首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
【目的】通过研究尿素、氯化铵以及二者混合高塔造粒而成的含氯脲铵氮肥对太湖地区稻麦轮作体系作物产量、氮肥利用率、氨挥发损失、土壤氯残留和耕层土壤 pH 的影响,为新型含氯氮肥的推广,降低环境风险提供理论依据。【方法】通过两年稻麦轮作季的田间小区试验,在当地适宜施氮量条件下,以 CK (不施氮) 和施用普通尿素为对照,研究了两种含氯氮肥的施用对稻麦轮作体系作物产量和氮肥利用率的影响。采集作物收获后 0—20 cm、20—40 cm 土壤样品,采用硫氰酸汞比色法测定土壤氯残留;施肥后采用密闭室间歇通气-稀硫酸吸收法测定氨挥发通量。【结果】尿素、氯化铵和含氯脲铵处理对稻麦产量无显著影响,但与尿素相比含氯脲铵对稻麦有增产的趋势,而氯化铵对小麦有减产趋势。与尿素相比施用含氯脲铵显著提高氮肥利用率 7.0% (P < 0.05)。氨挥发主要发生在稻季,与施用尿素相比单施氯化铵使麦季氨挥发降低 26.3% (1.39 kg/hm2),而使稻季氨挥发增加 10.4% (2.67 kg/hm2);含氯脲铵使麦季和稻季的氨挥发分别降低 5.2% (0.55 kg/hm2) 和 12.9% (6.16 kg/hm2)。施用含氯氮肥土壤氯残留表现为稻季显著增加,而麦季则显著降低的趋势,收获期耕层土壤 (0—20 cm) 氯离子含量最高不超过 160 mg/kg,低于水稻和小麦的耐氯临界值。经过两个稻麦轮作循环后,施用氯化铵土壤 pH 比尿素下降 0.88 个单位,而施含氯脲铵土壤 pH 与尿素没有显著差异。【结论】在太湖地区稻麦轮作体系中,综合考虑产量和环境效益,含氯脲铵氮肥与两种单质肥料相比有一定优势,为氨挥发减排和氯化铵施用难题的解决提供了依据。  相似文献   

2.
长期施用含氯化肥对棕壤硝化作用及氨氧化微生物的影响   总被引:1,自引:0,他引:1  
【目的】氨氧化微生物是氨氧化过程的主要驱动者,氨氧化过程作为硝化作用的限速步骤对氮循环具有重要作用。本研究以沈阳农业大学棕壤含氯化肥长期定位试验的土壤为研究对象,探讨了连续34年施用高氯和低氯化肥对棕壤硝化作用及氨氧化微生物的影响。【方法】该长期试验在等量氮、磷、钾条件下,设置高氯和低氯处理,共8个处理:T1(不施肥);T2(单施尿素);T3(尿素+氯化钾);T4(尿素+过磷酸钙);T5(尿素+过磷酸钙+氯化钾);T6(尿素+磷酸一铵+氯化钾);T7(尿素+氯磷铵+氯化钾);T8(硝酸磷肥+过磷酸钙+氯化钾),T7为高氯处理。采集0—20cm土壤样品,利用荧光定量PCR技术测定氨氧化细菌(AOB)和古菌(AOA)丰度,并结合土壤硝化潜势和基本化学性质,分析长期施用含氯化肥对棕壤硝化作用及氨氧化微生物丰度的影响及影响氨氧化微生物丰度的主要环境因素。【结果】长期施肥降低了土壤pH值,高氯处理降低得最多,显著低于其他处理;高氯处理的土壤硝化潜势也显著低于其他处理,且除高氯处理外,配施磷肥的处理土壤硝化潜势显著高于不施磷处理。各处理土壤中AOA丰度均显著高于AOB,高氯处理土壤中AOA、AOB丰度均显著低于其他处理,土壤硝化潜势与AOA和AOB均呈显著正相关关系。【结论】连续施用高氯化肥34年显著降低了棕壤AOA和AOB丰度,抑制了硝化潜势。该结果可为通过含氯化肥的合理施用来调节土壤AOA和AOB,进而调控土壤氮素循环提供参考。  相似文献   

3.
氯素在紫色土中的移动和淋失特点   总被引:2,自引:0,他引:2  
余贵芳  毛知耘  周则芳 《土壤》1999,31(4):214-216
利用养分渗漏池,研究了水旱轮作了氮肥品种,用量对氮素在紫色土中的移动,淋失影响,结果表明,旱作和淹水期间随生育推移,氯离子逐渐移动到土体的中下部,氯化铵比尿素增加了氯防子淋失量,并随氯化铵用量的增加而增加,水田比旱地的氯离子淋失率高2百分点,建议水旱轮作中含氯化肥优先分配于水田,并控制用量。  相似文献   

4.
  【目的】  猕猴桃为喜氯作物,充足的含氯肥料能提高猕猴桃产量。研究猕猴桃的适宜含氯肥料用量,及过量施用含氯肥料是否会影响猕猴桃的产量及其后效,为猕猴桃园合理施用含氯肥料提供科学依据。  【方法】  在猕猴桃 (Actinidia deliciosa) 园设置不同用量含氯化肥试验,共设5个施氯水平0 (Cl-0)、170 (Cl-170)、340 (Cl-340)、910 (Cl-910)、1480 (Cl-1480) kg/hm2,2014—2017年连续施用3年后,停止施用含氯肥料两年后 (2018和2019年),取样分析猕猴桃产量、品质、植株和土壤氯离子含量。  【结果】  停用含氯肥料两年后,Cl-170、Cl-340、Cl-910处理比Cl-0处理的猕猴桃产量分别增加7.5%、11.9%、18.0%,Cl-1480处理的产量与CK持平;Cl-910、Cl-1480处理的猕猴桃果实Vc含量与Cl-0处理无显著差异。在2017年,除Cl-170处理的叶片外,施氯处理的猕猴桃叶片、枝条、果实中的氯离子含量均显著高于Cl-0处理,叶片、枝条和果实中的氯离子含量随着施氯量的增加而增加;2019年,除Cl-1480处理的枝条和果实外,其余处理枝、叶、果实中氯离子含量与Cl-0处理没有显著差异。2017年,Cl-170、Cl-340、Cl-910、Cl-1480处理Cl–在0—100 cm 土层没有累积,100 cm以下土层土壤Cl–含量随施氯量的增加而增加;2019年,0—300 cm土层未见氯离子积累。  【结论】  在本试验条件下,施用含氯肥料不会引起0—100 cm土层中氯离子的积累。施用适量含氯肥料 (170 kg/hm2) 可显著提高当年猕猴桃产量和品质。连续3年过量施用含氯肥料 (910和1480 kg/hm2) 显著提高了植株叶片、枝条和果实中的Cl–含量,降低了猕猴桃产量和果实Vc含量,停止施用含氯肥料后,该不利影响随即消失,且施用含氯肥料 910 kg/hm2较不施含氯肥料仍有显著增产效果。因此,建议在猕猴桃果园施用适量含氯肥料;当含氯肥料施用严重过量时,可停止施用含氯肥料两年,可在维持较高的猕猴桃产量的同时,恢复猕猴桃的品质。  相似文献   

5.
本文对水田阴离子肥料长期定位试验进行了观察和总结。研究表明,湘南水田长期施用含硫及含氯化肥对水稻生长的影响随年度和季节变化:SO4^2-肥料促进早稻返青和晚稻营养生长、Cl^-肥料提高晚稻经济产量,从1982年1990年,水稻稻谷年产量随气候变化有两次明显的波降周期,并且九年间,两类阴离子肥料处理的水稻年均总干物质生产量相等,绿肥生长也无显著不同,然而,长年施用含硫及含氯化肥的小区具有明显的土壤和  相似文献   

6.
以24年(1981-2004年)的肥料长期定位试验为基础,分析探讨了有机无机肥长期配施对潮土土壤肥力和作物产量的影响。研究结果表明,除增施秸秆外,增施化肥也能提高土壤有机质的含量,但同时增施化肥和秸秆更有利于土壤有机质的积累。在提高有机质复合量方面,施用化肥的效果好于施用秸秆,而有机无机结合效果较单一施用秸秆或化肥都要高;随秸秆或化肥施用量的增加有机质的复合度逐渐降低,但有机无机结合施用可以提高有机质的复合度。有机无机结合有利于改善土壤的物理性状,降低了土壤容重,提高了土壤田间持水量和饱和含水量,增加了土壤总孔隙度和毛管孔隙。单施秸秆肥和单施化肥均有显著的增产效应,而化肥的增产幅度远远大于秸秆肥,有机无机结合的增产幅度在同等施肥量下较单独施用秸秆或化肥的产量都要高。结果表明,有机无机结合较单一施用秸秆肥或化肥能更有效的提高潮土的土壤肥力,提高作物产量。  相似文献   

7.
硝酸铵和其他硝态氮肥一般不宜施用于蔬菜,硝态氮肥施入菜田后,会使蔬菜中的硝酸盐含量成倍增加,硝酸盐在人体中容易被还原为亚硝酸盐,亚硝酸盐是一种剧毒物质,对人体危害极大。氯化铵、氯化钾等含氯化肥,不宜施用于番茄等,含氯肥料在土壤中分解后,铵或钾离子会被土壤吸附或被蔬菜吸收,浓度达到一定程度时,会对蔬菜根系产生毒害,严重的会造成蔬菜死亡。  相似文献   

8.
不同氮磷水平对南四湖区稻谷产量及肥料吸收利用的影响   总被引:1,自引:0,他引:1  
为了确定南四湖区农田合理的氮磷肥投入量,减轻氮磷流失风险,对不同氮磷水平下稻田的稻谷产量及肥料吸收利用情况进行研究。结果表明,不施氮磷肥使耕层土壤氮磷含量明显下降,稻谷产量显著降低;减施30%氮磷肥显著提高了氮磷肥利用率,降低了稻谷产量。过量施用氮磷肥处理对稻谷产量无显著效果,且显著提高了耕层土壤硝态氮含量,明显降低了氮磷肥利用率,促进了水稻对氮素的积累,对水稻磷素积累无显著效果。稻谷氮磷累积量明显高于稻草,稻谷和稻草含氮量均随氮磷肥施用量的增加而增大。氮磷肥利用率随氮磷肥施用量的增加而降低。减施15%氮磷肥对土壤氮磷含量和稻谷产量均影响不大,显著提高了氮磷肥利用效率,降低了经济成本,减轻了氮磷素流失风险,是南四湖区稻田较好的氮磷肥施用模式。  相似文献   

9.
  【目的】  基于长期定位试验,探究施入含硫肥料的不同处理土壤总硫与有机硫含量变化,以及不同施肥处理土壤总硫与有机硫的变化趋势,为硫素的合理施用提供理论依据。  【方法】  长期定位试验位于重庆市北碚区西南大学国家紫色土肥力与肥效监测基地,始于1991年,至本研究取样时已连续进行了22年,一年两季,水稻?小麦轮作。选择试验中的7个处理:不施肥 (CK),施用氮磷钾 (硫酸钾,NPKS),有机肥单施 (M),氮磷钾配施有机肥 (MNPKS),氮磷钾与稻草还田配合施用 (SNPKS),含氯化肥氮 (氯化铵)、磷、钾 (氯化钾) 与秸秆还田配施 (SNPKCl)和永久休闲 (F)。取0—20 cm土样,测定了全硫、有机硫以及3种形态有机硫含量以及芳基硫酸酯酶活性。  【结果】  1) 与1991年原始土壤相比,除CK的全硫和有机硫含量显著降低外,其余处理均显著增加,且土壤全硫含量除M和NPKS处理间差异不显著外,其他处理间均差异显著,由高到低为MNPKS > SNPKS > M和NPKS > F > SNPKCl。土壤有机硫在全硫中的占比也发生了变化,CK处理中有机硫含量显著下降,其他处理均显著增加 (P < 0.05)。MNPKS和SNPKS处理有机硫含量增加最多,但是MNPKS处理有机硫在全硫中的占比只有73.3%,而SNPKS为92.2%。另外,M和F处理有机硫含量差异不显著,但都显著高于SNPKCl和NPKS处理 (P < 0.05)。SNPKCl处理的有机硫含量虽然显著低于MNPKS、SNPKS、M和F处理,但有机硫的占比 (90.3%) 与SNPKS处理相当,而NPKS处理的有机硫含量虽然高于CK和初始土壤,但显著低于F处理和含有机肥处理的土壤 (P < 0.05)。2) 与CK相比,其他施肥处理0—20 cm土层中碳键硫、酯键硫、残渣态硫含量均有所增加,且不同施肥处理之间差异达到显著水平。与初始土壤相比,包括F在内的所有处理中碳键硫和酯键硫含量增加,其中MNPKS处理的碳键硫的增加量显著高于其他处理,增加了31.1 mg/kg;酯键硫增加量最大的处理是SNPKS,增加了37.05 mg/kg;而残渣态硫除MNPKS处理增加了52.2 mg/kg和F处理增加了11.65 mg/kg外,其余处理均减少,以CK减少最多 (46.62 mg/kg)。3) 与初始土壤相比,土壤芳基硫酸酯酶的活性除SNPKCl处理减少了 8.19 μg/(mL?h)和F处理减少了7.80 μg/(mL?h)外,其余处理都有不同程度的增加,增加最大的处理是SNPKS,增加了37.77 μg/ (mL?h),其次是M处理,增加了33.91 μg/ (mL?h)。  【结论】  长期施用化肥、有机肥、化肥与有机肥配施都显著增加了紫色土壤有机硫中碳键硫、酯键硫的含量,降低了残渣态硫含量,因而显著提高了硫的有效性。不施肥,不论是否休闲,均降低土壤中有机硫的有效性。含氯化肥也能提高土壤硫的有效性,并且含氯化肥与有机肥配合施入土壤,一定程度上提高了有机硫的比例。但长期施用含氯化肥会降低芳基硫酸酯酶活性,在施肥的时候尤其是长期施入含氯化肥,应该密切关注土壤中pH的变化问题。  相似文献   

10.
【目的】本文研究添加不同种类硝化抑制剂的高效稳定性氯化铵氮肥在黑土中的施用效果,旨在筛选出适合旱作黑土的高效稳定性氯化铵态氮肥。【方法】在氯化铵中分别添加硝化抑制剂3,4-二甲基吡唑磷酸盐 (DMPP)、双氰胺 (DCD)、2-氯-6-三甲基吡啶 (Nitrapyrin,CP)、氨保护剂 (N-GD) 和1种氮肥增效剂 (HFJ) 及其组合,制成9种稳定性氯化铵氮肥。以不施氮肥 (CK) 和施普通氯化铵 (CK-N) 为对照,以9种稳定性氯化铵为处理进行了等氮量盆栽试验。在玉米苗期、大喇叭口期、灌浆期和成熟期测定了土壤中铵态氮和硝态氮含量,在玉米成熟期测定植株生物量、籽粒产量和氮素含量,计算铵态氮肥的表观硝化率、硝化抑制率、氮肥农学效率、氮肥偏生产力。【结果】1) 与CK-N处理相比,9个处理均显著提高玉米的产量,HFJ的效果均为最显著,可增加玉米籽粒产量3.99倍,提高氮肥吸收利用率4.98倍,显著高于8个硝化抑制剂处理 (P < 0.05)。CP + DMPP和CP + DCD处理提高玉米籽粒产量1.90~2.11倍,两个处理之间无显著差异;CP + DMPP玉米生物量显著高于CP处理,而与DMPP和DCD处理无显著差异;CP + DMPP玉米氮肥吸收利用率显著高于CP和DMPP处理,显著提高3.71倍 (P < 0.05);2) CP + DMPP和CP + DCD土壤中铵态氮含量提高2.09~2.42倍,且显著高于CP、DMPP和DCD处理 (P < 0.05),而硝态氮含量和土壤表观硝化率均显著降低24%和66%~68%,与CP和DCD处理存在显著差异 (P < 0.05);苗期CP + DMPP和CP + DCD硝化抑制率高达23.9%~24.3%,显著高于CP和DCD (P < 0.05)。【结论】在黑土中,氯化铵中添加硝化抑制剂组合的硝化抑制率显著高于添加单一抑制剂,能够有效减缓土壤中铵态氮向硝态氮的转化,减少土壤中氮素损失,降低环境污染。CP + DMPP组合玉米的氮肥吸收利用率显著高于CP + DCD组合。氮肥增效剂HFJ显著增加玉米的氮素吸收量,提高氮肥利用率,从而使玉米获得高产并获得较高的收获指数和经济系数。因此,综合考虑产量和抑制硝化作用等因素,黑土区氯化铵作为玉米生产用氮肥时,建议首选添加氮肥增效剂HFJ来保证作物的高产和氮肥高利用率,也可以添加硝化抑制剂组合CP + DMPP,或者CP + DCD制备稳定性氯化铵来提高氯化铵的增产效果和氮肥利用率,减少氮素损失,降低环境污染。  相似文献   

11.
根据氮肥施入土壤后的转化特性进行氮肥的高效调控和管理是提高氮肥利用效率、缓解氮肥污染的重要措施。为探究不同氮肥在石灰性潮土中的转化特性差异及硫代硫酸铵(ammonium thiosulfate,ATS)作为氮肥调控剂对尿素氮转化的影响,该研究采用室内土壤培养(土壤水分含量为田间持水量的60%,温度25 ℃)试验方法,以尿素、硫酸铵、氯化铵和ATS作为供试肥料,比较4种氮肥施入石灰性潮土后的转化特性差异,并以ATS作为氮素调控剂,以单施尿素作为对照,探究尿素配施不同用量ATS对尿素氮转化的影响。结果表明,4种供试氮肥在石灰性潮土中的转化过程明显不同。尿素在石灰性潮土中的水解速率最快,硝化作用强度也最高,硫酸铵其次;氯化铵由于Cl-的硝化抑制作用,土壤表观硝化率在7~21 d显著低于尿素和硫酸铵(P<0.05);ATS施入土壤后,NH4+-N转化为NO2--N的速率最高,而NO2--N转化为NO3--N的速率最低,NH4+-N在土壤中的存留时间最长,出现峰值之后也一直保持最高的含量,表观硝化率最低。将ATS作为氮素调控剂与尿素配合施用,当其用量在60 mg/kg(含S量)以上时,既表现出了明显的抑制尿素水解的作用效果,也表现出了显著的硝化抑制作用( P <0.05),且随着ATS用量的增加,抑制效应明显增强。这对于减少氮素损失,提高氮肥利用效率具有积极意义。但供试4种氮肥施入土壤后均出现了亚硝酸盐的累积,其中ATS处理的累积量显著高于尿素、硫酸铵和氯化铵(P<0.05),累积持续时间也最长。ATS作为氮素调控剂调控氮素转化,也出现了类似的结果,且随着ATS用量增加,亚硝酸盐在土壤中存留时间明显延长,含量和峰值明显提高,出现峰值的时间也明显延后。  相似文献   

12.
烤烟钾素库源关系生理调控措施研究   总被引:8,自引:2,他引:8  
在大田生产条件下 ,采用单株挂牌设置处理的研究方法 ,研究涂抹生长素与其它不同生长调节剂和烟株顶端调控等措施对烤烟钾吸收及其在库源中再分配的影响。结果表明 ,现蕾后不打顶或打顶结合生长素处理茎断面均有利于不同部位叶片含钾量的提高 ,以打顶结合涂抹生长素效果更好 ;内源生长素和外源生长素都有利于烟株体内的钾素向叶片中分配 ,其中外源生长素的活性更强 ,能更有效地提高烟株叶片的含钾量 ,且涂抹 2次比涂抹 1次的效果好 ,但涂抹次数间差异不显著。  相似文献   

13.
针对黄土高原旱作区糜子生产中氮肥种类单一、肥料利用效率低的问题,本试验以当地习惯施氮尿素N 120kg/hm2(TN)为对照,设置控释氮肥N 120kg/hm2(T1)、108kg/hm2(T2)、96kg/hm2(T3)、84kg/hm2(T4)、72kg/hm2(T5)和不施肥(T0)七个处理,探究不同控释氮肥处理下土壤全氮、微生物量氮、硝态氮和铵态氮含量的变化规律,分析糜子成熟期氮素积累分配、氮素利用效率及产量对控释氮肥的响应,以期为建立旱地糜子控释氮肥一次性基施轻简栽培技术提供支撑。结果表明:与施用尿素相比,等量控释氮肥可以提高糜子抽穗期和成熟期土壤全氮、微生物量氮、硝态氮和铵态氮含量分别达0.38%~5.51%、1.76%~7.63%、5.41%~11.80%和4.04%~14.77%,其中硝态氮和铵态氮含量两年均显著高于TN,随着控释氮肥减量糜子田各形态氮素均呈降低趋势,减氮量达20%以上时土壤硝态氮和铵态氮含量均显著低于TN处理。施用控释氮肥可以提高糜子成熟期氮素积累量1.97%~3.21%,增加糜子氮素向籽粒中的分配比例0.55%~1.18%,控释氮肥减量20%以上时糜子氮素积累量显著低于尿素全量基施处理。与普通尿素相比,控释氮肥提高了糜子氮肥表观利用率、氮肥偏生产力及氮肥农学利用率,增幅分别为3.29%~4.59%、3.88%~4.14%和5.01%~7.63%,其中氮肥偏生产力处理间差异达显著水平,随着控释氮肥减量糜子氮肥表观利用率、氮肥偏生产力及氮肥农学利用率均呈上升趋势。施用控释氮肥通过增加单位面积穗数和穗重显著提高了糜子产量两年分别达3.88%和4.47%,控释氮肥减量20%以下时糜子产量与尿素差异不显著。相关性分析结果表明,糜子氮素积累量与产量呈极显著正相关,氮素利用效率指标与土壤硝态氮含量相关性最强。综上所述,施用控释氮肥较尿素可显著提高糜子生育中后期土壤供氮能力,促进糜子对氮素的吸收利用进而增加产量,且在适量减氮20%时并未显著降低糜子产量,因此控释氮肥在糜子生产中有较大的应用前景及减氮潜力。  相似文献   

14.
小麦苗期施入氮肥在土壤不同氮库的分配和去向   总被引:7,自引:2,他引:7  
应用盆栽试验和15N标记技术研究了小麦苗期施入N肥后土壤不同N库的动态。结果表明 ,施肥后 28d ,作物所吸收的土壤N占总吸N量的 58.1% ,吸收的肥料N占 41.9%。作物对肥料N的利用率达到 55.3% ,N肥在土壤中的残留率为 24.3% ,损失率为 20.4%。施肥后短期以NH4+-4 N存在的肥料N占施N量的 50.5% ,随着硝化作用的进行和作物的吸收 ,土壤中的NH4+-N显著下降。NO3--N在第 7d达到高峰 ,表现为先升高后降低的趋势 ,说明施肥后在 7d以前有强烈的硝化作用发生。施肥后 2d ,以固定态铵存在的肥料N占 33.7% ,至 28d ,仅占施入N量的 2.4% ,说明前期固定的铵在作物生长后期又重新释放出来供作物吸收。在施肥后第 7d ,肥料N以微生物N存在的量占施肥量的 15.2% ;至 28d来自肥料N的微生物N也几乎被耗竭 ,仅占施N量的 2.4%。随作物生长 ,肥料N在各个土壤N库中的数量均显著下降。在其它N库几乎被耗竭的情况下 ,至施肥后 28d主要以有机N的形式残留。在不种作物的条件下 ,土壤N素的矿化量很低 ,作物的吸收作用导致土壤有机N库不断矿化 ,施入N肥后 ,土壤N素的矿化量增加 ,表现为明显的正激发效应  相似文献   

15.
土壤残留氮是不容忽视的土壤氮素资源.通过田间小区试验研究了土壤高残留氮下不同施氮量(0、80、160、240和320 kg/hm2)对夏玉米土壤硝态氮积累、氮素平衡、氮素利用及产量的影响,分析了夏玉米的经济效益.结果表明,土壤剖面硝态氮积累量随施氮量的增加而增加,且施氮处理硝态氮积累量显著高于不施氮处理;各施氮处理土壤硝态氮在0-60 cm土层含量最高,在0--180 cm剖面呈先减少后增加的变化趋势.不施氮处理夏玉米收获后土壤无机氮残留量高达378 kg/hm2,随施氮量的增加,无机氮残留和氮表观损失显著增加.作物吸氮量、氮表观损失量与总氮输入量呈显著正相关,总氮输入量每增加l kg作物吸氮量增加0.156 kg,而表观损失量增加0.369 kg,是作物吸氮量的2.4倍.高残留氮土壤应严格控制氮肥用量,以免造成氮素资源的大量浪费.夏玉米籽粒吸氮量随施氮量的增加呈增加的趋势,氮收获指数呈降低的趋势.氮肥农学效率、氮肥生理利用率、氮肥利用率和氮素利用率在施氮量80 kg/hm2时最高,随施氮量的增加降低;增施氮肥能降低高残留氮土壤中氮肥的增产效果和利用率.综合考虑产量、氮素利用和环境效应,N 80 kg/hm2是氮素高残留土壤上玉米的合理施氮量.  相似文献   

16.
Imbalanced application of nitrogen (N) and phosphorus (P) fertilizers can result in reduced crop yield, low nutrient use efficiency, and high loss of nutrients and soil nitrate nitrogen (NO3--N) accumulation decreases when N is applied with P and/or manure; however, the effect of applications of N with P and/or manure on root growth and distribution in the soil profile is not fully understood. The aim of this study was to investigate the combined effects of different N and P fertilizer application rates with or without manure on maize (Zea mays L.) yield, N uptake, root growth, apparent N surplus, Olsen-P concentration, and mineral N (Nmin) accumulation in a fluvo-aquic calcareous soil from a long-term (28-year) experiment. The experiment comprised twelve combinations of chemical N and P fertilizers, either with or without chicken manure, as treatments in four replicates. The yield of maize grain was 82% higher, the N uptake 100% higher, and the Nmin accumulation 39% lower in the treatments with combined N and P in comparison to N fertilizer only. The maize root length density in the 30--60 cm layer was three times greater in the treatments with N and P fertilizers than with N fertilizer only. Manure addition increased maize yield by 50% and N uptake by 43%, and reduced Nmin (mostly NO3--N) accumulation in the soil by 46%. The long-term application of manure and P fertilizer resulted in significant increases in soil Olsen-P concentration when no N fertilizer was applied. Manure application reduced the apparent N surplus for all treatments. These results suggest that combined N and P fertilizer applications could enhance maize grain yield and nutrient uptake via stimulating root growth, leading to reduced accumulation of potentially leachable NO3--N in soil, and manure application was a practical way to improve degraded soils in China and the rest of the world.  相似文献   

17.
不同管理方式对夏玉米氮素吸收、分配及去向的影响   总被引:3,自引:5,他引:3  
【目的】本文利用15N同位素示踪技术探讨传统(CT)和优化(YH)两种管理方式对夏玉米氮素吸收、分配及去向的影响。分析目标产量下化肥氮的变化,解析夏玉米花前、花后氮素利用及转移规律,探讨肥料氮、土壤氮与作物氮之间的关系,为该地区夏玉米的科学合理施氮提供合理依据。【方法】在传统和优化两种管理方式定位试验中设置15N微区,采用将15N标记的尿素表施的方法,分析植株和土壤样品。新鲜土壤用1 mol/L KCl浸提,滤液用TRACCS 2000型流动分析仪测定土壤的NH+4-N和NO-3-N含量。15N标记的土壤和植物全氮的测定用烘干样(过0.15 mm筛),然后用美国THERMO finnigan公司生产的稳定同位素质谱仪DeltaplusXP进行测定。【结果】在该试验条件下,优化方式下夏玉米籽粒产量和总吸氮量显著高于传统方式,分别增加12%和10%。作物收获后,优化方式的15N吸收量及利用率显著高于传统方式,利用率分别为20.81%、32.54%。夏玉米各器官中氮素的积累量和向籽粒中的转移量土壤氮显著高于肥料氮,传统方式籽粒中氮素的57.73%、优化方式籽粒中氮素的45.15%来自各器官的转移,近一半的氮素是在花后积累的,基施高氮对作物生长作用不大。开花期土壤表层硝态氮含量传统方式显著高于优化方式,收获后有所降低,而土壤深层含量明显增加,有向下淋洗的趋势。夏玉米收获后,传统方式各土层的原子百分超均高于优化方式,而且在20—40 cm处出现了明显的15N累积峰,与开花期相比,40 cm以下土层的原子百分超明显增大,氮肥随水向下淋洗强烈。夏玉米收获后传统方式土壤氮素残留率高达56.18%,表现为土壤残留损失作物吸收;优化方式则表现为土壤残留作物吸收损失。【结论】在优化方式中夏玉米施氮量为N 185 kg/hm2时,玉米达到高产水平且氮肥的利用率高。适当减少施氮量及增加后期追肥次数可实现夏玉米的高产和肥料的高效利用。  相似文献   

18.
华北山前平原农田生态系统氮通量与调控   总被引:4,自引:2,他引:2  
针对华北太行山前平原冬小麦-夏玉米轮作农田, 研究农田常规施肥[400 kg(N)·hm-2·a-1]条件下作物氮素吸收与损失通量过程, 并根据各氮素输出通量特征开展管理调控。研究结果表明, 全年小麦-玉米轮作农田系统氮输入总量为561~580 kg(N)·hm-2, 输出量468~494 kg(N)·hm-2, 两季作物总盈余86~93 kg(N)·hm-2, 其中有机氮为24~36 kg·hm-2。氨挥发和NO3--N 淋溶损失是该区域农田氮素损失的主要途径, 是氮肥利用率低的重要原因。平均每年因氨挥发而造成的肥料氮损失量为60 kg(N)·hm-2, NO3--N 淋溶损失量为47~84kg(N)·hm-2, 两者占施肥总量的30%。每年因硝化-反硝化过程造成的肥料损失很小, 仅为5.0~8.7 kg(N)·hm-2。通过施肥后适时灌水、合理调控灌水时间与用量, 以及利用秸秆还田与肥料混合施用等管理措施可改善氮素的迁移和转化规律, 有效减少氨挥发和NO3--N 淋溶损失, 并结合缓/控释肥与精准施肥技术, 充分利用土壤本身矿质氮素, 可有效提高养分利用效率和作物产量, 改善农田生态环境与促进农业持续和谐发展。  相似文献   

19.
华北山前平原典型厚包气带硝态氮分布累积规律   总被引:5,自引:1,他引:4  
梁慧雅  王仕琴  魏守才 《土壤》2017,49(6):1179-1186
包气带是连接大气层和含水层水分和养分转换的纽带,也是农田NO_3~–-N分布和累积的重要场所和向含水层淋失的通道,因此研究包气带土壤中NO_3~–-N的分布累积规律对防止地下水NO_3~–-N污染至关重要。本文以中国科学院栾城试验站典型的厚包气带为对象,在无施肥处理(N0)和施氮肥600 kg/(hm~2·a)(N600)两种处理的多年试验田中,利用Geoprobe获取0~10.5 m深度土壤样品,研究厚包气带NO_3~–-N垂向分布、累积规律,并分析其影响因素。结果表明:N0中NO_3~–-N基本保持不变,长年施氮肥600 kg/(hm~2·a)使得NO_3~–-N淋溶至10.5 m,并在深层包气带中形成累积,累积的峰值由土壤的质地和含水量决定;NO_3~–-N的分布和累积主要受水分运移、土壤质地和反硝化作用影响。  相似文献   

20.
The point at which nitrogen (N) applied approaches 100% recovery in the soil once plant and microbial sinks have been saturated has not been determined in winter wheat (Triticum aestivum L.) production systems. In dryland winter wheat, subsoil accumulation has not been found to occur until N rates exceed that required for maximum yield. Many conventional N rate experiments have not properly evaluated subsoil N accumulation due to the lack of equally spaced N rates at the high end of the spectrum over which accumulation is expected to occur. Therefore, the objectives of this study were to (i) determine when soil profile accumulation efficiencies reach 100% in continuous winter wheat production and (ii) to evaluate the potential for nitrate‐nitrogen (NO3 N) leaching in continuous winter wheat when extremely high rates of fertilizer N are used. Two field experiments (T505 and T222) were conducted for two years using ten N rates (preplant‐incorporated) ranging from 0 to 5376 kg N ha1. No additional preplant fertilizer was applied in the second year. Following the first and second year wheat harvest, soil cores were taken to 2.4 m and bulk density, ammonium‐nitrogen (NH4‐N) and NO3‐N were determined. Crop N‐use efficiency (NUE) (N uptake treated ‐ N uptake check/rate applied) and soil profile inorganic N accumulation efficiencies (NAE) [net inorganic N accumulation in the soil profile/(fertilizer applied ‐ net N removed in the crop)] changed with fertilizer rate and were inversely related. Priming (increased net mineralization of organic N pools when low rates of fertilizer N are applied) may have occurred since increased NUE was observed at low N rates. The highest N‐accumulation efficiencies were at N rates of 168 and 448 kg ha‐1 in experiments T505 and T222, respectively. At both T222 and T505, no subsoil accumulation of NH4‐N or NO3‐N beyond 100 cm was observed for any of the N treatments when compared to the 0‐N check, even when N rates exceeded 448 kg ha‐1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号