservation planning and prioritising areas for watershed management activities in India.  相似文献   

11.
A combination of culture-independent and culturing methods was used to assess the diversity of soil bacterial communities from four locations along 77 °S in Victoria Land, Antarctica. Soil samples were from the coast at Marble Point, in the Wright Valley from Bull Pass and near Lake Vanda, and from Mt. Fleming near the polar plateau. Total carbon and nitrogen, and water content of the soils were low, whereas total P was very high. The pH of the soils varied from extremely alkaline to slightly acid and electrical conductivity was medium to high on the coast and very high in inland soils from Bull Pass and Mt. Fleming. The average monthly air temperature was similar (−18 °C to −24 °C) at all the sites; however, in summer surface soil temperatures were >0 °C at Marble Point and in the Wright Valley for a total of 1100 and 1700 h, respectively. Marble Point soil had the most potential to support bacterial growth and activity with a mean total of 310 h per year when surface soils had a liquid volumetric soil moisture content >5%. Highest counts of culturable heterotrophs occurred in soil from Marble Point, whereas Mt. Fleming soil contained few organisms and had no liquid soil moisture recorded. Seven hundred and twenty-eight clones and 71 bacterial isolates were screened by restriction fragment length polymorphisms, and representatives of those dominant ribotypes that occurred more than 3 times were sequenced. The dominant ribotypes grouped within the bacterial divisions Bacteroidetes, Actinobacteria, Proteobacteria, Thermus-Deinococcus, Acidobacteria, Firmicutes and Cyanobacteria. The closest relatives of the amplicon library clones or cultured bacteria include the genera Hymenobacter, Gillisia, Arthrobacter, Rubrobacter, Friedmanniella, Deinococcus and Leptolyngbya. Many of the clones and bacteria were most similar to others from Antarctic sources, in particular a cyanobacterium-dominated cryptoendolithic community in Beacon sandstone. Some ribotypes were more prevalent in drier soils of the Wright Valley, including relatives of Deinococcus, Rubrobacter and clone FBP460 from Beacon sandstone. Bacterial communities from Marble Point soils were more diverse than those of the Wright Valley. Very few bacteria were isolated from Mt. Fleming soil.  相似文献   

12.
通过室内盆栽试验模拟自然环境条件,采用高效液相色谱(HPLC)和末端限制性片段长度多态性(T-RFLP)技术,研究了土壤使用推荐剂量(5 mg·kg~(-1))及推荐剂量的2倍、3倍和4倍(10 mg·kg~(-1)、15 mg·kg~(-1)、20 mg·kg~(-1))毒死蜱对棉花根际土壤细菌群落多样性和结构的影响,以不施用毒死蜱的土壤为对照。结果表明,5 mg·kg~(-1)、10 mg·kg~(-1)、15 mg·kg~(-1)和20 mg·kg~(-1)毒死蜱在土壤中的半衰期分别为10.04 d、11.36 d、11.55 d和12.16 d,60 d时基本完全降解。毒死蜱处理60 d后,棉花生物量显著降低;毒死蜱浓度越高,棉花生物量越低。无毒死蜱条件下不同取样时间根际细菌多样性无显著差异,毒死蜱处理组前30 d细菌多样性均显著降低,60 d时毒死蜱处理组细菌多样性恢复到正常水平。研究发现毒死蜱浓度越高对细菌多样性抑制作用越显著,恢复越缓慢。主成分分析结果发现,第10 d、30 d和60 d毒死蜱处理组与对照组细菌群落结构差异显著,其中60 d时20 mg·kg~(-1)毒死蜱处理组差异最显著,即使土壤中毒死蜱完全降解,根际细菌群落结构仍不会恢复到正常水平。60 d时,被毒死蜱抑制的细菌有硝化刺菌属(Nitrospina sp.)和Cellulophaga sp.等,被激活的有芽孢杆菌属(Bacillus sp.)和链霉菌属(Streptomyces sp.)等。可见,毒死蜱的引入,重新构建了土壤细菌群落结构,显著影响棉花生长,对棉花根际土壤微生态环境冲击较大,应对其生态安全性予以重视。  相似文献   

13.
We examined the community composition of microbes that colonized atrazine-containing beads buried in agricultural soils that differed in atrazine treatment history. Bacterial abundance was 5-40-fold greater in atrazine-fortified beads. In beads containing 20 mg atrazine kg−1 buried in soil with a history of atrazine application (conditioned soil), the abundance of Actinobacteria increased approximately 80-fold whereas in control soil, Actinobacteria were enriched only 10-fold and the gamma-Proteobacteria and Planctomycetes increased by 60- and 25-fold, respectively. The gamma-Proteobacteria were enriched by 120- and 230-fold in beads containing 200 mg atrazine kg−1 in conditioned and control soil, respectively. The results demonstrate that BioSep® beads are a suitable matrix for recruiting a diverse subset of the bacterial community involved in atrazine degradation.  相似文献   

14.
Soil aggregation is of great importance in agriculture due to its positive effect on soil physical properties, plant growth and the environment. A long-term (1996-2008) field experiment was performed to investigate the role of mycorrhizal inoculation and organic fertilizers on some of soil properties of Mediterranean soils (Typic Xerofluvent, Menzilat clay-loam soil). We applied a rotation with winter wheat (Triticum aestivum L.) and maize (Zea mays L.) as a second crop during the periods of 1996 and 2008. The study consisted of five experimental treatments; control, mineral fertilizer (300-60-150 kg N-P-K ha−1), manure at 25 t ha−1, compost at 25 t ha−1 and mycorrhiza-inoculated compost at 10 t ha−1 with three replicates. The highest organic matter content both at 0-15 cm and 15-30 cm soil depths were obtained with manure application, whereas mineral fertilizer application had no effect on organic matter accumulation. Manure, compost and mycorrhizal inoculation + compost application had 69%, 32% and 24% higher organic matter contents at 0-30 cm depth as compared to the control application. Organic applications had varying and important effects on aggregation indexes of soils. The greatest mean weight diameters (MWD) at 15-30 cm depth were obtained with manure, mycorrhiza-inoculated compost and compost applications, respectively. The decline in organic matter content of soils in control plots lead disintegration of aggregates demonstrated on significantly lower MWD values. The compost application resulted in occurring the lowest bulk densities at 0-15 and 15-30 cm soil depths, whereas the highest bulk density values were obtained with mineral fertilizer application. Measurements obtained in 2008 indicated that manure and compost applications did not cause any further increase in MWD at manure and compost receiving plots indicated reaching a steady state. However, compost with mycorrhizae application continued to significant increase (P < 0.05) in MWD values of soils. Organic applications significantly lowered the soil bulk density and penetration resistance. The lowest penetration resistance (PR) at 0-50 cm soil depth was obtained with mycorrhizal inoculated compost, and the highest PR was with control and mineral fertilizer applications. The results clearly revealed that mycorrhiza application along with organic fertilizers resulted in decreased bulk density and penetration resistance associated with an increase in organic matter and greater aggregate stability, indicated an improvement in soil structure.  相似文献   

15.
The survival of free-living rhizobia in soil is sensitive to elevated heavy metals in soil and can explain adverse effects of metals on symbiotic nitrogen fixation in soils. A survival experiment was set-up to derive critical cadmium (Cd) and zinc (Zn) concentrations in a range of field-contaminated soils in the absence of their host plant (Trifolium repens L.). Soils applied with metal salts or sewage sludge >10 years ago were sampled and were inoculated with Rhizobium leguminosarum bv. trifolii (108 cells g−1 soil) and incubated outdoors for up to 6 months. The most probable number (MPN) decreased 1-2 orders of magnitude in uncontaminated soils during the incubation. There was no significant effect of total metal concentrations on rhizobia survival in soils contaminated with Cd salts or with high Ni/Cd sewage sludge with highest Cd concentrations between 18 and 118 mg Cd kg−1. In contrast, survival was strongly affected in soils contaminated by sewage sludge, where Zn was the principal metal contaminant. Neither total Cd nor soil solution Cd was large enough to attribute these effects to Cd when compared with the soil series, where Cd salts had been applied. The MPN decreased at least one order of magnitude above total Zn concentrations of 233 mg Zn kg−1 (soil pH 5.6) and 876 mg Zn kg−1 (soil pH 6.3). The EC50s of log MPN were 204 and 604 mg Zn kg−1, respectively, and were lower than those for the symbiotic nitrogen fixation measured in the pot trial on the same soils (respectively 602 and 737 mg Zn kg−1). This study corroborates the evidence that symbiotic nitrogen fixation is affected by Zn in the field when Zn decreases the free-living population of rhizobia to below a critical threshold.  相似文献   

16.
We examined effects of wetting and then progressive drying on nitrogen (N) mineralization rates and microbial community composition, biomass and activity of soils from spinifex (Triodia R. Br.) grasslands of the semi-arid Pilbara region of northern Australia. We compared soils under and between spinifex hummocks and also examined impacts of fire history on soils over a 28 d laboratory incubation. Soil water potentials were initially adjusted to −100 kPa and monitored as soils dried. We estimated N mineralization by measuring changes in amounts of nitrate (NO3-N) and ammonium (NH4+-N) over time and with change in soil water potential. Microbial activity was assessed by amounts of CO2 respired. Phospholipid fatty acid (PLFA) analyses were used to characterize shifts in microbial community composition during soil drying. Net N mineralized under hummocks was twice that of open spaces between hummocks and mineralization rates followed first-order kinetics. An initial N mineralization flush following re-wetting accounted for more than 90% of the total amount of N mineralized during the incubation. Initial microbial biomass under hummocks was twice that of open areas between hummocks, but after 28 d microbial biomass was<2 μ g−1 ninhydrin N regardless of position. Respiration of CO2 from soils under hummocks was more than double that of soils from between hummocks. N mineralization, microbial biomass and microbial activity were negligible once soils had dried to −1000 kPa. Microbial community composition was also significantly different between 0 and 28 d of the incubation but was not influenced by burning treatment or position. Regression analysis showed that soil water potential, microbial biomass N, NO3-N, % C and δ15N all explained significant proportions of the variance in microbial community composition when modelled individually. However, sequential multiple regression analysis determined only microbial biomass was significant in explaining variance of microbial community compositions. Nitrogen mineralization rates and microbial biomass did not differ between burned and unburned sites suggesting that any effects of fire are mostly short-lived. We conclude that the highly labile nature of much of soil organic N in these semi-arid grasslands provides a ready substrate for N mineralization. However, process rates are likely to be primarily limited by the amount of substrate available as well as water availability and less so by substrate quality or microbial community composition.  相似文献   

17.
Arsenic (As) and cadmium (Cd) in soils can affect soil microbial function and community composition and, therefore, may have effects on soil ecosystem functioning. The aim of our study was to assess the effects of long-term As and Cd contamination on soil microbial community composition and soil enzyme activities. We analyzed soils that have been contaminated 25 years ago and at present still show enhanced levels of either As, 18 and 39 mg kg−1, or Cd, 34 and 134 mg kg−1. Soil without heavy metal addition served as control. Polymerase chain reaction (PCR) followed by denaturing gradient gel electrophoresis (DGGE) showed that bacterial community composition in As and Cd contaminated soils differed from that in the control soil. The same was true for the microbial community composition assessed by analysis of respiratory quinones. Soil fungi and Proteobacteria appeared to be tolerant towards As and Cd, while other groups of bacteria were reduced. The decline in alkaline phosphatase, arylsulphatase, protease and urease activities in the As- and Cd-contaminated soils was correlated with a decrease of respiratory quinones occuring in Actinobacteria and Firmicutes. Xylanase activity was unaffected or elevated in the contaminated soils which was correlated with a higher abundance of fungal quinones, and quinones found in Proteobacteria.  相似文献   

18.
Polycyclic aromatic hydrocarbons (PAHs) are highly recalcitrant widespread environmental pollutants. Bioremediation, accomplished by the introduction of PAH-degrading microorganisms (bioaugmentation) and/or by applying additional nutrients (biostimulation) into a contaminated system is a valuable alternative to traditional chemical and physical treatments for the decontamination of PAH-contaminated soils. We investigated on a laboratory scale the fate of phenanthrene (Phe), selected to represent PAHs, when added to a fresh, agricultural soil with no history of PAH contamination. The relative effect of compost (C), applied at two different doses (C1=0.27%, and C2=0.83%, corresponding to 10 and 30 t ha−1, respectively), and the efficiency of a Phe-degrading bacterial culture inoculated into the soil (S) and soil-compost (S-C1 and S-C2) systems were investigated. Changes in various functionally related properties such as microbial biomass, basal respiration, and soil hydrolases and oxido-reductases activities were measured over time. The variations of the main physical and chemical properties were also monitored. The soil showed an intrinsic capability for degrading Phe, and this was enhanced and stimulated by the lower compost dose (a decrease of the extractable Phe from 70% to about 50% of that initially added, and higher kinetic Phe disappearance constants). A simultaneous, rapid increase of soil respiration and microbial biomass, and higher phosphatase and arylsulphatase activities were measured, suggesting that microbial growth and activity had increased. The inoculation with Phe-degrading bacterial cells strongly accelerated the Phe degradation. After 15 d of incubation, the residual Phe decreased to 10% in S and S-C1 and to zero in S-C2, respectively. No apparent effects were observed for the higher compost dose. Several of the soil properties showed differentiated responses to the presence of the Phe, the compost and/or the exogenous culture. As a general response, soil systems with and without the inoculated cells showed similar trends for several of the measured enzymatic properties (e.g. phosphatase, arylsulphatase, β-glucosidase and urease activities), indicating that the intrinsic soil enzymatic activity was not affected by the exogenous microorganisms. Temporary and permanent changes were observed for several of the properties investigated, thereby providing useful information on the impact of Phe on soil metabolic activity.  相似文献   

19.
Several sites that are contaminated with isomers of the chlorinated insecticide hexachlorocyclohexane (HCH) are present across the globe and cause toxicity. For their bioremediation, we studied the degradation of HCH-isomers in contaminated soils by an isolate Pseudomonas aeruginosa ITRC-5. The degradation is optimal at 2 mg technical-HCH (t-HCH)/g soil, 15% water content, pH 8.0, temperature 28 °C and inoculum density 106 colony forming unit/g soil. Under these conditions, from 5 kg soil, >98% α- and γ-HCH, 17% β-HCH and 76% δ-HCH are degraded after 15 days of incubation, which is accompanied with the release of 600 μg chloride/mg t-HCH. Concomitant to the degradation, a four-fold reduction in the toxicity of HCH-isomers to earthworm, Eisenia foetida, is also observed. Addition of ITRC-5 enhanced the degradation of soil-applied HCH-isomers in ‘open field’ conditions as well, and 97%, 43%, 94% and 77% of α-, β-, γ- and δ-HCH, respectively, are degraded after 12 weeks of incubation. Thus, the bacterium causes microbial degradation and detoxification of HCH-isomers, and can be used for the bioremediation of contaminated soils.  相似文献   

20.
The organophosphorus insecticide, chlorpyrifos, has been widely applied in agriculture; in veterinary, against household pests; and in subterranean termite control. Due to its slow rate of degradation in soil, it can persist for extended periods in soil with a significant threat to environment and public health. The mixed and pure fungi were isolated from three soils by enrichment technique. The enriched mixed fungal cultures were capable of biodegrading chlorpyrifos (300 mg L−1) when cultivated in Czapek Dox medium. The identified pure fungal strain, Acremonium sp., utilized chlorpyrifos as a source of carbon and nitrogen. The highest chlorpyrifos degradation (83.9%) by Acremonium sp. strain GFRC-1 was found when cultivated in the nutrient medium with full nutrients. Desdiethyl chlorpyrifos was detected as a major biodegradation product of chlorpyrifos. The isolated fungal strain will be used for developing bioremediation strategy for chlorpyrifos-polluted soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号