首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Fungicide sprays on soybean in Brazil have contributed to the selection of less sensitive isolates of Corynespora cassiicola. We collected 59 isolates of Ccassiicola from three Brazilian states and two isolates from Paraguay. We investigated their EC50 to quinone outside inhibitors (QoI) and methyl benzimidazole carbamate (MBC), any cross-resistance to compounds within QoI and MBC groups, and characterized the polymorphisms in their cytb and β-tubulin genes. Local associations of polymorphisms identified in each gene were statistically correlated with assays results. In total, 79% and 74% of the isolates were classified as resistant to QoI and MBC fungicides, respectively. There was positive cross-resistance to active ingredients within QoI and MBC groups. For QoI, all isolates presented heteroplasmy in G143A of cytb gene; the mutations F129L and G137R were not found. For MBC, 63% of isolates possessed E198A and 21% possessed F200Y mutations, associated with reduced control by MBC fungicides. Heteroplasmy was identified in two and one isolates from Brazil with E198A and F200Y mutations, respectively. The resistance factor for isolates with E198A (10.9) was statistically similar to the isolate with F200Y (8.8) mutation. Genic association analysis of the in vitro assays using discriminatory doses proved them to be accurate. Reduced sensitivity of Ccassiicola to QoI and MBC was also identified in isolates from Paraguay and resistance to QoI and MBC was widely present in Ccassiicola isolates from the main soybean-producing states in Brazil. Thus, integrated management measures should be adopted to manage soybean target spot in these countries.  相似文献   

2.
BACKGROUND: Cercospora leaf spot (CLS), caused by the fungus Cercospora beticola, is the most serious foliar disease of sugar beet (Beta vulgaris L.) worldwide. Disease control is mainly achieved by timely fungicide applications. In 2011, CLS control failures were reported in spite of application of quinone outside inhibitor (QoI) fungicide in several counties in Michigan, United States. The purpose of this study was to confirm the resistant phenotype and identify the molecular basis for QoI resistance of Michigan C. beticola isolates. RESULTS: Isolates collected in Michigan in 1998 and 1999 that had no previous exposure to the QoI fungicides trifloxystrobin or pyraclostrobin exhibited QoI EC50 values of ?0.006 µg mL?1. In contrast, all isolates obtained in 2011 exhibited EC50 values of > 0.92 µg mL?1 to both fungicides and harbored a mutation in cytochrome b (cytb) that led to an amino acid exchange from glycine to alanine at position 143 (G143A) compared with baseline QoI‐sensitive isolates. Microsatellite analysis of the isolates suggested that QoI resistance emerged independently in multiple genotypic backgrounds at multiple locations. A real‐time PCR assay utilizing dual‐labeled fluorogenic probes was developed to detect and differentiate QoI‐resistant isolates harboring the G143A mutation from sensitive isolates. CONCLUSION: The G143A mutation in cytb is associated with QoI resistance in C. beticola. Accurate monitoring of this mutation will be essential for fungicide resistance management in this pathosystem. Copyright © 2012 Society of Chemical Industry  相似文献   

3.
Quinone outside inhibitors (QoIs) and succinate dehydrogenase inhibitors (SDHIs) are major groups of agricultural fungicides. However, resistance to some of these fungicides has been reported in a Japanese population of Puccinia horiana, the causal agent of chrysanthemum white rust disease. Because their mechanisms are not well understood, we investigated the existence of mutations in QoI and SDHI target protein-encoding genes. Eight out of nine isolates from cultivated chrysanthemum carried L275F and L299F amino acid substitutions in cytochrome b, the target protein of QoIs. These isolates showed 23- and 17-fold higher EC50 values for the QoI fungicides azoxystrobin and kresoxim-methyl, respectively, in basidiospore germination inhibitory tests, while they were hypersensitive to another QoI, famoxadone. All nine isolates were resistant to SDHI oxycarboxin and carried the I88F substitution in SdhC. This substitution was orthologous to the SdhC-I86F substitution found in some Brazilian isolates of the soybean rust fungus, Phakopsora pachyrhizi, showing reduced sensitivity to some SDHIs. Although the rarity of wild-type sensitive isolates, the subsequent limited number of comparisons between wild types and mutants, and a difficulty in applying reverse genetic analysis to this obligate parasite, are obstacles in making definitive conclusions, L275F and L299F in cytochrome b and SdhC-I88F are suspected to be responsible for the different patterns of sensitivity to QoI and for oxycarboxin-resistance in P. horiana, respectively.  相似文献   

4.
Tan spot, caused by the fungus Pyrenophora tritici-repentis (Ptr), is a disease that has become more prevalent and intense in wheat crops in Argentina in recent years. Failure to control the disease with strobilurin fungicides, which were once effective, has been observed in different zones where wheat is grown. However, whether or not true resistance is present in the pathogen population in the region is not scientifically confirmed. This study evaluated the sensitivity of numerous Ptr isolates to representative QoI fungicides used in Argentina through in vitro and in planta assays, as well as through molecular analysis. Eighty-two monosporic isolates obtained in different locations in the north and south of Buenos Aires province in 2014, 2016, and 2018 were tested to determine sensitivity to selected QoI fungicides in conidial germination and mycelial inhibition assays, as well as in molecular analysis. Conidial germination was not inhibited at 1 µg/ml of azoxystrobin, trifloxystrobin, and pyraclostrobin. On the other hand, mycelial growth was inhibited by 59%, 56%, and 86% at 100 µg/ml of azoxystrobin, trifloxystrobin, and pyraclostrobin, respectively. The molecular analysis detected the G143A mutation in the cytb gene of all the 82 Ptr isolates, but the F129L and G137R substitutions were not present. This study documents the G143A mutation conferring QoI resistance in Ptr in South America. The findings of this study are key for future decisions regarding use of fungicide and rotation in the region.  相似文献   

5.
Cucurbit powdery mildew caused by Podosphaera fusca limits crop production in Spain. Since its management is strongly dependent on chemicals, the rational design of control programmes requires a good understanding of the fungicide resistance phenomenon in field populations. Fifty single-spore isolates of P. fusca were tested for sensitivity to three quinone-outside inhibiting (QoI) fungicides: azoxystrobin, kresoxim-methyl and trifloxystrobin. Minimum inhibitory concentration (MIC) values for QoI-sensitive isolates were found to range from 0.25 to 10 μg ml−1 for azoxystrobin to 5–25 μg ml−1 for kresoxim-methyl, using a leaf disc-based bioassay. High levels of cross-resistance to QoI fungicides were found. Eleven isolates showed resistance to the three QoI fungicides tested with MIC and EC50 values >500 μg ml−1 resulting in RF values as high as >715 and >1000 for trifloxystrobin and azoxystrobin, respectively. A survey of P. fusca QoI resistance was carried out in different provinces located in the south central area of Spain during the cucurbit growing seasons in 2002, 2003 and 2004. Examination of a collection of 250 isolates for QoI resistance revealed that 32% were resistant to the three fungicides tested; the provinces of Ciudad Real, Córdoba and Murcia being the locations with the highest frequencies of resistance (44–74%). By contrast, no resistance was found in Badajoz, and relatively low frequencies were observed in Almería and Valencia (10–13%). Nearly 50% of resistant isolates were collected from melon plants. Based on these data, recommendations about the use of QoI fungicides for cucurbit powdery mildew management in the sampled areas are made.  相似文献   

6.
BACKGROUND: Botrytis cinerea Pers.: Fr. is a high‐risk pathogen for fungicide resistance development that has caused resistance problems on many crops throughout the world. This study investigated the fungicide sensitivity profile of isolates from kiwifruits originating from three Greek locations with different fungicide use histories. Sensitivity was measured by in vitro fungitoxicity tests on artificial nutrient media. RESULTS: Seventy‐six single‐spore isolates were tested for sensitivity to the SDHI fungicide boscalid, the QoI pyraclostrobin, the anilinopyrimidine cyprodinil, the hydroxyanilide fenhexamid, the phenylpyrrole fludioxonil, the dicarboxamide iprodione and the benzimidazole carbendazim. All isolates from Thessaloniki showed resistance to both boscalid and pyraclostrobin, while in the other two locations the fungal population was sensitive to these two fungicides. Sensitive isolates showed EC50 values to boscalid and pyraclostrobin ranging from 0.9 to 5.2 and from 0.04 to 0.14 mg L?1 respectively, while the resistant isolates showed EC50 values higher than 50 mg L?1 for boscalid and from 16 to > 50 mg L?1 for pyraclostrobin. All QoI‐resistant isolates carried the G143A mutation in cytb. Sensitivity determinations to the remaining fungicides revealed in total eight resistance phenotypes. No isolates were resistant to the fungicides fenhexamid and fludioxonil. CONCLUSION: This is the first report of B. cinerea field isolates with resistance to both boscalid and pyraclostrobin, and it strongly suggests that there may be a major problem in controlling this important pathogen on kiwifruit. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
Pristine® (pyraclostrobin + boscalid) is a fungicide registered for the control of alternaria late blight in pistachio. A total of 95 isolates of Alternaria alternata collected from orchards with and without a prior history of Pristine® sprays were tested for their sensitivity towards pyraclostrobin, boscalid and Pristine® in conidial germination assays. The EC50 values for 35 isolates from orchards without Pristine® sprays ranged from 0·09 to 3·14 µg mL?1 and < 0·01 to 2·04 µg mL?1 for boscalid and Pristine®, respectively. For pyraclostrobin, 27 isolates had EC50 < 0·01 µg mL?1 and six had low resistance (mean EC50 value = 4·71 µg mL?1). Only one isolate was resistant to all three fungicides tested, with EC50 > 100 µg mL?1. Among 59 isolates from the orchard with a history of Pristine® sprays, 56 were resistant to pyraclostrobin; only two were sensitive (EC50 < 0·01 µg mL?1) and one was weakly resistant (EC50 = 10 µg mL?1). For the majority of these isolates EC50 values ranged from 0·06 to 4·22 µg mL?1 for boscalid and from 0·22 to 7·74 µg mL?1 for Pristine®. However, seven isolates resistant to pyraclostrobin were also highly resistant to boscalid and Pristine® and remained pathogenic on pistachio treated with Pristine®. Whereas strobilurin resistance is a common occurrence in Alternaria of pistachio, this is the first report of resistance to boscalid in field isolates of phytopathogenic fungi. No cross resistance between pyraclostrobin and boscalid was detected, suggesting that Pristine® resistance appears as a case of multiple resistance.  相似文献   

8.
This study characterized a fragment of the cytochrome b gene from Ascochyta rabiei isolates collected in North Dakota, USA, that varied in sensitivity to quinone‐outside inhibitor (QoI) fungicides. The sequenced genomic DNA fragment contained a group I intron immediately after codon 131. The size of the cytochrome b gene was estimated to be over 4·6 kb. Multiple alignment analysis of cDNA and protein sequences revealed a mutation that changed the codon for amino acid 143 from GGT to GCT, introducing an amino acid substitution from glycine to alanine (G143A), which is frequently associated with QoI resistance. Based on this mutation, a diagnostic PCR assay was developed using an approach called mismatch amplification mutation assay. This method was successfully validated by testing a total of 70 A. rabiei isolates, of which 38 isolates were found to be QoI‐resistant. This fast and accurate PCR assay provides a very useful and simple screening method for QoI resistance in A. rabiei isolates.  相似文献   

9.
Wheat farmers rely on fungicides to protect fields against several foliar and flowering diseases, including Fusarium head blight (FHB). A range of active ingredients is used in isolation or in dual premixes that include a dimethylation inhibitor (DMI) or a quinone outside inhibitor (QoI) fungicide. Comprehensive information about fungicide resistance in F. graminearum is available for DMIs, while for QoIs the data are scarce. We characterized 225 strains obtained from two states in southern Brazil, Rio Grande do Sul (RS) and Paraná (PR), in relation to their response to two QoIs. The median EC50 (effective concentration leading to 50% inhibition of conidial germination) value for azoxystrobin (n = 25 isolates) was 2.20 μg/ml in the PR population and 4.04 μg/ml in the RS population. For pyraclostrobin (n = 50), the median EC50 was 0.28 μg/ml in the PR population and 0.24 μg/ml in the RS population. Evidence of cross-resistance could not be detected. Screening using a discriminatory dose (DD) for azoxystrobin in a larger number of isolates from PR (n = 75) and RS (n = 100) states allowed the detection of 50% and 28% sensitive strains, respectively. Using the DD for pyraclostrobin, 33% and 18.8% were classified as less sensitive in the PR and RS isolates, respectively. In RS, the frequency of less-sensitive isolates increased over time (2007–2011). No point mutation at any of the target spots (F129L, G137R, G143A) was detected. Our results represent an important step towards the establishment of a sensitivity profile for two of the most commonly used QoIs in commercial premixes targeting FHB control.  相似文献   

10.
Pyrenopeziza brassicae causes leaf spot disease of Brassicaceae in Europe/Oceania (lineage 1) and North America (lineage 2). In Europe, fungicides currently used for disease management are sterol 14α-demethylase (CYP51) inhibitors (azoles), quinone outside inhibitors (QoIs), and succinate dehydrogenase inhibitors (SDHIs); methyl benzimidazole carbamates (MBCs) are no longer applied. In this study, in vitro screening revealed European populations (collected 2018–2020) had shifted towards decreased azole sensitivity, but the North American population (2014–2016) was highly sensitive. Genotyping revealed CYP51 substitutions G460S or S508T were prevalent in European populations, often with a CYP51 promoter insert. Compared to wildtype CYP51 isolates, those with G460S plus an insert (44/46/151/210/302 bp) were c.25–32-fold and c.50-fold less sensitive to tebuconazole and prochloraz, respectively; those with S508T plus an insert (44/46/151/233 bp) were c.9–15-fold and c.25–40-fold less sensitive to tebuconazole and prochloraz, respectively. Selection for G460S (quantified via pyrosequencing) under different fungicide regimes was investigated in UK field trials, but G460S levels were high (c.76%) before treatment, so further selection during the trials was unclear. Despite the high G460S frequency and low disease pressure, yield data indicated measurable benefit for both azole- and non-azole-based programmes. In vitro screening against the MBC carbendazim showed European populations were predominantly moderately resistant/resistant; the North American population was sensitive. European and North American populations were sensitive to QoI (pyraclostrobin) and SDHI (penthiopyrad) fungicides. Results support an azole plus QoI/SDHI mixing partner for robust disease control and decreased risk of resistance, with continued sensitivity monitoring to ensure optimal strategies are deployed.  相似文献   

11.
Mefenoxam is one of the most commonly used fungicides for managing diseases caused by Phytophthora spp. on ornamentals. The objectives of this study were to determine whether Phytophthora nicotianae, a destructive pathogen of numerous herbaceous annual and perennial plant species in nurseries, has developed resistance to mefenoxam, and to evaluate the fitness of mefenoxam‐resistant isolates. Ninety‐five isolates of P. nicotianae were screened for sensitivity to mefenoxam on 20% clarified V8 agar at 100 a.i. µg mL?1. Twenty‐five isolates were highly resistant to this compound with EC50 values ranging from 235·2 to 466·3 µg mL?1 and four were intermediately resistant with EC50 values ranging from 1·6 to 2·9 µg mL?1. Sixty‐six isolates were sensitive with EC50 values less than 0·04 µg mL?1. Nine resistant and seven sensitive isolates were tested for mefenoxam sensitivity on Pelargonium × hortorum cv. White Orbit. Mefenoxam provided good protection of pelargonium seedlings from colonization by sensitive isolates, but not by any resistant isolates. Four resistant and four sensitive isolates were compared for fitness components and their relative competitive ability on Lupinus Russell Hybrids in the absence of mefenoxam. Resistant isolates outcompeted sensitive ones within 3 to 6 sporulation cycles on lupin seedlings, regardless of their initial proportions in mixed zoospore inoculum. Resistant isolates exhibited greater infection rate and higher sporulation ability than sensitive ones when they were applied separately onto lupins. These results suggest that fungicide resistance may pose a serious challenge to the continued effectiveness of mefenoxam as a control option for nursery growers.  相似文献   

12.
Stem rot caused by Lasiodiplodia theobromae is an important postharvest disease of papaya in Brazil, responsible for reducing the quality and quantity of fruits. Fungicide use is one of the main disease management measures. However, there are no estimates available of pathogen sensitivity to commonly employed fungicides. Therefore, the EC50 from 120 isolates of L. theobromae from northeastern Brazil, representative of six populations of the pathogen, was estimated in vitro for fungicides of the methyl benzimidazole carbamates—MBC (benomyl and thiabendazole) and demethylation-inhibiting—DMI (imazalil, prochloraz, tebuconazole) groups. Mycelial growth on fungicide-free media and virulence on papaya fruits of the MBC-sensitive and non-sensitive isolates were compared. For MBCs, 8.4% of isolates were non-sensitive to fungicides. For the remaining 91.6%, the mean EC50 ranged from 0.002 to 0.13 μg ml−1 and 0.36 to 1.27 μg ml−1 for benomyl and thiabendazole, respectively. For DMIs, the mean EC50 range for imazalil was 0.001 to 2.27 μg ml−1, 0.04 to 1.75 μg ml−1 for prochloraz, and 0.14 to 4.05 μg ml−1 for tebuconazole. The EC50 values of non-sensitive isolates were significantly (P≤0.05) higher those for the sensitive isolates for each of the DMI fungicides. Differences (P≤0.05) were found in the levels of sensitivity to DMI fungicides among the isolate populations associated with orchards. The populations from two orchards were less sensitive to DMIs. No solid evidence was found for fitness costs relating to MBC non-sensitive isolates because mycelial growth in fungicide-free media and virulence on papaya fruits were similar to those of sensitive isolates.  相似文献   

13.
Field isolates of Alternaria alternata collected from tomato processors were characterized for sensitivity to respiration inhibitors using in vitro mycelial growth assays. Pyraclostrobin (QoI), boscalid, fluopyram and isopyrazam (SDHIs) mean EC50 values were 0.32, 1.43, 2.21, and 3.53 μg/ml respectively. Of the 42 isolates, 36 were sensitive to all respiration inhibiting fungicides tested whereas three isolates were less sensitive to boscalid, one to pyraclostrobin and two were simultaneously resistant to both inhibitors and isopyrazam. Correlation analysis between fungicide sensitivities revealed a positive cross-resistance between pyraclostrobin and tebuconazole, and between cyprodinil and mancozeb. There was no cross-resistance between QoIs, SHDIs or any other mode of action. Sequencing of the QoI and SDHI targets revealed the G143A cytochrome b resistance mutation in all pyraclostrobin-resistant isolates while analysis of the succinate dehydrogenase coding gene revealed point mutations in two of three of the gene subunits analyzed in boscalid-resistant isolates. Specifically, two isolates carried the H277Y and three the H133Q resistance mutations located in the sdhB and sdhD subunits of the respiration complex II, respectively. Isolates bearing the H277Y mutation also carried the G143A cytochrome b resistance mutation. Boscalid and pyraclostrobin-resistant isolates exhibited greater pathogenicity and sporulation compared to sensitive isolates, respectively. Isolates with cross-resistance exhibited greater pathogenicity and sporulation but slower mycelial growth compared to sensitive isolates. This is the first report of field isolates of A. alternata with single or double resistance to QoIs and SDHIs in Greece and should be considered in planning and implementing effective anti-resistance strategies.  相似文献   

14.

Sensitivity and inherent resistance risk of Alternaria solani to fludioxonil, cross-resistance profiles and the potential implications of resistance mutations on fitness parameters were investigated. Fludioxonil was highly effective against a wild type A. solani field strain both in vitro (EC50?=?0.05 μg/mL) and in preventive applications on artificially inoculated tomato fruit. Mutants with low [Resistance factor (Rf): 15 based on EC50], medium (Rf: 150–300) and high (Rf: > 1000) levels of phenylpyrrole resistance were isolated from the wild type strain at high frequencies following mutagenesis with UV irradiation and selection on fludioxonil containing medium. Resistant isolates retained their resistance levels even after 9 subcultures on fungicide-free growth medium while they could express their resistant phenotypes in planta. Investigation of cross-resistance relationships showed that fludioxonil resistance mutations also reduce the sensitivity of mutant strains to the aromatic hydrocarbon fungicide quintozene as well as the dicarboximides iprodione and vinclozolin. No cross-resistance was observed between fludioxonil and fungicides with different modes of action such as the sterol biosynthesis inhibitors (DMIs) imazalil and flusilazole and the carboxamide boscalid. All fludioxonil resistant isolates were more sensitive to the anilinopyrimidine pyrimethanil, while only two isolates were less sensitive to the QoI pyraclostrobin compared to the wild-type strain. Study of fitness determining parameters showed that resistance mutation(s) had no adverse effects on mycelial growth, conidial germination and sensitivity to osmotic stress while they had a pleiotropic effect on virulence and conidia production in resistant mutants. Results of the present study indicate that fludioxonil is a highly effective fungicide against A. solani, while the risk of resistance development to this fungicide is considered to be medium making fludioxonil an ideal alternative to high risk fungicides such as boscalid and pyraclostrobin whose performance against early blight has already been compromised by resistance development.

  相似文献   

15.
Zymoseptoria tritici is the causal agent of septoria tritici blotch (STB), a foliar wheat disease important worldwide. Succinate dehydrogenase inhibitors (SDHIs) have been used in cereals for effective control of STB for several years, but resistance towards SDHIs has been reported in several phytopathogenic fungi. Resistance mechanisms are target‐site mutations in the genes coding for subunits B, C and D of the succinate dehydrogenase (SDH) enzyme. Previous monitoring data in Europe indicated the presence of single isolates of Z. tritici with reduced SDHI sensitivity. These isolates carried mutations leading to amino acid exchanges: C‐T79N, C‐W80S in 2012; C‐N86S in 2013; B‐N225T and C‐T79N in 2014; and C‐V166M, B‐T268I, C‐N86S, C‐T79N and C‐H152R in 2015. The current study provides results from microtitre and greenhouse experiments to give an insight into the impact of different mutations in field isolates on various SDHIs. In microtitre tests, the highest EC50 values for all tested SDHIs were obtained with mutants carrying C‐H152R. Curative greenhouse tests with various SDHIs confirmed the findings of microtitre tests that isolates with C‐H152R are, in general, controlled with lower efficacy than isolates carrying B‐T268I, C‐T79N and C‐N86S. SDHI‐resistant isolates of Z. tritici found in the field were shown to have cross‐resistance towards all SDHIs tested. So far, SDHI‐resistant isolates of Z. tritici have been found in low frequencies in Europe. Therefore, FRAC recommendations for resistance management in cereals, including a limited number of applications, alternation and combination with other MOAs, should be followed to prolong SDHI field efficacy.  相似文献   

16.
BACKGROUND: Succinate dehydrogenase inhibitors (SDHIs) constitute a fungicide class with increasing relevance in crop protection. These fungicides could play a crucial role in successful management of grey mould disease. In the present study the effect of fluopyram, a novel SDHI fungicide, on several developmental stages of Botrytis cinerea was determined in vitro, and the protective and curative activity against the pathogen was determined on strawberry fruit. Furthermore, fungal baseline sensitivity was determined in a set of 192 pathogen isolates. RESULTS: Inhibition of germ tube elongation was found to be the most sensitive growth stage affected by fluopyram, while mycelial growth was found to be the least sensitive growth stage. Fluopyram provided excellent protective activity against B. cinerea when applied at 100 µg mL?1 96, 48 or 24 h before the artificial inoculation of the strawberry fruit. Similarly, fluopyram showed a high curative activity when it was applied at 100 µg mL?1 24 h post‐inoculation, but, when applications were conducted 48 or 96 h post‐inoculation, disease control efficacy was modest or low. The measurement of baseline sensitivity showed that it was unimodal in all the populations tested. The individual EC50 values for fluopyram ranged from 0.03 to 0.29 µg mL?1. In addition, no correlation was found between sensitivity to fluopyram and sensitivity to other fungicides, including cyprodinil, fenhexamid, fludioxonil, iprodione, boscalid and pyraclostrobin. CONCLUSIONS: The obtained biological activity, baseline sensitivity and cross‐resistance relationship data suggest that fluopyram could play a key role in grey mould management in the near future and encourage its introduction into spray programmes. Copyright © 2011 Society of Chemical Industry  相似文献   

17.
Tomato and strawberry are the most important protected crops in Lebanon and are seriously affected by grey mould disease, caused by Botrytis cinerea. In the present study, the fungicide sensitivity assays revealed medium to high frequencies of B. cinerea isolates resistant to benzimidazoles, dicarboximides, and anilinopyrimidines on tomato and strawberry. Fludioxonil- and boscalid-resistant mutants were uncommonly found at generally low frequency on both crops. Resistance to fenhexamid was detected in only one site on tomato but in most sites on strawberry with high frequencies, and the occurrence of resistance to QoI fungicides was ascertained on both crops. The majority of the tested isolates (>90%) exhibited multiple fungicide resistance, and isolates resistant to the seven antibotrydial fungicide classes were detected on strawberry in three locations. A high level of resistance was shown by B. cinerea mutants resistant to boscalid, fenhexamid, and QoI fungicides, while two levels of moderate and high resistance to anilinopyrimidines were identified. Genetic analysis revealed point mutations in the target genes commonly associated with resistance in B. cinerea isolates, with all mutants resistant to dicarboximides, fenhexamid, boscalid, and QoI fungicides carrying single-nucleotide polymorphims in BcOS1 (I365S/N, Q369P, and N373S), Erg27 (F412V/I), SdhB (H272R/Y), and cytb (G143A) genes, respectively. The general incorrect use of fungicides has caused the development and spread of fungicide resistance as a widespread phenomenon on protected tomato and strawberry in Lebanon. The implementation of appropriate antiresistance strategies is highly recommended.  相似文献   

18.
Wheat blast is one of the most important and devastating fungal diseases of wheat in South America, South-east Asia, and now in southern Africa. The disease can reduce grain yield by up to 70% and is best controlled using integrated disease management strategies. The difficulty in disease management is compounded by the lack of durable host resistance and the ineffectiveness of fungicide sprays. New succinate dehydrogenase inhibitor (SDHI) fungicides were recently introduced for the management of wheat diseases. Brazilian field populations of the wheat blast pathogen Pyricularia oryzae Triticum lineage (PoTl) sampled from different geographical regions in 2012 and 2018 were shown to be resistant to both QoI (strobilurin) and DMI (azole) fungicides. The main objective of the current study was to determine the SDHI baseline sensitivity in these populations. Moderate levels of SDHI resistance were detected in five out of the six field populations sampled in 2012 and in most of the strains isolated in 2018. No association was found between target site mutations in the sdhB, sdhC, and sdhD genes and the levels of SDHI resistance, indicating that a pre-existing resistance mechanism not associated with target site mutations is probably present in Brazilian wheat blast populations.  相似文献   

19.
Baseline sensitivity of Sclerotinia sclerotiorum, causal agent of stem rot of rapeseed, to a dicarboximide fungicide iprodione was determined using 50 isolates (historic population) collected in 2001 from the rapeseed fields without a previous history of dicarboximide usage. The 50% effective concentration (EC50) values to iprodione of these wild-type isolates ranged from 0.163 to 0.734 μg/ml with a mean of 0.428 μg/ml. In 2007 and 2008, 111 isolates (current population) were collected from rapeseed fields with 4–5 years of iprodione application. The EC50 values of these 111 isolates ranged from 0.117 to 0.634 μg/ml. The historic and current populations were not significantly (> 0.05) different in sensitivity to iprodione. The EC50 values of these 161 isolates to a carboxamide fungicide boscalid ranged from 0.002 to 0.391 μg/ml with a mean of 0.042 μg/ml. In the laboratory, three iprodione-resistant (IR) isolates HA17-IR, SZ31-IR, and SZ45-IR were induced from wild-type isolates HA17, SZ31, and SZ45, respectively. The EC50 values of the IR isolates were 200-fold higher than those of the original wild-type parents. The IR isolates showed an increase in osmotic sensitivity. The IR isolate HA17-IR lost its ability to produce sclerotia, and showed a significantly lower virulence on rapeseed leaves than its parent isolate HA17. In contrast, the IR isolate SZ31-IR had a significantly higher virulence than its wild-type parent SZ31. PCR assays showed that the partial two-component histidine kinase (os-1) gene, which is the putative target gene of iprodione, was deleted in the low virulent IR isolate HA17-IR. DNA sequence analysis showed that each of the other two IR isolates SZ31-IR and SZ45-IR had two point mutations in their partial os-1 genes. These results indicate that the mutations in os-1 gene may be associated with dicarboximide sensitivity, sclerotial development, and virulence in S. sclerotiorum.  相似文献   

20.
桃褐腐病菌(Monilinia fructicola)对3种杀菌剂的敏感性   总被引:1,自引:0,他引:1  
采用生长速率法测定了采自北京平谷区3个桃园的125株桃褐腐病菌对甲基硫菌灵、戊唑醇和异菌脲3种杀菌剂的敏感性,发现甲基硫菌灵对桃褐腐病菌的EC50主要分布在1.0×10-5~0.2μg/mL,戊唑醇对桃褐腐病菌的EC50主要分布在0.006~0.022μg/mL之间。异菌脲对桃褐腐病菌的EC50主要分布在0.15~0.55μg/mL之间。研究结果表明,北京地区的桃褐腐病菌对这3种杀菌剂都比较敏感,未产生明显的抗药群体。建立了褐腐病菌对异菌脲抗药性的敏感基线。而且,数据分析表明:甲基硫菌灵、戊唑醇和异菌脲之间均不存在交互抗性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号