首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 375 毫秒
1.
【目的】研究盐胁迫下盐穗木生长素通路中miR393b和预测的靶基因TIR1的表达模式和相关性。【方法】采用生物信息学方法预测盐穗木miR393b的靶基因;通过qRT-PCR方法检测盐胁迫下盐穗木miR393b及预测靶基因HcTIR1(transport inhibitor response1)的相对表达模式,并分析其相关性。【结果】miR393b成熟体在不同植物种中高度保守;盐穗木miR393b预测的靶基因为TIR1;盐胁迫处理,盐穗木同化枝中两基因响应高盐胁迫,并具有一定的负相关性。【结论】盐穗木miR393b和预测的靶基因响应高盐胁迫,二者具有一定的负相关。该结果为进一步探讨盐穗木miR393b与预测靶基因TIR1的生物学功能奠定基础。  相似文献   

2.
【目的】盐穗木(Halostachys caspica)是一种藜科多年生盐生灌木,对盐分适应性极强。miR167是作用于生长素信号通路上的内源非编码小RNA分子,它通过靶向生长素响应因子ARFs(auxin response factors)来调控生长素响应基因的表达。研究从高盐(600 mmol/L NaCl)处理48 h盐穗木根的小RNA文库中筛选到差异表达的miR167d,并从该物种的转录组数据中预测到其靶基因ARF8。该文开展了高盐胁迫下盐穗木miR167d和预测靶基因ARF8的表达模式和相关性分析。【方法】通过荧光定量PCR试验检测和分析高盐胁迫下盐穗木miR167d和预测靶基因的表达模式和相关性;利用烟草瞬时表达试验间接地鉴定盐穗木miR167d对预测靶基因ARF8的靶向关系;采用同源克隆方法结合RACE技术获得盐穗木miR167d的靶基因ARF8的全长序列,并进行生物信息学分析。【结果】(1) 600 mmol/L NaCl处理盐穗木,其同化枝中miR167d和ARF8的表达均受到诱导,胁迫48 h时,miR167d的表达最高并与靶基因的表达呈现显著的负相关性,HcARF8基因的表达随胁迫处理时间的延长呈现先增加后下降的趋势,推测盐穗木miR167d和ARF8两基因可能在响应盐胁迫过程中发挥作用。(2) 构建融合GFP的含预测靶基因HcARF8的植物表达载体并转化农杆菌,烟草瞬时表达试验的结果表明,拟南芥miR167d对盐穗木ARF8基因具有剪切作用,间接证明盐穗木miR167d对预测的靶基因HcARF8具有靶向切割作用。(3) 克隆获得的盐穗木ARF8基因全长2 861 bp,ORF 2 442 bp,编码813个氨基酸,在编码区与盐穗木miR167d高度互补匹配。生物信息学分析该基因编码的蛋白高度保守,与同科植物甜菜ARF8同源性达到87%,都具有能与生长素相关元件(B3 DNA绑定元件、生长素响应元件,生长素诱导转录IAA超家族的元件)结合的功能域。【结论】盐穗木miR167d和HcARF8基因具有靶向关系,高盐胁迫处理盐穗木,其同化枝中两基因的表达都受到诱导并呈现显著的负相关性。这些结果为后续阐明盐穗木miR167d与其作用的靶基因ARF8的生物学功能奠定基础。  相似文献   

3.
【目的】为棉花抗枯萎病分子育种的基因来源提供依据。【方法】根据前期转录组测序和抗病表达数据,从棉花EST数据库中筛选出抗枯萎病有关的基因(登录号为CD486053)序列,在NCBI搜索与该基因同源性为94%的海岛棉抗病相关PR10基因(登录号为AY588276)并设计引物,从枯萎病接菌的抗病海岛棉材料“06-146”克隆一个海岛棉同源基因,命名为GbPR10基因。进行生物信息学和在枯萎病菌、乙烯、水杨酸处理下基因表达量分析。【结果】GbPR10基因有480 bp的ORF序列,编码159个氨基酸。该蛋白序列中具有PR10蛋白特有的Bet-v1结构域和改变的甘氨酸环P-Loop(GXGGXG)。蛋白质序列同源比对表明该蛋白与其他生物PR10蛋白有较高的一致性。亚细胞定位预测表明GbPR10分布于细胞质。qRT-PCR表达分析表明,GbPR10基因在不同抗病海岛棉品种的不同组织上表达量不均匀而较高于感病海岛棉品种;在乙烯和水杨酸处理的1对抗/感海岛棉根系中,抗病品种出现先上调后下调趋势,感病材料后期诱导表达,抗病品种的表达量几乎高于感病品种。【结论】GbPR10基因在海岛棉抗枯萎病信号途径中起重要作用。  相似文献   

4.
【目的】鉴定谷子NADP-ME家族成员,研究不同成员对非生物逆境胁迫的响应,为揭示SiNADP-ME在谷子逆境应答信号途径中的作用奠定基础。【方法】 利用生物信息学方法鉴定谷子基因组中的NADP-ME家族成员。采用GSDS2.0、plantCARE、Clustalx、MEGA6.0等软件及网站ExPASy对鉴定成员蛋白和基因序列进行生物信息学分析。采用qRT-PCR方法检测SiNADP-ME在苗期不同逆境、不同生育期干旱胁迫及不同光照强度下的表达情况。【结果】 谷子NADP-ME家族由7个成员组成,它们在谷子的第2、3、5、7染色体上呈不均匀分布。保守功能域分析显示7个基因都含有NADP-ME特征保守功能域。序列比对发现谷子NADP-ME成员之间序列非常保守,相似性较高,7个谷子成员序列一致性为77.30%,而不同物种NADP-ME序列之间相似性为56.52%。序列分析显示SiNADP-ME1SiNADP-ME4SiNADP-ME5SiNADP-ME6序列较长,分别编码576、639、652和636个氨基酸,而SiNADP-ME2SiNADP-ME3SiNADP-ME7序列较短,分别编码213、265和149个氨基酸。基因结构分析显示SiNADP-ME1有2个可变剪切,SiNADP-ME5有3个可变剪切,其他基因无可变剪切。SiNADP-ME1SiNADP-ME2SiNADP-ME3SiNADP-ME7含内含子较少,而SiNADP-ME4SiNADP-ME5SiNADP-ME6含内含子较多。蛋白参数预测显示谷子NADP-ME成员间分子量跨度较大,在161.94—725.43 kD,等电点为5.32—8.05,不稳定指数为23.01—45.01,脂肪系数介于89.19—107.77,平均疏水指数介于-0.218—0.004。亚细胞定位预测显示SiNADP-ME成员主要被定位在叶绿体、线粒体和细胞质中。顺式元件分析显示SiNADP-ME成员启动子区域主要包括激素类应答、逆境应答、光应答以及其他类生长调控相关的顺式元件。聚类分析发现谷子SiNADP-ME基因在单、双子叶植物分离之前就已存在。不同物种同源基因对在进化树中广泛存在揭示它们在进化上可能存在共同祖先,也暗示它们在某些信号通路中可能具有相似的功能。苗期逆境表达分析表明所有谷子SiNADP-ME家族基因表达量在本文应用的4种逆境胁迫下都被明显诱导。SiNADP-ME1在ABA、低温、NaCl处理后被诱导的最高相对表达量分别为对照的460.53、411.50和15.24倍;SiNADP-ME6在ABA、低温、PEG、NaCl处理后被诱导的最高相对表达量分别为对照的211.13、15.21、772.41和643.99倍。进一步分析表明SiNADP-ME1SiNADP-ME6在拔节期、抽穗期和灌浆期干旱胁迫下表达量上调。【结论】 从谷子基因组中鉴定了7个NADP-ME基因家族成员;7个成员间序列非常保守并且都含有NADP-ME基因典型特征结构域;7个谷子NADP-ME家族基因参与了植物非生物逆境应答,特别是SiNADP-ME1SiNADP-ME6可能在ABA、盐、干旱、低温等逆境应答信号途径中起重要作用。  相似文献   

5.
【目的】研究细胞色素P450超家族CYP85A亚家族基因在棉花株高发育中的生物学功能,为陆地棉株高分子育种提供理论依据和基因资源。【方法】 采用同源克隆方法,从陆地棉中克隆CYP85A家族基因GhCYP85A2-1,利用烟草脆裂病毒(Tobacco rattle virus, TRV)诱导的基因沉默技术(Virus-induced gene silencing, VIGS)构建GhCYP85A2-1基因沉默载体,利用qRT-PCR技术检测侵染棉花幼苗的基因表达量。【结果】 GhCYP85A2-1基因沉默植株的株高显著降低,基因的表达量也显著下降。【结论】 GhCYP85A2-1基因在棉花株高发育过程中起到重要调控作用。  相似文献   

6.
【目的】研究弱光环境下叶绿素酸酯a氧化酶(TaCAO)的表达水平变化,分析叶绿素合成途径对于弱光环境的响应。【方法】利用同源克隆,由小麦品种新冬20号克隆TaCAO并分析其序列。使用半定量PCR方法分析900、1 800、3 600和7 200 lx光照强度下TaCAO表达量。【结果】该基因ORF长度为1 653 bp,编码蛋白大小为62.12 kD,包含550个氨基酸残基,含有叶绿素转运肽和Rieske_RO_Alpha_CAO结构域,还存在一个Rieske铁硫配位中心和铁结合位点,随着光照强度的减弱,TaCAO表达量呈现上升的趋势。【结论】克隆获得的TaCAO长度为1 653 bp,具有完整的CAO活性,TaCAO的相对表达量与光照强度呈反比关系。  相似文献   

7.
【目的】研究榅桲果实木质化与CAD基因的关系。【方法】基于GenBank报道的近缘物种CAD基因cDNA序列,应用Primer Premier 5.0 软件设计PCR 扩增引物。提取榅桲总RNA,经反转录后合成cDNA,应用RT-PCR 方法成功扩增出CAD 基因片段并克隆到pMD18-T 载体。通过DNAstar软件进行同源序列比对,ClustalX结合MEGA4.1软件构建系统进化树,采用Protparam在线程序分析蛋白质的理化性质,用DNAstar的Protean程序预测二级结构。通过间苯二酚染色鉴定果肉发育时期木质素的积累程度,并利用RT-qPCR对CAD基因在发育期时期的表达规律进行检测。【结果】榅桲CAD基因其开放阅读框(ORF)序列为1 071 bp,编码356个氨基酸,与其他物种序列同源性最高达96%,进化关系上与苹果较近。在果实6个发育时期,木质素积累逐渐降低,而CAD基因表达与果实木质化程度紧密相关,随着木质素合成趋缓呈现一个逐步下调的趋势。【结论】CAD基因是调控榅桲果实木质化的关键基因。  相似文献   

8.
目的】检测WNT2基因在苏博美利奴羊胚胎期135 d不同组织中的表达水平,了解WNT2基因的分子结构和进化特征,从分子水平及进化特征上研究苏博美利奴羊的组织器官与WNT2基因表达之间的内在联系,为筛选细毛羊毛囊发育相关候选基因提供理论依据。【方法】采用qRT-PCR法研究苏博美利奴羊毛囊成熟时期WNT2基因在不同组织中的表达,并使用PROMO软件预测WNT2基因启动子区域序列的转录因子,并用Cytoscape_v3.5.1软件可视化,使用MEGA 7.0软件分析WNT2基因启动子区域序列的核苷酸组成成分及密码子的偏好性,并且利用绵羊、山羊、牛、人等9个物种的WNT2基因的DNA序列构建系统进化树。【结果WNT2基因在皮肤组织中的表达量极显著高于心脏、肝脏、脾脏、肺脏、肾脏及肌肉组织。在绵羊WNT2基因启动子区域序列共预测出101个相关转录因子,4种碱基呈现均匀分布,CAG与UCU是使用相对较多的密码子,对WNT2基因的DNA序列系统进化树分析发现山羊和绵羊之间的进化关系比与其他哺乳动物进行比较时更为接近。【结论】建立了胚胎期135 d的苏博美利奴羊的不同组织中WNT2基因表达量的RT-PCR方法,并使用生物信息学软件对其分子结构和进化特征进行分析。  相似文献   

9.
10.
【目的】质膜内在蛋白(plasma membrane intrinsic proteins,PIPs)广泛存在于植物细胞的膜系统上,在植物体内水分运输和水分平衡的过程中至关重要。对ZmPIP2;6在植物水分胁迫耐性中的功能进行探究,为玉米培育抗旱耐盐新品种提供优秀基因资源。【方法】分析并比对ZmPIP2;6与其他物种中报道参与水分胁迫的PIPs的氨基酸序列,构建ZmPIP2;6-GFP载体并通过PEG介导转化玉米原生质体,对ZmPIP2;6进行亚细胞定位。采集玉米的不同组织样品,包括根、茎、叶、未成熟雄穗、未成熟雌穗、胚和胚乳;对玉米进行PEG或NaCl处理,在处理的不同时间点采集玉米的根和叶样品。提取总RNA并通过qRT-PCR调查ZmPIP2;6在玉米不同组织以及在水分胁迫下的表达模式。构建ZmPIP2;6超表达载体,发展并鉴定ZmPIP2;6超表达拟南芥材料,观察转基因植株对渗透、盐及干旱胁迫的耐性生理表型,并测量其根长、叶片水分散失率等性状。检测在干旱或盐胁迫条件下,拟南芥胁迫信号通路上的相关基因在ZmPIP2;6超表达植株中的表达。【结果】氨基酸序列分析比对结果显示ZmPIP2;6具有PIP蛋白的典型结构与并且其他物种的PIP蛋白具有很高的同源性。转化玉米原生质体试验结果显示ZmPIP2;6蛋白定位在细胞质膜。qRT-PCR结果显示ZmPIP2;6在玉米未成熟雄穗中表达量最高,并且在玉米受到渗透和盐胁迫后根和叶中的ZmPIP2;6表达受到显著诱导。在MS固体培养基上进行渗透胁迫处理和盐胁迫处理以及进一步的土培试验中进行干旱胁迫处理,ZmPIP2;6超表达拟南芥植株相对野生型都显示出更强的胁迫耐性。在干旱或盐胁迫条件下,拟南芥胁迫信号通路上的相关基因在ZmPIP2;6超表达植株中的表达受到不同程度的影响。【结论】玉米内在质膜蛋白基因ZmPIP2;6在渗透或盐胁迫下表达上调,在拟南芥中超表达ZmPIP2;6会增强植株对渗透、盐和干旱胁迫的耐性,并且在盐或干旱胁迫条件下会影响拟南芥中胁迫相关基因的表达。ZmPIP2;6可能参与植物水分胁迫响应过程。  相似文献   

11.
【目的】 研究玉米开花期不同耐旱性玉米自交系的蛋白质表达差异,分析玉米响应干旱胁迫的主要代谢途径并发掘有价值的耐旱基因,对响应干旱胁迫的差异表达蛋白质组进行筛选和鉴定分析。【方法】 以强耐旱系PHBA6和弱耐旱系吉63为材料,设计干旱胁迫和正常灌溉处理。在玉米开花期进行干旱胁迫处理,取雄穗小花提取蛋白经双向凝胶电泳分离、凝胶图像扫描和质谱分析。【结果】 质谱分析共筛选出542个高清晰、重复性强的蛋白质点。其中,差异表达丰度达2.0倍以上的蛋白质点共有59个,强耐旱系PHBA6中有26个,弱耐旱系吉63中有37个,在强耐旱系PHBA6与弱耐系吉63中都表达且差异显著的蛋白质点有4个。【结论】 干旱胁迫蛋白参与代谢物和能量前体合成、核苷酸代谢、氧化还原辅酶代谢过程、蛋白翻译调控、细胞蛋白质及氨基酸代谢过程的调控、含硫化合物的合成与代谢过程、半胱氨酸的生物合成及代谢过程和光合作用等。细胞组分分类显示二者中的差异蛋白都与叶绿体及其结构相关,而且差异蛋白的细胞组分分类一致,但在生物学代谢过程及分子功能分类上相差较大,这些显著的差异表达的蛋白可能是形成不同品系间耐旱性强弱的主要原因。  相似文献   

12.
【目的】 研究12种植物萌发期耐盐性,为盐渍化土壤生态恢复选取耐盐碱的多年生草本植物提供参考依据。【方法】 以披碱草、碱茅、扁穗冰草、高冰草、狗牙根、无芒雀麦、紫花苜蓿、沙打旺、红豆草、甘草、苦豆子和草木樨种子为材料,在萌发期用NaCl溶液在0.0%(CK)、0.5%、1.0%、1.5%、2.0%不同浓度下进行盐胁迫处理,测定每种植物的每日发芽数、根长、芽长,计算出植物的相对发芽率、相对发芽指数、相对发芽势、相对伤害率、相对根芽比,并采用隶属函数计算不同植物的耐盐性得分。【结果】 各种植物种子受到盐胁迫抑制,各个生长指标随NaCl浓度的增加呈下降的趋势。12种植物耐盐性得分排列顺序为甘草>高冰草>碱茅>披碱草>苦豆子>扁穗冰草>紫花苜蓿>红豆草>草木樨>无芒雀麦>沙打旺>狗牙根。【结论】 哈密大南湖二矿生态修复区盐碱地生态修复可以优先考虑甘草、高冰草、碱茅、披碱草、苦豆子等多年生草本植物。  相似文献   

13.
【目的】 研究盐爪爪液泡膜Na+/H+反向运输载体KfNHX1 (AY825250) 基因的耐盐功能,为耐盐育种提供候选基因。【方法】 采用农杆菌介导花序浸染的方法,将KfNHX1转入拟南芥中,结合基因组PCR和RT-PCR方法鉴定符合3∶1分离比的转基因株系;利用在盐胁迫下的萌发率、根长和表型分析,结合原子吸收分光光度计法测定叶片的Na+、K+含量,推断其耐盐性。【结果】 对抗生素筛选符合3∶1的转基因纯合株系进行基因组PCR和RT-PCR分析,证实KfNHX1基因在拟南芥基因组中整合和表达。盐胁迫下转基因株系的拟南芥种子的萌发率和根长明显高于野生型。200 mM NaCl胁迫处理15 d的拟南芥成苗,相较野生型叶片萎黄和死亡,转基因植株的生长表型较好,且积累了较高的Na+和K+。外源ABA的处理下,转基因植株的发芽率和生长表型也好于野生型。【结论】 盐爪爪(Kalidium foliatum)是一种藜科(Chenopodiaceae)盐生灌木,对盐的耐受性很强。液泡膜Na+/H+反向运输体(NHX)是在离子稳态中起重要作用的膜蛋白,通过调节胞间离子的跨膜转运来维持细胞内离子和pH平衡。盐生植物盐爪爪KfNHX1能够提高转基因拟南芥的耐盐性,具有提高植物耐盐性的潜力。  相似文献   

14.
【目的】 研究鉴定引起新疆石河子地区石竹叶斑病的病原,为石竹叶斑病的防治提供理论基础。【方法】 采集典型石竹叶斑病发病叶片利用常规组织法分离和纯化,选取8个代表性菌株,采用菌丝块贴接法和喷雾法测定致病性;应用病菌形态学和rDNA-ITS区、组蛋白3和β-微管蛋白序列进行比对和分析,建立多基因联合系统发育树,确定病原菌的分类地位。【结果】 经形态学鉴定其分生孢子与Alternaria nobilis相似;供试菌株rDNA-ITS区和β-微管蛋白序列与已报道的石竹链格孢(A. nobilis)同源性高达99.0%以上,rDNA-ITS区和β-微管蛋白序列联合构建的系统发育树显示,8个代表菌株均与A. dianthi处于同一分支上,与其它链格孢亲缘关系较远。【结论】 引起石河子地区石竹叶斑病的病原菌为石竹链格孢Alternaria nobilis。  相似文献   

15.
【目的】 研究拟克隆薰衣草DXS基因,并分析其表达,为揭示该基因在调控薰衣草萜类物质合成中的分子机理提供研究基础。【方法】 以薰衣草杂花为试材,同源克隆薰衣草DXS基因,进行基因序列分析、表达量比较和原核表达。【结果】 (1)薰衣草DXS基因开放阅读框长为2 181 bp,编码由726个氨基酸组成的蛋白质序列;薰衣草DXS蛋白等电点为6.57,分子量约为78.39 KDa,具有高度的保守性,与狭叶薰衣草、冬凌草、毛喉鞘蕊花的DXS蛋白亲缘关系相近;(2)DXS基因在杂花花器官的衰败期表达量最高,在法国蓝花器官的盛开期表达量最高,DXS基因在杂花花器官五个不同发育时期的表达量均高于法国蓝;DXS基因在杂花花萼中表达量最高,在法国蓝雄蕊中表达量最高,DXS基因在杂花花器官5个不同组织表达量均高于法国蓝(雌蕊、雄蕊除外);(3)在37℃、IPTG 0.8 mM条件下诱导4 h后,DXS蛋白表达量最大。【结论】 DXS基因表达量与薰衣草精油产量存在正相关关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号