首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Spatially resolved measurements of intracellular free calcium and of the changes produced by excitatory amino acids were made in neurons isolated from adult mammalian brain. Extremely long-lasting (minutes) Ca2+ gradients were induced in the apical dendrites of hippocampal CA1 neurons after brief (1 to 3 seconds), local application of either glutamate or N-methyl-D-aspartate (NMDA). These gradients reflect the continuous flux of Ca2+ into the dendrite. The sustained gradients, but not the immediate transient response to the agonists, were prevented by prior treatment with the protein kinase C inhibitor sphingosine. Expression of the long-lasting Ca2+ gradients generally required a priming or conditioning stimulus with the excitatory agonist. The findings demonstrate a coupling between NMDA receptor activation and long-lasting intracellular Ca2+ elevation that could contribute to certain use-dependent modifications of synaptic responses in hippocampal CA1 neurons.  相似文献   

2.
对近年来研究较多的神经元在动物下丘脑各个神经核中的分布情况作了介绍,指出神经元在下丘脑各个神经核均有分布,甚至有几种神经元同时分布在某些神经核中,视上核(SON)、室旁核(PVN)及弓状核(ARC)是多种神经元集中分布的主要神经核,为进一步研究下丘脑的生理功能提供了形态学资料。  相似文献   

3.
In situ hybridization of an oligonucleotide probe complementary to vasopressin messenger RNA (mRNA) in sections from normal or Brattleboro rat hypothalami revealed hybridization densities in each of three vasopressin-rich nuclei: the supraoptic, paraventricular, and suprachiasmatic. When entrained to a daily light-dark cycle, each rat strain displayed diurnal variation in hybridizable mRNA in the suprachiasmatic, but not in the supraoptic or paraventricular nuclei. The higher values for suprachiasmatic mRNA in the morning correlate well with previously elucidated morning increases in vasopressin immunoreactivity in the cerebrospinal fluid. These results support the utility of in situ hybridization techniques for elucidating physiological influences on regional peptidergic function, are consistent with a prominent role for vasopressinergic suprachiasmatic neurons in generating the cerebrospinal fluid vasopressin rhythm, and suggest that regulation of this mRNA rhythm is not dependent on release of intact peptide.  相似文献   

4.
Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists   总被引:87,自引:0,他引:87  
The N-methyl-D-aspartate (NMDA)-subtype of glutamate receptors has been well described as a result of the early appearance of NMDA antagonists, but no potent antagonist for the "non-NMDA" glutamate receptors has been available. Quinoxalinediones have now been found to be potent and competitive antagonists at non-NMDA glutamate receptors. These compounds will be useful in the determination of the structure-activity relations of quisqualate and kainate receptors and the role of such receptors in synaptic transmission in the mammalian brain.  相似文献   

5.
Glutamate activates a number of different receptor-channel complexes, each of which may contribute to generation of excitatory postsynaptic potentials in the mammalian central nervous system. The rapid application of the selective glutamate agonist, quisqualate, activates a large rapidly inactivating current (3 to 8 milliseconds), which is mediated by a neuronal ionic channel with high unitary conductance (35 picosiemens). The current through this channel shows pharmacologic characteristics similar to those observed for the fast excitatory postsynaptic current (EPSC); it reverses near 0 millivolts and shows no significant voltage dependence. The amplitude of the current through this channel is many times larger than that through the other non-NMDA (N-methyl-D-aspartate) channels. These results suggest that this high-conductance quisqualate-activated channel may mediate the fast EPSC in the mammalian central nervous system.  相似文献   

6.
Vesicular glutamate transporters (VGLUTs) 1 and 2 show a mutually exclusive distribution in the adult brain that suggests specialization for synapses with different properties of release. Consistent with this distribution, inactivation of the VGLUT1 gene silenced a subset of excitatory neurons in the adult. However, the same cell populations exhibited VGLUT1-independent transmission early in life. Developing hippocampal neurons transiently coexpressed VGLUT2 and VGLUT1 at distinct synaptic sites with different short-term plasticity. The loss of VGLUT1 also reduced the reserve pool of synaptic vesicles. Thus, VGLUT1 plays an unanticipated role in membrane trafficking at the nerve terminal.  相似文献   

7.
Monosodium glutamate was injected subcutaneously in infant rats of both sexes. The lateral preoptic and arcuate nuclei and median eminence were examined by light and electron microscopy for possible monosodium glutamate effects. As adults, treated animals showed no adverse monosodium glutamate effects on the reproductive system and neural morphology.  相似文献   

8.
[目的]研究催产素(OT)在广西本地水牛下丘脑、垂体及卵巢的分布,进而了解OT在下丘脑、垂体及卵巢三者之间分泌释放途径。[方法]采用免疫组织化学SuperPicTureTM二步法检测5头广西本地水牛的下丘脑、垂体和卵巢中催产素(OT)的分布情况。[结果]下丘脑中分泌OT的神经元主要分布在弓状核、视上核及室旁核,在腹内侧核、腹外侧核、交叉上核、背内侧核、乳头体、下丘脑前核等核团也有一定数量的阳性神经元;在腺垂体发现OT免疫反应阳性产物,自垂体柄和正中隆起的一侧可见平行排列的OT阳性神经纤维断续地延伸至神经部;卵巢中只在生殖上皮、卵泡颗粒细胞和黄体细胞发现有大量OT免疫阳性产物。[结论]首次发现OT存在于广西本地水牛下丘脑-垂体-卵巢轴的各个环节,并且下丘脑中各主要核团均有OT免疫阳性神经元的分布,尤其以弓状核、视上核、室旁核分布最多,为进一步研究OT的合成和作用机制提供形态学依据,并对广西本地水牛的繁殖育种及泌乳起到一定的参考指导作用。  相似文献   

9.
Exposure of cultures of cortical cells from mouse to either of the endogenous excitatory neurotoxins quinolinate or glutamate resulted in widespread neuronal destruction; but only in the cultures exposed to quinolinate, an N-methyl-D-aspartate agonist, was there a striking preservation of the subpopulation of neurons containing the enzyme nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d). Further investigation revealed that neurons containing NADPH-d were also resistant to the toxicity of N-methyl-D-aspartate itself but were selectively vulnerable to the toxicity of either kainate or quisqualate. Thus, neurons containing NADPH-d may have an unusual distribution of receptors for excitatory amino acids, with a relative lack of N-methyl-D-aspartate receptors and a relative preponderance of kainate or quisqualate receptors. Since selective sparing of neurons containing NADPH-d is a hallmark of Huntington's disease, the results support the hypothesis that the disease may be caused by excess exposure to quinolinate or some other endogenous N-methyl-D-aspartate agonist.  相似文献   

10.
Albino mice injected with monosodium glutamate developed brain lesions in the arcuate nucleus of the hypothalamus. Lesions involved primarily microglial cells with no effect to the perikarya of neurons. Distal neuronal processes were only slightly affected.  相似文献   

11.
Analysis of excitatory synaptic transmission in the rat hypothalamic supraoptic nucleus revealed that glutamate clearance and, as a consequence, glutamate concentration and diffusion in the extracellular space, is associated with the degree of astrocytic coverage of its neurons. Reduction in glutamate clearance, whether induced pharmacologically or associated with a relative decrease of glial coverage in the vicinity of synapses, affected transmitter release through modulation of presynaptic metabotropic glutamate receptors. Astrocytic wrapping of neurons, therefore, contributes to the regulation of synaptic efficacy in the central nervous system.  相似文献   

12.
Coordinate hormonal and synaptic regulation of vasopressin messenger RNA   总被引:3,自引:0,他引:3  
Previous studies have shown that adrenalectomy augments arginine vasopressin (AVP) messenger RNA levels in the adult paraventricular nucleus. It is now demonstrated that unilateral lesions in the lateral septal nucleus enhance the adrenalectomy-induced expression of AVP mRNA. This effect was entirely ipsilateral to the lesion and most prominent in the rostral paraventricular nucleus and related nuclei. Moreover, AVP and AVP mRNA were found to be colocalized with oxytocin in a few neurons. These results indicate that mRNA expression is modulated by synaptic influences and raise the possibility that synaptically mediated selection of neuronal phenotypes is a dynamic feature of the mature central nervous system.  相似文献   

13.
The fat-derived hormone leptin regulates energy balance in part by modulating the activity of neuropeptide Y and proopiomelanocortin neurons in the hypothalamic arcuate nucleus. To study the intrinsic activity of these neurons and their responses to leptin, we generated mice that express distinct green fluorescent proteins in these two neuronal types. Leptin-deficient (ob/ob) mice differed from wild-type mice in the numbers of excitatory and inhibitory synapses and postsynaptic currents onto neuropeptide Y and proopiomelanocortin neurons. When leptin was delivered systemically to ob/ob mice, the synaptic density rapidly normalized, an effect detectable within 6 hours, several hours before leptin's effect on food intake. These data suggest that leptin-mediated plasticity in the ob/ob hypothalamus may underlie some of the hormone's behavioral effects.  相似文献   

14.
2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX) is an analog of the quinoxalinedione antagonists to the non-N-methyl-D-aspartate (non-NMDA) glutamate receptor. NBQX is a potent and selective inhibitor of binding to the quisqualate subtype of the glutamate receptor, with no activity at the NMDA and glycine sites. NBQX protects against global ischemia, even when administered 2 hours after an ischemic challenge.  相似文献   

15.
Brain injury induced by fluid percussion in rats caused a marked elevation in extracellular glutamate and aspartate adjacent to the trauma site. This increase in excitatory amino acids was related to the severity of the injury and was associated with a reduction in cellular bioenergetic state and intracellular free magnesium. Treatment with the noncompetitive N-methyl-D-aspartate (NMDA) antagonist dextrophan or the competitive antagonist 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid limited the resultant neurological dysfunction; dextrorphan treatment also improved the bioenergetic state after trauma and increased the intracellular free magnesium. Thus, excitatory amino acids contribute to delayed tissue damage after brain trauma; NMDA antagonists may be of benefit in treating acute head injury.  相似文献   

16.
We found that, in the mouse visual cortex, action potentials generated in a single layer-2/3 pyramidal (excitatory) neuron can reliably evoke large, constant-latency inhibitory postsynaptic currents in other nearby pyramidal cells. This effect is mediated by axo-axonic ionotropic glutamate receptor-mediated excitation of the nerve terminals of inhibitory interneurons, which connect to the target pyramidal cells. Therefore, individual cortical excitatory neurons can generate inhibition independently from the somatic firing of inhibitory interneurons.  相似文献   

17.
The motor abnormalities of Parkinson's disease (PD) are caused by alterations in basal ganglia network activity, including disinhibition of the subthalamic nucleus (STN), and excessive activity of the major output nuclei. Using adeno-associated viral vector-mediated somatic cell gene transfer, we expressed glutamic acid decarboxylase (GAD), the enzyme that catalyzes synthesis of the neurotransmitter GABA, in excitatory glutamatergic neurons of the STN in rats. The transduced neurons, when driven by electrical stimulation, produced mixed inhibitory responses associated with GABA release. This phenotypic shift resulted in strong neuroprotection of nigral dopamine neurons and rescue of the parkinsonian behavioral phenotype. This strategy suggests that there is plasticity between excitatory and inhibitory neurotransmission in the mammalian brain that could be exploited for therapeutic benefit.  相似文献   

18.
We report a signaling mechanism in rats between mother and fetus aimed at preparing fetal neurons for delivery. In immature neurons, gamma-aminobutyric acid (GABA) is the primary excitatory neurotransmitter. We found that, shortly before delivery, there is a transient reduction in the intracellular chloride concentration and an excitatory-to-inhibitory switch of GABA actions. These events were triggered by oxytocin, an essential maternal hormone for labor. In vivo administration of an oxytocin receptor antagonist before delivery prevented the switch of GABA actions in fetal neurons and aggravated the severity of anoxic episodes. Thus, maternal oxytocin inhibits fetal neurons and increases their resistance to insults during delivery.  相似文献   

19.
Expression of c-fos protein in brain: metabolic mapping at the cellular level   总被引:61,自引:0,他引:61  
The proto-oncogene c-fos is expressed in neurons in response to direct stimulation by growth factors and neurotransmitters. In order to determine whether the c-fos protein (Fos) and Fos-related proteins can be induced in response to polysynaptic activation, rat hindlimb motor/sensory cortex was stimulated electrically and Fos expression examined immunohistochemically. Three hours after the onset of stimulation, focal nuclear Fos staining was seen in motor and sensory thalamus, pontine nuclei, globus pallidus, and cerebellum. Moreover, 24-hour water deprivation resulted in Fos expression in paraventricular and supraoptic nuclei. Fos immunohistochemistry therefore provides a cellular method to label polysynaptically activated neurons and thereby map functional pathways.  相似文献   

20.
电压门控钠离子通道对于脊椎动物脑神经起始、传播动作电位具有重要作用。为了解斑马鱼电压门控钠离子通道基因scn1Laa在脑神经中的作用,通过CRISPR/Cas9基因编辑技术,首次构建了可稳定遗传的生长没有受明显影响的scn1Laa缺陷型(scn1Laa-/-)斑马鱼家系。相比野生型,5 dpf(days post-fertilization,受精后5天)scn1Laa缺陷型斑马鱼兴奋抑制性神经元(氨基丁酸类神经元)表达相对增加,兴奋类神经元(谷氨酸能类神经元)和成熟神经元显著减少,脑部细胞增殖也显著减少。受精后5天和90 天的 scn1Laa缺陷型斑马鱼的运动较同时期野生型斑马鱼更为活跃,受精后90天的 scn1Laa缺陷型斑马鱼的运动具有明显的爆发性。以上结果表明,scn1laa缺失导致兴奋类神经元(谷氨酸能类神经元)以及神经细胞增殖减少,影响脑周围神经放电,导致运动神经调节障碍,出现运动行为异常活跃。即电压门控钠离子通道基因scn1Laa参与斑马鱼脑神经发育和生长,间接参与运动行为调节。同时本文也为进一步探究电压门控钠离子通道在脑神经中的作用奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号