首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 578 毫秒
1.
基于改进YOLOv4-Tiny的蓝莓成熟度识别方法   总被引:3,自引:2,他引:1  
为实现自然环境下蓝莓果实成熟度的精确快速识别,该研究对YOLOv4-Tiny网络结构进行改进,提出一种含有注意力模块的目标检测网络(I-YOLOv4-Tiny)。该检测网络采用CSPDarknet53-Tiny网络模型作为主干网络,将卷积注意力模块(Convolution Block Attention Module,CBAM)加入到YOLOv4-Tiny网络结构的特征金字塔(Feature Pyramid Network,FPN)中,通过对每个通道的特征进行权重分配来学习不同通道间特征的相关性,加强网络结构深层信息的传递,从而降低复杂背景对目标识别的干扰,且该检测网络的网络层数较少,占用内存低,以此提升蓝莓果实检测的精度与速度。对该研究识别方法进行性能评估与对比试验的结果表明,经过训练的I-YOLOv4-Tiny目标检测网络在验证集下的平均精度达到97.30%,能有效地利用自然环境中的彩色图像识别蓝莓果实并检测果实成熟度。对比YOLOv4-Tiny、YOLOv4、SSD-MobileNet、Faster R-CNN目标检测网络,该研究在遮挡与光照不均等复杂场景中,平均精度能达到96.24%。平均检测时间为5.723 ms,可以同时满足蓝莓果实识别精度与速度的需求。I-YOLOv4-Tiny网络结构占用内存仅为24.20 M,为采摘机器人与早期产量预估提供快速精准的目标识别指导。  相似文献   

2.
针对目前苹果在复杂环境下难以进行生长状态分类识别、姿态信息同步获取等问题,该研究提出了一种基于改进YOLOv7的苹果生长状态分类和果实姿态融合识别方法。首先改进多尺度特征融合网络,在骨干网络中增加160×160的特征尺度层,用于增强模型对微小局部特征的识别敏感度;其次引入注意力机制CBAM(convolutional block attention module),改善网络对输入图片的感兴趣目标区域的关注度;最后采用Soft-NMS算法,能够有效避免高密度重叠目标被一次抑制从而发生漏检现象。此外,结合UNet分割网络和最小外接圆及矩形特征获取未遮挡苹果姿态。试验结果表明,改进YOLOv7的识别精确率、召回率和平均识别精度分别为86.9%、80.5%和87.1%,相比原始YOLOv7模型分别提高了4.2、2.2和3.7个百分点,另外苹果姿态检测方法的准确率为94%。该文模型能够实现苹果生长状态分类及果实姿态识别,可为末端执行器提供了抓取方向,以期为苹果无损高效的采摘奠定基础。  相似文献   

3.
快速精准识别棚内草莓的改进YOLOv4-Tiny模型   总被引:5,自引:5,他引:0  
为了实现棚内草莓果实的快速精准识别,该研究提出一种基于改进YOLOv4-Tiny的草莓检测模型。首先,为了大幅度减少模型计算量,采用轻量型网络GhostNet作为特征提取网络,并在GhostBottleneck结构中嵌入卷积注意力模块以加强网络的特征提取能力;其次,在颈部网络中添加空间金字塔池化模块和特征金字塔网络结构,融合多尺度特征提升小目标草莓的检测效果;最后,采用高效交并比损失作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进YOLOv4-Tiny模型权重大小仅为4.68 MB,平均每幅图片的检测时间为5.63 ms,在测试集上的平均精度均值达到92.62%,相较于原YOLOv4-Tiny模型提升了5.77个百分点。与主流的目标检测模型SSD、CenterNet、YOLOv3、YOLOv4和YOLOv5s相比,改进YOLOv4-Tiny模型平均精度均值分别高出9.11、4.80、2.26、1.22、1.91个百分点,并且模型权重大小和检测速度方面均具有绝对优势,该研究可为后续果实智能化采摘提供技术支撑。  相似文献   

4.
为提高复杂果园环境下苹果检测的综合性能,降低检测模型大小,通过对单阶段检测网络YOLOX-Tiny的拓扑结构进行了优化与改进,提出了一种适用于复杂果园环境下轻量化苹果检测模型(Lightweight Apple Detection YOLOX-Tiny Network,Lad-YXNet)。该模型引入高效通道注意力(Efficient Channel Attention,ECA)和混洗注意力(Shuffle Attention,SA)两种轻量化视觉注意力模块,构建了混洗注意力与双卷积层(Shuffle Attention and Double Convolution Layer,SDCLayer)模块,提高了检测模型对背景与果实特征的提取能力,并通过测试确定Swish与带泄露修正线性单元(Leaky Rectified Linear Unit,Leaky-ReLU)作为主干与特征融合网络的激活函数。通过消融试验探究了Mosaic增强方法对模型训练的有效性,结果表明图像长宽随机扭曲对提高模型综合检测性能贡献较高,但图像随机色域变换由于改变训练集中苹果的颜色,使模型检测综合性能下降。为提高模型检测苹果的可解释性,采用特征可视化技术提取了Lad-YXNet模型的主干、特征融合网络和检测网络的主要特征图,探究了Lad-YXNet模型在复杂自然环境下检测苹果的过程。Lad-YXNet经过训练在测试集下的平均精度为94.88%,分别比SSD、YOLOV4-Tiny、YOLOV5-Lite和YOLOX-Tiny模型提高了3.10个百分点、2.02个百分点、2.00个百分点和0.51个百分点。Lad-YXNet检测一幅图像的时间为10.06 ms,模型大小为16.6 MB,分别比YOLOX-Tiny减少了20.03%与18.23%。该研究为苹果收获机器人在复杂果园环境下准确、快速地检测苹果提供了理论基础。  相似文献   

5.
疏果期苹果目标检测是实现疏果机械化、自动化需要解决的关键问题。为实现疏果期苹果目标准确检测,该研究以YOLOv7为基础网络,融合窗口多头自注意力机制(Swin Transformer Block),设计了一种适用于近景色小目标检测的深度学习网络。首先在YOLOv7模型的小目标检测层中添加Swin Transformer Block,保留更多小尺度目标特征信息,将预测框与真实框方向之间的差异考虑到模型训练中,提高模型检测精度,将YOLOv7中的损失函数CIoU替换为SIoU。最后利用Grad-CAM方法产生目标检测热力图,进行有效特征可视化,理解模型关注区域。经测试,该文模型的检测均值平均精度为95.2%,检测准确率为92.7%,召回率为91.0%,模型所占内存为81 MB,与原始模型相比,均值平均精度、准确率、召回率分别提高了2.3、0.9、1.3个百分点。该文模型对疏果期苹果具有更好的检测效果和鲁棒性,可为苹果幼果生长监测、机械疏果等研究提供技术支持。  相似文献   

6.
为解决莲田环境下不同成熟期莲蓬的视觉感知问题,该研究提出了一种改进YOLOv5s的莲蓬成熟期检测方法。首先,通过在主干特征网络中引入BoT(bottleneck transformer)自注意力机制模块,构建融合整体与局部混合特征的映射结构,增强不同成熟期莲蓬的区分度;其次,采用高效交并比损失函数EIoU(efficient IoU)提高了边界框回归定位精度,提升模型的检测精度;再者,采用K-means++聚类算法优化初始锚框尺寸的计算方法,提高网络的收敛速度。试验结果表明,改进后YOLOv5s模型在测试集下的精确率P、召回率R、平均精度均值mAP分别为98.95%、97.00%、98.30%,平均检测时间为6.4ms,模型尺寸为13.4M。与YOLOv3、 YOLOv3-tiny、 YOLOv4-tiny、 YOLOv5s、YOLOv7检测模型对比,平均精度均值mAP分别提升0.2、1.8、1.5、0.5、0.9个百分点。基于建立的模型,该研究搭建了莲蓬成熟期视觉检测试验平台,将改进YOLOv5s模型部署在移动控制器Raspberry Pi 4B中,对4种距离范围下获取的莲蓬场景图像...  相似文献   

7.
为解决自然环境中苹果叶片病害检测场景复杂、小目标病害检测难度高以及模型参数大无法在移动端和嵌入式设备部署等问题,提出一种基于YOLOv5s的苹果叶片小目标病害轻量化检测方法。该方法将YOLOv5s的骨干网络更改为ShuffleNet v2轻量化网络,引入CBAM(convolutional block attention module)注意力模块使模型关注苹果叶片小目标病害,添加改进RFB-s(receptive field block-s)支路获取多尺度特征,提高苹果叶片病害检测精度,并更改边界框回归损失函数为SIoU(scylla-intersection over union),增强病斑定位能力。试验表明改进后的YOLOv5s模型在IoU大于0.5时的平均精度均值(mean average precision,mAP0.5)和每秒传输帧数(frame per second,FPS)分别达到90.6%和175帧/s,对小目标的平均检测准确率为38.2%,与基准模型YOLOv5s相比,其mAP0.5提升了0.8个百分点,参数量减少了6.17 MB,计算量减少了13.8 G,对小目标的检测准确率提高了3个百分点。改进后的YOLOv5s目标检测模型与Faster R-CNN、SSD、YOLOv5m、YOLOv7、YOLOv8和YOLOv5s目标检测模型相比,具有最小的参数量和计算量,对小目标病害叶斑病和锈病的检测准确率分别提高了1.4、4.1、0.5、5.7、3.5、3.9和1.5、4.3、1.2、2.1、4、2.6个百分点,该方法为真实自然环境下苹果叶片病害尤其是小目标病害的轻量化检测提供参考依据。  相似文献   

8.
为提高橙果采摘定位精度和作业速度,提出一种便于迁移至移动终端的改进YOLOv4模型,可从RealSense深度相机所成彩色图像中获取果实质心二维坐标,经配准提取对应深度图中质心点深度值,实现果实的三维空间定位。改进YOLOv4模型以MobileNet v2为主干网络,在颈部结构中使用深度可分离卷积替换普通卷积,实现模型轻量化并提高检测速度。训练后的改进模型对513张独立橙果测试集数据的识别平均精度达97.24%,与原始YOLOv4模型相比,平均检测时间减少11.39 ms,模型大小减少197.5 M。与经典Faster RCNN、SSD模型相比,检测平均精度分别提高了2.85和3.30个百分点,模型大小分别减少了474.5和44.1 M。与轻量化模型YOLOv4-tiny相比,召回率提升了4.79个百分点,较Ghostnet-YOLOv4,检测速度提升了27.64个百分点。为验证该改进算法实用性,应用改进模型获取果园中78个橙果的位置信息,结果表明:果实二维识别成功率达98.72%,水平方向及垂直方向的平均绝对百分比误差均在1%以内。果实三维定位成功率达96.15%,深度信息平均绝对百分比误差为2.72%,满足采摘机械手精准定位需求。该方法为复杂场景下采摘作业实现提供了鲁棒性强、实时性好、精准度高的目标定位途径。  相似文献   

9.
基于改进YOLOv4模型的全景图像苹果识别   总被引:3,自引:3,他引:0  
苹果果园由于密植栽培模式,果树之间相互遮挡,导致苹果果实识别效果差,并且普通的图像采集方式存在图像中果实重复采集的问题,使得果实计数不准确。针对此类问题,该研究采用全景拍摄的方式采集苹果果树图像,并提出了一种基于改进YOLOv4和基于阈值的边界框匹配合并算法的全景图像苹果识别方法。首先在YOLOv4主干特征提取网络的Resblock模块中加入scSE注意力机制,将PANet模块中的部分卷积替换为深度可分离卷积,且增加深度可分离卷积的输出通道数,以增强特征提取能力,降低模型参数量与计算量。将全景图像分割为子图像,采用改进的YOLOv4模型进行识别,通过对比Faster R-CNN、CenterNet、YOLOv4系列算法和YOLOv5系列算法等不同网络模型对全景图像的苹果识别效果,改进后的YOLOv4网络模型精确率达到96.19%,召回率达到了95.47%,平均精度AP值达到97.27%,比原YOLOv4模型分别提高了1.07、2.59、2.02个百分点。采用基于阈值的边界框匹配合并算法,将识别后子图像的边界框进行匹配与合并,实现全景图像的识别,合并后的结果其精确率达到96.17%,召回率达到95.63%,F1分数达到0.96,平均精度AP值达到95.06%,高于直接对全景图像苹果进行识别的各评价指标。该方法对自然条件下全景图像的苹果识别具有较好的识别效果。  相似文献   

10.
目标检测与分割是实现黄花菜智能化采摘的关键技术,原始目标检测算法容易出现漏检、误检等问题,无法满足自然环境下生长的黄花菜采摘要求。该研究提出一种基于改进YOLOv7-seg的黄花菜目标检测与实例分割识别算法模型(YOLO-Daylily)。通过在YOLOv7-seg骨干网络(backbone)中引入CBAM(convolutional block attention module)注意力机制模块,降低背景等干扰因素的影响;在ELAN(efficient layer aggregation networks)模块中采用PConv(partial convolution)替换原有的3×3卷积层,减少冗余计算和内存访问,提升对目标黄花菜特征提取的能力。颈部网络(neck)采用坐标卷积(CoordConv)替换PA-FPN(path aggregation-feature pyramid networks)中1×1卷积层,增强模型对位置的感知,提高掩膜(mask)鲁棒性。在改进的PA-FPN结构中采用残差连接方法将浅层特征图几何信息与深层特征图语义信息特征相结合,提高模型对目标黄花菜的检测分割性能。消融试验表明:改进后的算法检测准确率、召回率和平均精度分别达到92%、86.5%、93%,相比YOLOv7-seg基线算法分别提升2.5、2.3、2.7个百分点;分割准确率、召回率和平均精度分别达到92%、86.7%、93.5%,比基线算法分别提升0.2、3.5、3个百分点。与Mask R-CNN、SOLOv2、YOLOV5-seg、YOLOv5x-seg算法相比,平均精度分别提升8.4、12.7、4.8、5.4个百分点。改进后的模型减少了漏检、误检等情况,对目标定位更加精准,为后续黄花菜智能化采摘实际应用提供理论支持。  相似文献   

11.
为实现虾只机械剥壳环节裸肉虾与带壳虾自动分选,该研究提出一种基于改进YOLOv4模型的虾只肉壳辨识方法。将YOLOv4模型中CSP-Darknet53网络替换为GhostNet网络,增强模型自适应特征提取能力及简化模型参数计算量。在YOLOv4主干特征提取网络Resblock模块中引入轻量级注意力机制,增强主干特征提取网络的特征提取能力。将YOLOv4模型中GIoU损失函数替换为CIoU损失函数,提高模型预测框的回归效果。为检测改进效果进行了不同模型对比验证,轻量化结果表明改进YOLOv4模型参数量最少、计算量最小;消融试验表明改进YOLOv4模型的平均精度均值为92.8%,比YOLOv4模型提升了6.1个百分点。不同场景下应用改进YOLOv4模型进行虾只肉壳辨识性能试验。结果表明:同品种不同环境的虾只肉壳辨识总体平均准确率为95.9 %,同品种不同剥壳方式的虾只肉壳辨识准确率平均值为90.4 %,不同品种虾只肉壳辨识准确率平均值为87.2 %。研究结果可为裸肉虾与带壳虾自动分选提供技术支撑。  相似文献   

12.
针对目前在水下复杂环境中池塘养殖河蟹与饵料的检测算法存在检测精度低、速度慢等问题,该研究提出了基于改进YOLOv5s(you only look once version 5 small)的河蟹与饵料检测方法。首先,采用轻量化卷积Ghost替换普通卷积,同时利用GhostBottleneck结构替换原主干网络中的残差结构快速提取网络特征,减少模型计算量,满足安卓端的应用要求。其次,为了弥补因网络参数量减少造成网络检测精度稍有降低的问题,借鉴BiFPN(bidirectional feature pyramid network)的思想改进原始YOLOv5s的双向融合骨干网络,以较低的计算成本提高网络对小目标的检测精度。此外,为了帮助网络进一步更好地识别目标,加入了CA(coordinate attention)注意力机制,使得图像中感兴趣的区域能够更准确地被捕获。试验结果表明:该研究改进模型平均精度均值为96.9%,计算量为8.5GFLOPs,与当前主流的单阶段有锚框目标检测算法SSD(single shot multibox detector)和YOLOv3相比,具有更高的检测精度以及更少的计算量。相比于原始YOLOv5s模型,本文改进模型平均精度均值提高了2.2个百分点,计算量和模型内存都降低了40%以上。最后,将改进前后的模型部署到安卓设备上测试。测试结果表明:改进后模型的平均检测速度为148ms/帧,相较于原始模型检测速度提高了20.9%,并且保持了较好的检测效果,平衡了安卓设备对模型检测精度以及速度的性能需求,能够为河蟹养殖投饵量的精准确定提供参考。  相似文献   

13.
现有的目标检测算法检测茶叶嫩芽的精度较低,为提高茶叶嫩芽的检测精度,该研究提出一种基于改进YOLOv5s网络模型的茶叶嫩芽检测算法。该算法将骨干特征提取网络中的空间金字塔池化结构(spatial pyramid pooling-fast,SPPF)替换为空洞空间卷积池化金字塔结构(atrous spatial pyramid pooling,ASPP),增强模型对不同分辨率下目标的识别能力;针对茶叶嫩芽的小目标特征,在颈部网络中引入可加权重的双向特征金字塔网络(bidirectional feature pyramid network,BiFPN),提高特征融合的效率,同时在颈部网络中的每个集中综合卷积模块(concentrated-comprehensive convolution block,C3)后添加卷积注意力模块(convolutional block attention module,CBAM)来提高模型关注小目标特征的能力。试验结果表明,改进后获得的Tea-YOLOv5s比原模型的准确率(precision,P)、召回率(recall,R)和平均精度值(mean average precision,mAP)分别高出4.4、0.5和4个百分点,且模型鲁棒性强,在多个场景下茶叶嫩芽的检测中具有更高的置信度分数。改进后的模型可为茶叶的产量估计和茶叶采摘机器人的嫩芽识别奠定基础。  相似文献   

14.
针对目前日光温室损伤程度的统计方法普遍依靠人工目视导致的检测效率低、耗时长、精确度低等问题,该研究提出了一种基于改进YOLOv5s的日光温室损伤等级遥感影像检测模型。首先,采用轻量级MobileNetV3作为主干特征提取网络,减少模型的参数量;其次,利用轻量级的内容感知重组特征嵌入模块(content aware reassembly feature embedding,CARAFE)更新模型的上采样操作,增强特征信息的表达能力,并引入显式视觉中心块(explicit visual center block,EVCBlock)替换和更新颈部层,进一步提升检测精度;最后将目标边界框的原始回归损失函数替换为EIoU(efficient intersection over union)损失函数,提高模型的检测准确率。试验结果表明,与基准模型相比,改进后模型的参数数量和每秒浮点运算次数分别减少了17.91和15.19个百分点,准确率和平均精度均值分别提升了0.4和0.8个百分点;经过实地调查,该模型的平均识别准确率为84.00%,优于Faster R-CNN、SSD、Centernet、YOLOv3等经典目标检测算法。日光温室损伤等级快速识别方法可以快速检测日光温室的数量、损伤等级等信息,减少设施农业管理中的人力成本,为现代化设施农业的建设、管理和改造升级提供信息支持。  相似文献   

15.
基于优选YOLOv7模型的采摘机器人多姿态火龙果检测系统   总被引:3,自引:3,他引:0  
为了检测复杂自然环境下多种生长姿态的火龙果,该研究基于优选YOLOv7模型提出一种多姿态火龙果检测方法,构建了能区分不同姿态火龙果的视觉系统。首先比较了不同模型的检测效果,并给出不同设备的建议模型。经测试,YOLOv7系列模型优于YOLOv4、YOLOv5和YOLOX的同量级模型。适用于移动设备的YOLOv7-tiny模型的检测准确率为83.6%,召回率为79.9%,平均精度均值(mean average precision,mAP)为88.3%,正视角和侧视角火龙果的分类准确率为80.4%,推理一张图像仅需1.8 ms,与YOLOv3-tiny、YOLOv4-tiny和YOLOX-tiny相比准确率分别提高了16.8、4.3和4.8个百分点,mAP分别提高了7.3、21和3.9个百分点,与EfficientDet、SSD、Faster-RCNN和CenterNet相比mAP分别提高了8.2、5.8、4.0和42.4个百分点。然后,该研究对不同光照条件下的火龙果进行检测,结果表明在强光、弱光、人工补光条件下均保持着较高的精度。最后将基于YOLOv7-tiny的火龙果检测模型部署到Jetson Xavier NX上并针对正视角火龙果进行了验证性采摘试验,结果表明检测系统的推理分类时间占完整采摘动作总时间的比例约为22.6%,正视角火龙果采摘成功率为90%,验证了基于优选YOLOv7的火龙果多姿态检测系统的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号