首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thirty single-spore isolates of Cercospora beticola, collected from several fields in northern Greece, representing a broad spectrum sensitivity to the sterol demethylation-inhibiting (DMIs) fungicide flutriafol, were tested for sensitivity to eleven other sterol biosynthesis-inhibiting (SBI) fungicides and to the guanidine fungicide dodine. Sensitivity was measured as EC50 values for each fungicide and log-transformed EC50 values to each fungicide were pairwise correlated and the correlation coefficient estimated. These pairwise comparisons showed high correlation coefficients between the DMIs suggesting a cross-resistance relationship between these fungicides. However, the degree of cross-resistance between DMIs varied greatly. Conversely, low correlation coefficients were obtained for the pair-wise comparisons with the morpholine fungicide fenpropimorph suggesting a lack of cross-resistance between morpholines and DMIs in C. beticola. Similarly, there was no correlation between the sensitivity (EC50 values) to dodine and all the other fungicides tested, indicating that there was no negative cross-resistance relationship between dodine and SBIs in C. beticola. Based on these results, combinations or alternations of fungicides which show no cross-resistance relationship should be used to control the disease in areas where reduced sensitivity to DMIs has been already observed.  相似文献   

2.
BACKGROUND: Cercospora leaf spot (CLS), caused by the fungus Cercospora beticola, is the most serious foliar disease of sugar beet (Beta vulgaris L.) worldwide. Disease control is mainly achieved by timely fungicide applications. In 2011, CLS control failures were reported in spite of application of quinone outside inhibitor (QoI) fungicide in several counties in Michigan, United States. The purpose of this study was to confirm the resistant phenotype and identify the molecular basis for QoI resistance of Michigan C. beticola isolates. RESULTS: Isolates collected in Michigan in 1998 and 1999 that had no previous exposure to the QoI fungicides trifloxystrobin or pyraclostrobin exhibited QoI EC50 values of ?0.006 µg mL?1. In contrast, all isolates obtained in 2011 exhibited EC50 values of > 0.92 µg mL?1 to both fungicides and harbored a mutation in cytochrome b (cytb) that led to an amino acid exchange from glycine to alanine at position 143 (G143A) compared with baseline QoI‐sensitive isolates. Microsatellite analysis of the isolates suggested that QoI resistance emerged independently in multiple genotypic backgrounds at multiple locations. A real‐time PCR assay utilizing dual‐labeled fluorogenic probes was developed to detect and differentiate QoI‐resistant isolates harboring the G143A mutation from sensitive isolates. CONCLUSION: The G143A mutation in cytb is associated with QoI resistance in C. beticola. Accurate monitoring of this mutation will be essential for fungicide resistance management in this pathosystem. Copyright © 2012 Society of Chemical Industry  相似文献   

3.
Sugar beet is a major crop in Morocco and Cercospora leaf spot is one of its most important fungal diseases. In Morocco, thiophanate methyl (benzimidazole) and difenoconazole (demethylation inhibitor, DMI) have been used extensively in the management of Cercospora leaf spot. In this study, samples of Cercospora beticola Sacc were collected from four major production areas. The identification of all isolates was confirmed using a PCR test with specific primers. Radial mycelia growth of each isolate in unmodified potato dextrose agar medium was compared to mycelia growth in the same medium modified with thiophanate methyl (1, 5, 10 and 50 ppm) or the DMIs difenoconazole, epoxiconazole and tetraconazole (0.1, 0.5, 1, 5, 10 and 50 ppm) or the quinone outside inhibitors (QOIs) azoxystrobin and trifloxystrobin (1, 5, 10 and 50 ppm). The percentage of inhibition obtained was used for the half maximal effective concentration (EC50) calculation. All the isolates showed resistance to the thiophanate methyl molecule to different degrees. Three groups were identified: low resistance with EC50 less than 100 ppm, moderate resistance with EC50 between 100 and 1000 ppm, and very resistant with EC50 more than 1000 ppm. For difenoconazole, 41% of isolates were sensitive (EC50 < 0.05 ppm) and 59% were resistant, while for tetraconazole and epoxiconazole 6% were sensitive (EC50 < 0.01 ppm), 66.7 % had medium resistance (0.01 < EC50 < 1 ppm) and 27.3% were resistant (EC50 > 1 ppm). For QOIs, azoxystrobin was less effective for mycelial inhibition than trifloxystrobin, with 54.5% of isolates with resistance to azoxystrobin (EC50 > 100 ppm).  相似文献   

4.
Cercospora leaf spot (CLS), caused by the fungal pathogen Cercospora beticola, is the most important foliar disease of sugar beet worldwide. Control strategies for CLS rely heavily on quinone outside inhibitor (QOI) fungicides. Despite the dependence on QOIs for disease control for more than a decade, a comprehensive survey of QOI sensitivity has not occurred in the sugar beet growing regions of France or Italy. In 2010, we collected 866 C. beticola isolates from sugar beet growing regions in France and Italy and assessed their sensitivity to the QOI fungicide pyraclostrobin using a spore germination assay. In total, 213 isolates were identified with EC50 values greater than 1.0???g?ml?1 to pyraclostrobin, all of which originated from Italy. To gain an understanding of the molecular basis of QOI resistance, we cloned the full-length coding region of Cbcytb, which encodes the mitochondrial QOI-target enzyme cytochrome b in C. beticola. Cbcytb is a 1,162-bp intron-free gene with obvious homology to other fungal cytb genes. Sequence analysis of Cbcytb was carried out in 32 QOI-sensitive (<0.080???g?ml?1) and 27 QOI-resistant (>1.0???g?ml?1) isolates. All tested QOI-resistant isolates harboured a point mutation in Cbcytb at nucleotide position 428 that conferred an exchange from glycine to alanine at amino acid position 143 (G143A). A PCR assay developed to discriminate QOI-sensitive and QOI-resistant isolates based on the G143A mutation could detect and differentiate isolates down to approximately 25?pg of template DNA. Microsatellite analyses suggested that QOI resistance emerged independently in multiple genotypic backgrounds at multiple locations. Our results indicate that QOI resistance has developed in some C. beticola populations in Italy and monitoring the G143A mutation is essential for fungicide resistance management in this pathosystem.  相似文献   

5.
Stem rot caused by Lasiodiplodia theobromae is an important postharvest disease of papaya in Brazil, responsible for reducing the quality and quantity of fruits. Fungicide use is one of the main disease management measures. However, there are no estimates available of pathogen sensitivity to commonly employed fungicides. Therefore, the EC50 from 120 isolates of L. theobromae from northeastern Brazil, representative of six populations of the pathogen, was estimated in vitro for fungicides of the methyl benzimidazole carbamates—MBC (benomyl and thiabendazole) and demethylation-inhibiting—DMI (imazalil, prochloraz, tebuconazole) groups. Mycelial growth on fungicide-free media and virulence on papaya fruits of the MBC-sensitive and non-sensitive isolates were compared. For MBCs, 8.4% of isolates were non-sensitive to fungicides. For the remaining 91.6%, the mean EC50 ranged from 0.002 to 0.13 μg ml−1 and 0.36 to 1.27 μg ml−1 for benomyl and thiabendazole, respectively. For DMIs, the mean EC50 range for imazalil was 0.001 to 2.27 μg ml−1, 0.04 to 1.75 μg ml−1 for prochloraz, and 0.14 to 4.05 μg ml−1 for tebuconazole. The EC50 values of non-sensitive isolates were significantly (P≤0.05) higher those for the sensitive isolates for each of the DMI fungicides. Differences (P≤0.05) were found in the levels of sensitivity to DMI fungicides among the isolate populations associated with orchards. The populations from two orchards were less sensitive to DMIs. No solid evidence was found for fitness costs relating to MBC non-sensitive isolates because mycelial growth in fungicide-free media and virulence on papaya fruits were similar to those of sensitive isolates.  相似文献   

6.
Field experiments were conducted during 1997 and 1998 to determine the effects of sugar beet cultivar susceptibility to Cercospora leaf-spot on the sensitivity ofCercospora beticola isolates to the triazole fungicide flutriafol. Four cultivars with different levels of disease resistance were treated in experimental plots with six spray applications of flutriafol. Disease assessments were carried out at 15-day intervals. Sensitivity to flutriafol was measured on isolates collected from the plots ∼15 days after the last flutriafol application. Measurements of disease severity and calculations of AUDPC (area under disease progress curve) values showed a distinct differentiation among cultivars, reflecting their level of disease resistance. Disease severity was significantly lower in cvs. ‘Bianca’ and ‘Areth’ than in ‘Univers’ and ‘Rizor’ both in the untreated and in the flutriafol-treated plots. Fungal isolates from flutriafol-treated plots were less sensitive to the fungicide than were isolates from untreated plots. However, no differences in isolate sensitivity were observed among the cultivars, as regards their level of disease resistance. Despite the fact that the use of resistant cultivars cannot eliminate selectively the resistant strains, it can eliminate both resistant and sensitive isolates. Reducing the number of treatments with DMIs, by applying them only when environmental conditions are favorable for disease development, is a prerequisite for successful resistance management; therefore, the use of disease-resistant varieties could aid toward management of DMIs resistance inC. beticola. http://www.phytoparasitica.org posting May 6, 2003.  相似文献   

7.
Cercospora beticola resistance and disease yield loss relationships in sugar beet cultivars are best characterised under field conditions with heavy natural infection; this does not occur regularly under German climatic conditions. Since Cercospora resistance reduces the rate of pathogen development, high yield loss was observed in studies using artificial inoculation. Our study, therefore aimed to optimise inoculum density to obtain cultivar differentiation, which correlates to natural infection. In 2005 and 2006, field trials were carried out to determine the effect of different inoculum densities on Cercospora resistance of three sugar beet cultivars possessing variable resistance. The epidemic progress and white sugar yield loss (WSYloss) were determined and their relationship evaluated. An optimal inoculum concentration range (between 10,000–20,000 infectious Cercospora units ml−1 inoculum suspension) was determined which allowed maximum resistance parameter differentiation in terms of C. beticola disease severity (DS), area under the disease progress curve (AUDPC) and WSYloss. The correlation between AUDPC and WSYloss was identical for all cultivars independent of the resistance level, demonstrating that tolerant reactions of the cultivars under study were not detectable. This study provides evidence that even under optimal inoculum levels necessary to obtain maximum differentiation between cultivars, climatic conditions are important for disease management, but remain unpredictable, indicating that artificial inoculation needs to be optimised, but that single field locations are not sufficient and reliable to evaluate Cercospora resistance.  相似文献   

8.
The baseline sensitivity ofFusarium graminearum Schwade [teleomorph =Gibberella zeae (Schweinitz) Petch] to the fungicide JS399-19 (development code no.) [2-cyano-3-amino-3-phenylacrylic acetate] and the assessment of risk to JS399-19 resistancein vitro are presented. The mean EC50 values for JS399-19 inhibiting mycelial growth of three populations of wild-typeF. graminearum isolates were 0.102±0.048, 0.113±0.035 and 0.110±0.036 μg ml−1, respectively. Through UV irradiation and selection for resistance to the fungicide, we obtained a total of 76 resistant mutants derived from five wild-type isolates ofF. graminearum with an average frequency of 1.71 × 10−7% and 3.5%, respectively. These mutants could be divided into three categories of resistant phenotypes with low (LR), moderate (MR) and high (HR) level of resistance, determined by the EC50 values of 1.5–15.0 μg ml−1, 15.1–75.0 μg ml−1 and more than 75.0 μg ml−1, respectively. There was no positive cross-resistance between JS399-19 and fungicides belonging to other chemical classes, such as benzimidazoles, ergosterol biosynthesis inhibitors and strobilurins, suggesting that JS399-19 presumably has a new biochemical mode of action. Although the resistant mutants appeared to have comparable pathogenicity to their wild-type parental isolates, they showed decreased mycelial growth on potato-sucrose-agar plates and decreased sporulation capacity in mung bean broth. Nevertheless, most of the resistant mutants possessed fitness levels comparable to their parents and had MR or HR levels of resistance. As these studies yielded a high frequency of laboratory resistance inF. graminearum, appropriate precautions against resistance development in natural populations should be taken into account. http://www.phytoparasitica.org posting August 7, 2008.  相似文献   

9.
Cercospora leaf spot, caused by the fungus Cercospora beticola, is a major fungal sugar beet disease worldwide and the cause of significant yield losses. The disease is most successfully countered by the introduction of genetic tolerance into elite sugar beet hybrids. To this end, breeding programmes require high quality biological assays allowing discrimination of minor differences between plants within a segregating population. This study describes the successful implementation of image analysis software in the bioassays for quantification of necrotic lesions at different stages of C. beticola infection, allowing selection on minor phenotypic differences during the sugar beet breeding process for C. beticola resistance. In addition, a real‐time PCR assay was developed for the quantification of C. beticola pathogen biomass in infected beet canopy. The use of both techniques, even in an early stage of infection, fine‐tunes current bioassays, allowing more accurate and efficient selection of resistant breeding material.  相似文献   

10.
Isolates of Cercospora beticola resistant to fungicides that inhibit sterol demethylation (DMIs) were collected from sugar beet fields in Northern Greece. Fitness of these isolates was compared to that of DMI-sensitive isolates. The parameters measured were competitive ability both under growth chamber and field conditions, mycelial growth, spore germination, germ tube length, incubation period, virulence and spore production. The competitive ability under growth chamber conditions was measured for 4 pairs of one resistant and one sensitive isolate. Results showed that after 4 disease cycles, in 2 out of 4 pairs tested, the resistant isolates competed well with the sensitive isolates, but in the remaining two pairs the frequency of the resistant isolate decreased significantly. The competition experiment in the field was carried out by inoculating field plots with a conidial suspension consisting of a spore mixture from all the resistant and all the sensitive isolates used in this study. Results showed that at the end of the growing period the frequency of the resistant isolates had slightly decreased (P < 0.05). The measurements of fitness components of individual isolates showed that the resistant isolates had significantly lower (P < 0.05) virulence and spore production than the sensitive isolates, while no significant differences (P > 0.05) to the remaining 4 fitness components, were detected. With correlation analysis it was determined whether there is a relationship between values of each fitness component and the level of sensitivity to flutriafol of individual isolates. The correlation coefficients for virulence (r = 0.45) and spore production (r = 0.41) were significantly different from 0 (P > 0.05), indicating that resistance to DMIs affected, to some degree, the fitness of the resistant isolates.  相似文献   

11.
T. KATAN 《EPPO Bulletin》1985,15(3):371-377
Field isolates of Botrytis cinerea with moderate levels of resistance to dicarboximide fungicides (ED50 1.0–4.9 μg ml?1) and to dicloran were obtained from glasshouses where vinclozolin and iprodione failed to control grey mould. From sensitive and moderatcly-resistant cultures, laboratory isolates were selected on dicarboximide-amended medium, which were highly resistant to these fungicides (ED50 125->3000 μg ml?1). Conidia of all the resistant isolates germinated well on media amended with 100 μg ml?1 of the dicarboximides vinclozolin, iprodione, procymidone and myclozolin and with 5 μg ml?1 of metomeclan. However, the spores of the moderately resistant isolates did not germinate on 100 μg ml?1 metomeclan while the spores of the highly resistant isolates germinated well. Using media with 100 μg ml?1 of metomeclan to distinguish between the two phenotypes, no highly resistant strain was detected among 312 resistant samples from five cucumber glasshouses with a high frequency of moderately resistant strains. From air-borne inoculum of five glasshouses with 100% resistant populations, 1604 colonies were recovered on vinclozolin-amended (100 μg ml?1) medium and none on metomeclan-amended (100 μg ml?1) medium. It is concluded that strains of B. cinerea highly resistant to dicarboximides are absent from field populations.  相似文献   

12.
Cercospora species cause cercospora leaf blight (CLB) and purple seed stain (PSS) on soybean. Because there are few resistant soybean varieties available, CLB/PSS management relies heavily upon fungicide applications. Sensitivity of 62 Argentinian Cercospora isolates to demethylation inhibitor (DMI), methyl benzimidazole carbamate (MBC), quinone outside inhibitor (QoI), succinate dehydrogenase inhibitor (SDHI) fungicides, and mancozeb was determined in this study. All isolates were sensitive to difenoconazole, epoxiconazole, prothioconazole, tebuconazole, and cyproconazole (EC50 values ranged from 0.006 to 2.4 µg/ml). In contrast, 51% of the tested isolates were sensitive (EC50 values ranged from 0.003 to 0.2 µg/ml), and 49% were highly resistant (EC50 > 100 µg/ml) to carbendazim. Interestingly, all isolates were completely resistant to azoxystrobin, trifloxystrobin, and pyraclostrobin, and insensitive to boscalid, fluxapyroxad, and pydiflumetofen (EC50 > 100 µg/ml). The G143A mutation was detected in 82% (53) of the QoI-resistant isolates and the E198A mutation in 97% (31) of the carbendazim-resistant isolates. No apparent resistance mutations were detected in the succinate dehydrogenase genes (subunits sdhB, sdhC, and sdhD). Mancozeb completely inhibited mycelial growth of the isolates evaluated at a concentration of 100 µg/ml. All Argentinian Cercospora isolates were sensitive to the DMI fungicides tested, but we report for the first time resistance to QoI and MBC fungicides. Mechanism(s) other than fungicide target-site modification may be responsible for resistance of Cercospora to QoI and MBC fungicides. Moreover, based on our results and on the recent introduction of SDHI fungicides on soybean in Argentina, Cercospora species causing CLB/PSS are insensitive (naturally resistant) to SDHI fungicides. Insensitivity must be confirmed under field conditions.  相似文献   

13.
Cucurbit powdery mildew caused by Podosphaera fusca limits crop production in Spain. Since its management is strongly dependent on chemicals, the rational design of control programmes requires a good understanding of the fungicide resistance phenomenon in field populations. Fifty single-spore isolates of P. fusca were tested for sensitivity to three quinone-outside inhibiting (QoI) fungicides: azoxystrobin, kresoxim-methyl and trifloxystrobin. Minimum inhibitory concentration (MIC) values for QoI-sensitive isolates were found to range from 0.25 to 10 μg ml−1 for azoxystrobin to 5–25 μg ml−1 for kresoxim-methyl, using a leaf disc-based bioassay. High levels of cross-resistance to QoI fungicides were found. Eleven isolates showed resistance to the three QoI fungicides tested with MIC and EC50 values >500 μg ml−1 resulting in RF values as high as >715 and >1000 for trifloxystrobin and azoxystrobin, respectively. A survey of P. fusca QoI resistance was carried out in different provinces located in the south central area of Spain during the cucurbit growing seasons in 2002, 2003 and 2004. Examination of a collection of 250 isolates for QoI resistance revealed that 32% were resistant to the three fungicides tested; the provinces of Ciudad Real, Córdoba and Murcia being the locations with the highest frequencies of resistance (44–74%). By contrast, no resistance was found in Badajoz, and relatively low frequencies were observed in Almería and Valencia (10–13%). Nearly 50% of resistant isolates were collected from melon plants. Based on these data, recommendations about the use of QoI fungicides for cucurbit powdery mildew management in the sampled areas are made.  相似文献   

14.
15.
The mutation G143S has been associated with high-level strobilurin resistance in laboratory mutant strains of Cercospora beticola, one of the most destructive pathogens in sugar beet plants. By using allele specific primers (PASA-PCR) and agarose gel visualization, a molecular diagnostic was developed for the detection of the G143S resistance mutation. This assay is simple and applicable in low tech laboratory settings, with high reliability when a relatively large proportion of mutated mitochondrial alleles are present in the resistant strains. To achieve detection of resistant alleles at low frequencies, a more sensitive Real Time PCR based assay capable of discriminating resistant (S143) genotypes in frequencies as low as 1:10,000 resistant:sensitive alleles was developed. Both diagnostics were successfully validated in laboratory strains. Subsequently, a large number of C. beticola isolates from QoI-treated sugar beet experimental fields in Greece were screened for resistance to Qo fungicides using these diagnostics and classic bioassays. No proportion of the 143S resistant allele was detected in all field isolates tested, which was in agreement with the phenotypes revealed by the biotests confirming that the efficacy of QoIs against C. beticola has been sustained in Greece 7 years after their introduction.  相似文献   

16.
A survey to detect and characterise benzimidazole resistance within populations of Cercospora beticola in Serbia was performed. From 52 field isolates collected from sugar beet and beet root, only eight were found to be benzimidazole-sensitive based on the inhibition of mycelial growth by discriminatory concentrations of carbendazim and thiophanate-methyl. Sensitivity tests revealed the presence of three resistant phenotypes among the tested isolates: high-resistance (HR), low-resistance (LR) and moderate-resistance (MR). The benzimidazole resistant isolates were characterised based on the DNA sequence of the β-tubulin gene and temperature sensitivity. The HR isolates showed no temperature sensitivity regardless of carbendazim concentration, whereas the LR and MR isolates were sensitive at lower temperatures. Analysis of the β-tubulin gene sequence revealed two amino acid replacements in the benzimidazole-resistant isolates of C. beticola. One was a glutamic acid to alanine change at position 198 (codon GAG to GCG) that was identified in HR isolates; this mutation has previously been reported to be associated with the development of benzimidazole resistance in C. beticola. The second replacement was a novel point mutation of phenylalanine (TTC) to tyrosine (TAC) at position 167, identified in low and moderate benzimidazole-resistant isolates, sharing a single LR/MR β-tubulin genotype. A diagnostic PCR-RFLP assay utilising a BsaI restriction site present in the benzimidazole sensitive and LR/MR genotypes but absent in the HR genotype was developed for the routine detection of high resistance. A mutation-specific PCR assay was developed for the diagnosis of LR/MR genotype based on a mutation from T to A at codon 167, which is unique to this genotype.  相似文献   

17.
The resistance to strobilurin-related fungicides and its molecular basis in laboratory mutant isolates of Cercospora beticola was investigated. After ultraviolet mutagenesis, mutants with high, moderate or low resistance levels to pyraclostrobin were isolated from a wild-type strain of C. beticola. Fungitoxicity tests on the response of resistant isolates on medium containing pyraclostrobin and salicylhydroxamate (SHAM), a specific inhibitor of cyanide-resistant (alternative) respiration, indicated that the biochemical mechanism of alternative oxidase was not responsible for the reduced sensitivity to pyraclostrobin for half of the mutants. Cross-resistance studies with other inhibitors of the cytochrome bc 1 complex of the mitochondrial respiratory chain showed that the mutation(s) for resistance to pyraclostrobin also reduced the sensitivity of mutant strains to other Qo inhibitors such as azoxystrobin and fenamidone, but not to the Qi inhibitor cyazofamid. No effect of pyraclostrobin-resistant mutation(s) on fungitoxicity of the carboxamide boscalid, the triazoles epoxiconazole and flutriafol and to the benzimidazole benomyl, which affect other cellular pathways or other steps of the respiratory chain, was observed. Study of fitness parameters showed that most mutants had a significant reduction in sporulation and pathogenicity compared to the wild-type parental isolate. However, experiments on the stability of the resistant phenotype did not show a significant reduction of the resistance for half of the mutants when grown for at least four generations on pyraclostrobin-free medium. Molecular analysis of cytochrome b cDNA, isolated from the wild-type and the pyraclostrobin-resistant mutant isolates, revealed two novel amino acid replacements at positions involved in Qo resistance in other species. The glycine (GGT) to serine (AGT) replacement at position 143 (G143S) was found in the isolate with the highly resistant phenotype. The second amino acid change was the replacement of phenylalanine (TTC) by valine (GTC) at position 129 (F129V), which was found in a mutant strain with the moderately resistant phenotype. Four additional mutations located in conserved regions of the mitochondrial cytochrome b gene (I154L, N250D, E256G and V261D) were detected in some mutant isolates of C. beticola but their possible role in Qo-resistance needs further investigation. This is the first study reporting C. beticola strains resistant to Qo inhibitor fungicides due to the biochemical mechanism of target-site modification, resulting from amino acid changes in the mitochondrial cytochrome b␣gene.  相似文献   

18.
Resistance to the fungicide boscalid in laboratory mutants of Botryotinia fuckeliana (Botrytis cinerea) was investigated. The baseline sensitivity to boscalid was evaluated in terms of colony growth (EC50 = 0.3–3 μg ml−1; MIC = 10–30 μg ml−1) and conidial germination (EC50 = 0.03–0.1 μg ml−1; MIC = 1–3 μg ml−1) tests. Mutants were selected in vitro from wild-type strains of the fungus on a fungicide-amended medium containing acetate as a carbon source. Mutants showed two different levels of resistance to boscalid, distinguishable through the conidial germination tests: low (EC50 ∼ 0.3 μg ml−1, ranging from 0.03 to 1 μg ml−1; MIC > 100 μg ml−1) and high (EC50 > 100 μg ml−1) resistance. Analysis of meiotic progeny from crosses between resistant mutants and sensitive reference strains showed that resistant phenotypes were due to mutations in single major gene(s) inherited in a Mendelian fashion, and linked with both the Daf1 and Mbc1 genes, responsible for resistance to dicarboximide and benzimidazole fungicides, respectively. Gene sequence analysis of the four sub-units of the boscalid-target protein, the succinate dehydrogenase enzyme, revealed that single or double point mutations in the highly conserved regions of the iron-sulphur protein (Ip) gene were associated with resistance. Mutations resulted in proline to leucine or phenylalanine replacements at position 225 (P225L or P225F) in high resistant mutants, and in a histidine to tyrosine replacement at position 272 (H272Y) in low resistant mutants. Sequences of the flavoprotein and the two transmembrane sub-units of succinate dehydrogenase were never affected.  相似文献   

19.
Eleven sterol biosynthesis-inhibiting fungicides were compared in experiments to determine the physico-chemical properties required for most effective control of take-all by soil treatment. All were active in agar culture against an isolate of the pathogen which causes take-all, Gaeumannomyces grammis var. tritici, with prochloraz being the most toxic (EC50 0.02 μg ml?1) and PP 969 the least (EC50 0.44 μg ml?1). Penconazole and PP 969 had vapour activity against the fungus in further bioassays on agar. In soil in pots, the most strongly lipophilic compound, buthiobate, was ineffective against take-all in wheat; triadimenol was most effective and, like flutriafol, nuarimol and PP 969, retained some effectiveness after 12 weeks in soil. PP 969, unlike penconazole or nuarimol, was effective in soil treated unevenly by mixing the fungicides in layers. PP 969 is relatively polar, and it is suggested that this property, allowing redistribution in soil water rather than as vapour, outweighed its poor intrinsic toxicity. The ideal soil-treatment fungicide should therefore be polar and also have good intrinsic activity and moderate persistence. None of the compounds tested had all these properties.  相似文献   

20.
Cercospora leaf spot (CLS), caused by Cercospora beticola, is the most destructive foliar disease and is a problem in sugar beet production areas, such as Central High Plains (states of Colorado, Montana, Nebraska and Wyoming) in the United States. The disease can be controlled by strobilurin fungicides, referred to as quinone outside inhibitors (QoIs), with a single target site on C. beticola. Strobilurin resistance has been reported in beet production areas from the United States, including the Central High Plains. Although strobilurin resistance is quantitatively inherited, it is considered that it has low to medium heritability in the population. Effective diagnostic tools are required for the rapid detection of C. beticola strobilurin resistance. The study obtained a partial nucleotide sequence of the C. beticola cytochrome b gene and determined to a putative protein with ~386 amino acid residues. Eighty C. beticola isolates (2004–2011) from the Central High Plains were analyzed for mutations. We found a single nucleotide polymorphic (SNP) site which led to G143A mutation and was present in 2 C. beticola QoI-resistant isolates. Partial sequences obtained from 82 C. beticola QoI-sensitive isolates showed identical cytochrome b gene. We developed a PCR-RFLP assay that involved an in vitro digestion using Fnu4HI restriction enzyme for the rapid molecular detection of G143A mutation in the C. beticola population. Results indicated the PCR-RFLP assay was reliable, sensitive, and can be used for the rapid detection of C. beticola strobilurin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号