首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Microwave irradiation was evaluated as a non-toxic alternate to chloroform fumigation for routine measurement of soil microbial biomass C. Microwave energy was applied to moist soil to disrupt microbial cells. The flush of C released was then measured after extraction or incubation. Microwave irradiation at 800 J g–1 soil was optimal because this level resulted in an almost instantaneous rise in soil temperature (≥80  °C), an abrupt reduction in microbial activity, maximal release of biomass C, and minimal solubilization of humic substances. Both incubation-CO2 titration and extraction-colorimetry methods were used on separate 20-g subsamples to compare the labile C in the microwave-treated and untreated soil samples. The incubation-titration method was also used to measure C in chloroform-fumigated soil samples. Averaged across soils, the chloroform fumigation yielded 123.3±5.1 mg CO2-C kg–1. Microwave irradiation yielded 93.6±3.9 mg CO2-C kg–1 soil determined by incubation and 52.4±2.4 mg C kg–1 soil determined by extraction, accounting for 76% and 42% of the net flush of C measured by the chloroform fumigation. Microwave-stimulated net flushes of C were correlated closely (r 2=0.974 for incubation or 0.908 for extraction) with microbial biomass C measured by the chloroform fumigation. Little correlation was found with the total soil organic C (r 2=0.241 for incubation or for 0.166 extraction). Mean efficiency factors for incubation (K MI) or extraction (K ME) were used to calculate microbial biomass C from net flushes of C between microwaved and unmicrowaved soils. Values of K MI and K ME were not affected by soil pH, bulk density or clay contents. Extraction of microwaved soil by 0.5M K2SO4 proved to be a simple, fast, precise, reliable, and safe method to measure soil microbial biomass C. Received: 12 September 1997  相似文献   

2.
Information on carbon (C) flows and transformations in the rhizosphere is vital for understanding soil organic matter dynamics and modelling its turnover. We followed the translocation of photosynthetically fixed C in three hill pastures that varied in their phosphorus (P) fertility, using a 14C-CO2 pulse-labelling chamber technique. Pasture shoot, root and soil samples were taken after 4h, 7 days and 35 days chase periods to examine the fluxes of 14C in the pasture plant-root-soil system. Shoot growth over 35 days amounted to 114, 179 and 182gm–2 at the low (LF), medium (MF) and high (HF) fertility pasture sites, respectively. The standing root biomass extracted from the soil did not differ significantly between sampling periods at any one level of fertility, but was significantly different across the three levels of fertility (1367, 1763 and 2406gm–2 at the LF, MF and HF pastures, respectively). The above- and below-ground partitioning of 14C was found to vary with the length of the chase period and fertility. Although most 14C (74%, 65% and 57% in the LF, MF and HF pastures, respectively) was in the shoot biomass after 4h, significant translocation to roots (23–39%) was also detected. By day 35, about 10% more 14C was partitioned below-ground in the LF pasture compared with the HF pasture. This is consistent with the hypothesis that, at limiting fertility, pasture plants allocate proportionally more resource below-ground for the acquisition of nutrients. In the LF site, with an annual assimilated C of 7064kgha–1, 2600kg was respired, 1861kg remained above-ground in the shoot and 2451kg was translocated to roots. In the HF pasture, of the 17313kgha–1 C assimilated, 7168kg was respired, 5298 remained in the shoot and 4432kg was translocated to the roots. This study provides, for the first time, data on the fluxes and quantities of C partitioned in a grazed pasture. Such data are critical for modelling C turnover and for constructing C budgets for grazed pasture ecosystems. Received: 31 July 1996  相似文献   

3.
 The effects on soil condition of increasing periods under intensive cultivation for vegetable production on a Typic Haplohumult were compared with those of pastoral management using soil biological, physical and chemical indices of soil quality. The majority of the soils studied had reasonably high pH, exchangeable cation and extractable P levels reflecting the high fertilizer rates applied to dairy pasture and more particularly vegetable-producing soils. Soil organic C (Corg) content under long-term pasture (>60 years) was in the range of 55 g C kg–1 to 65 g C kg–1. With increasing periods under vegetable production soil organic matter declined until a new equilibrium level was attained at about 15–20 g C kg–1 after 60–80 years. The loss of soil organic matter resulted in a linear decline in microbial biomass C (Cmic) and basal respiratory rate. The microbial quotient (Cmic/Corg) decreased from 2.3% to 1.1% as soil organic matter content declined from 65 g C kg–1 to 15 g C kg–1 but the microbial metabolic quotient (basal respiration/Cmic ratio) remained unaffected. With decreasing soil organic matter content, the decline in arginine ammonification rate, fluorescein diacetate hydrolytic activity, earthworm numbers, soil aggregate stability and total clod porosity was curvilinear and little affected until soil organic C content fell below about 45 g C kg–1. Soils with an organic C content above 45 g C kg–1 had been under pasture for at least 30 years. At the same Corg content, soil biological activity and soil physical conditions were markedly improved when soils were under grass rather than vegetables. It was concluded that for soils under continuous vegetable production, practices that add organic residues to the soil should be promoted and that extending routine soil testing procedures to include key physical and biological properties will be an important future step in promoting sustainable management practices in the area. Received: 18 November 1997  相似文献   

4.
Summary Information on the mineralization of inorganic phosphate (Pi) from organically bound P (Po) during decomposition of forest floor and soil organic matter is vital for understanding P supply in forest ecosystems. Carbon (C) and phosphorus (P) fluxes were determined for forest floor samples from three Pinus radiata plots which had received no P (Control), 62.5 kg P ha–1 (Low P) and 125 kg P ha–1 (High P) 20 years before sampling. The P concentration of the forest floor samples had increased with fertilizer application, and the C:P ratio ranged between 585 and 1465. During a 9-week laboratory incubation 8.2–19.0% of the forest floor C was evolved as CO2-C. The amount of CO2 evolved from the forest floor of the Control plot was more than twice the amounts from the Low P and High P plots. There was little change in net P mineralization in the Control and Low P treatments throughout the incubation, but it increased slightly for the High P samples, suggesting a critical forest floor C:P ratio of 550 for net P mineralization. Changes in the 32P-specific activities of the Pi and microbial P pools during incubation, and concurrent changes in microbial-32P and 32Pi, indicated internal P cycling between these pools. The rate of internal P cycling varied with forest floor quality, and was highest in the High P forest floor. The High P samples had microbial C:P ratios of 22 : 1 which remained constant during the incubation, suggesting the microorganisms had adequate P levels. Received: 2 July 1997  相似文献   

5.
 The critical S concentration and S requirement of the soil microbial biomass of a granitic regosol was examined. S was applied at the rate of 0, 5, 10, 20, 30 and 50 μg S as MgSO4·7H2O, together with either 3000 μg glucose-C or 3333 μg cellulose-C, 400 μg N, and 200 μg P g –1 soil and 200 μg K g–1 soil. Microbial biomass, inorganic SO4 2–-S, and CO2 emission were monitored over 30 days during incubation at 25  °C. Both glucose and cellulose decomposition rates responded positively to the S made available for microbial cell synthesis. The amounts of microbial biomass C and S increased with the level of applied S up to 10 μg S g–1 soil and 30 μg S g–1 soil in the glucose- and cellulose-amended soil, respectively, and then declined. Incorporated S was found to be concentrated within the microbial biomass or partially transformed into soil organic matter. The concentration of S in the microbial biomass was higher in the cellulose- (4.8–14.2 mg g–1) than in the glucose-amended soil (3.7–10.9 mg g–1). The microbial biomass C:S ratio was higher in the glucose- (46–142 : 1) than in the cellulose-amended soil (36–115 : 1). The critical S concentration in the microbial biomass (defined as that required to achieve 80% of the maximum synthesis of microbial biomass C) was estimated to be 5.1 mg g–1 in the glucose- and 10.9 mg g–1 in the cellulose-amended soil. The minimum requirement of SO4 2–-S for microbial biomass formation was estimated to be 11 μg S g–1 soil and 21 μg S g–1 soil for glucose- and cellulose-amended soil, respectively. The highest levels of activity of the microbial biomass were observed at the SO4 2–-S concentrations of 14 μg S g–1 soil and 17 μg S g–1 soil, for the glucose and cellulose amendments, respectively, and were approximately 31–54% higher during glucose than cellulose decomposition. Received: 20 October 1999  相似文献   

6.
In this study, we investigated the effects of lanthanum (La), one of the rare earth elements (REEs), on microbial biomass C as well as the decomposition of 14C-labelled glucose in a fluvo-aquic soil in 28 days. The soil was collected from the field plots under maize/wheat rotation in Fengqiu Ecological Experimental Station of Chinese Academy of Sciences, Henan Province, China. Application of La decreased soil microbial biomass C during the experimental period, and there was a negative correlation (P < 0.01) between microbial biomass and application rate of La. La increased microbial biomass 14C after 14C glucose addition, and the increase was significant (P < 0.05) at the rates of more than 160 mg kg−1 soil. La slightly increased 14CO2 evolution at lower rates of application but decreased it at higher rates 1 day after 14C glucose addition, while there was no significant effect from days 2 to 28. For the cumulative 14CO2 evolution during the incubation of 28 days, La slightly increased it at the rates of less than 120 mg kg−1 soil, while significantly decreased (P < 0.05) it at the rate of 200 mg kg−1 soil. The results indicated that agricultural use of REEs such as La in soil could decrease the amount of soil microbial biomass and change the pattern of microbial utilization on glucose C source in a short period.  相似文献   

7.
Soil organic matter level, soil microbial biomass C, ninhydrin-N, C mineralization, and dehydrogenase and alkaline phosphatase activity were studied in soils under different crop rotations for 6 years. Inclusion of a green manure crop of Sesbania aculeata in the rotation improved soil organic matter status and led to an increase in soil microbial biomass, soil enzyme activity and soil respiratory activity. Microbial biomass C increased from 192 mg kg–1 soil in a pearl millet-wheat-fallow rotation to 256 mg kg–1 soil in a pearl millet-wheat-green manure rotation. Inclusion of an oilseed crop such as sunflower or mustard led to a decrease in soil microbial biomass, C mineralization and soil enzyme activity. There was a good correlation between microbial biomass C, ninhydrin-N and dehydrogenase activity. The alkaline phosphatase activity of the soil under different crop rotations was little affected. The results indicate the green manuring improved the organic matter status of the soil and soil microbial activity vital for the nutrient turnover and long-term productivity of the soil. Received: 7 January 1996  相似文献   

8.
Changes in 15N abundance and amounts of biologically active soil nitrogen   总被引:1,自引:0,他引:1  
 Estimation of the capacity of soils to supply N for crop growth requires estimates of the complex interactions among organic and inorganic N components as a function of soil properties. Identification and measurement of active soil N forms could help to quantify estimates of N supply to crops. Isotopic dilution during incubation of soils with added 15NH4 + compounds could identify active N components. Dilution of 15N in KCl extracts of mineral and total N, non-exchangeable NH44 +, and N in K2SO4 extracts of fumigated and non-fumigated soil was measured during 7-week incubation. Samples from four soils varying in clay content from 60 to 710 g kg–1 were used. A constant level of 15N enrichment within KCl and K2SO4 extracted components was found at the end of the incubation period. Total N, microbial biomass C and non-exchangeable NH4 + contents of the soils were positively related to the clay contents. The mineralized N was positively related to the silt plus clay contents. The active soil N (ASN) contained 28–36% mineral N, 29–44% microbial biomass N, 0.3–5% non-exchangeable NH4 + with approximately one third of the ASN unidentified. Assuming that absolute amounts of active N are related to N availability, increasing clay content was related to increased N reserve for crop production but a slower turnover. Received: 7 July 1998  相似文献   

9.
 Gross N mineralization and nitrification rates and their relationships to microbial biomass C and N and enzyme (protease, deaminase and urease) activities were determined in soils treated with dairy shed effluent (DSE) or NH4 + fertilizer (NH4Cl) at a rate equivalent to 200 kg N ha–1 at three water potentials (0, –10 and –80 kPa) at 20  °C using a closed incubation technique. After 8, 16, 30, 45, 60 and 90 days of incubation, sub-samples of soil were removed to determine gross N mineralization and nitrification rates, enzyme activities, microbial biomass C and N, and NH4 + and NO3 concentrations. The addition of DSE to the soil resulted in significantly higher gross N mineralization rates (7.0–1.7 μg N g–1 soil day–1) than in the control (3.8–1.2 μg N g–1 soil day–1), particularly during the first 16 days of incubation. This increase in gross mineralization rate occurred because of the presence of readily mineralizable organic substrates with low C : N ratios, and stimulated soil microbial and enzymatic activities by the organic C and nutrients in the DSE. The addition of NH4Cl did not increase the gross N mineralization rate, probably because of the lack of readily available organic C and/or a possible adverse effect of the high NH4 + concentration on microbial activity. However, nitrification rates were highest in the NH4Cl-treated soil, followed by DSE-treated soil and then the control. Soil microbial biomass, protease, deaminase and urease activities were significantly increased immediately after the addition of DSE and then declined gradually with time. The increased soil microbial biomass was probably due to the increased available C substrate and nutrients stimulating soil microbial growth, and this in turn resulted in higher enzyme activities. NH4Cl had a minimal impact on the soil microbial biomass and enzyme activities, possibly because of the lack of readily available C substrates. The optimum soil water potential for gross N mineralization and nitrification rates, microbial and enzyme activities was –10 kPa compared with –80 kPa and 0 kPa. Gross N mineralization rates were positively correlated with soil microbial biomass N and protease and urease activities in the DSE-treated soil, but no such correlations were found in the NH4Cl-treated soil. The enzyme activities were also positively correlated with each other and with soil microbial biomass C and N. The forms of N and the different water potentials had a significant effect on the correlation coefficients. Stepwise regression analysis showed that protease was the variable that most frequently accounted for the variations of gross N mineralization rate when included in the equation, and has the potential to be used as one of the predictors for N mineralization. Received: 10 March 1998  相似文献   

10.
We investigated Cd, Zn, and Cd + Zn toxicity to soil microbial biomass and activity, and indigenous Rhizobium leguminosarum biovar trifolii, in two near neutral pH clay loam soils, under long-term arable and grassland management, in a 6-month laboratory incubation, with a view to determining the causative metal. Both soils were amended with Cd- or Zn-enriched sewage sludge, to produce soils with total Cd concentrations at four times (12 mg Cd g−1 soil), and total Zn concentrations (300 mg Zn kg−1 soil) at the EU upper permitted limit. The additive effects of Cd plus Zn at these soil concentrations were also investigated. There were no significant differences in microbial biomass C (B C), biomass ninhydrin N (B N), ATP, or microbial respiration between the different treatments. Microbial metabolic quotient (defined as qCO2 = units of CO2–C evolved unit−1 biomass C unit−1 time) also did not differ significantly between treatments. However, the microbial maintenance energy (in this study defined as qCO2-to-μ ratio value, where μ is the growth rate) indicated that more energy was required for microbial synthesis in metal-rich sludge-treated soils (especially Zn) than in control sludge-treated soils. Indigenous R. leguminosarum bv. trifolii numbers were not significantly different between untreated and sludge-treated grassland soils after 24 weeks regardless of metal or metal concentrations. However, rhizobial numbers in the arable soils treated with metal-contaminated sludges decreased significantly (P < 0.05) compared to the untreated control and uncontaminated sludge-treated soils after 24 weeks. The order of decreasing toxicity to rhizobia in the arable soils was Zn > Cd > Cd + Zn.  相似文献   

11.
Crop residues with high C/N ratio immobilize N released during decomposition in soil, thus reducing N losses through leaching, denitrification, and nitrous oxide (N2O) emission. A laboratory incubation experiment was conducted for 84 days under controlled conditions (24°C and moisture content 55% of water-holding capacity) to study the influence of sugarcane, maize, sorghum, cotton and lucerne residues, and mineral N addition, on N mineralization–immobilization and N2O emission. Residues were added at the rate of 3 t C ha−1 to soil with, and without, 150 kg urea N ha−1. The addition of sugarcane, maize, and sorghum residues without N fertilizer resulted in a significant immobilization of soil N. Amended soil had significantly (P < 0.05) lower NO3–N, which reached minimum values of 2.8 mg N kg−1 for sugarcane (at day 28), 10.3 mg N kg−1 for maize (day 7), and 5.9 mg N kg−1 for sorghum (day 7), compared to 22.7 mg N kg−1 for the unamended soil (day 7). During 84 days of incubation, the total mineral N in the residues + N treatments were decreased by 45 mg N kg−1 in sugarcane, 34 mg kg−1 in maize, 29 mg kg−1 in sorghum, and 16 mg kg−1 in cotton amended soil compared to soil + N fertilizer, although soil NO3–N increased by 7 mg kg−1 in lucerne amended soil. The addition of residues also significantly increased amended soil microbial biomass C and N. Maximum emissions of N2O from crop residue amended soils occurred in the first 4–5 days of incubation. Overall, after 84 days of incubation, the cumulative N2O emission was 25% lower with cotton + N fertilizer, compared to soil + N fertilizer. The cumulative N2O emission was significantly and positively correlated with NO3–N (r = 0.92, P < 0.01) and total mineral N (r = 0.93, P < 0.01) after 84 days of incubation, and had a weak but significant positive correlation with cumulative CO2 in the first 3 and 5 days of incubation (r = 0.59, P < 0.05).  相似文献   

12.
This study examines the effects of atrazine on both microbial biomass C and C mineralization dynamics in two contrasting agricultural soils (organic C, texture, and atrazine application history) located at Galicia (NW Spain). Atrazine was added to soils, a Humic Cambisol (H) and a Gleyic Cambisol (G), at a recommended agronomic dose and C mineralization (CO2 evolved), and microbial biomass measurements were made in non-treated and atrazine-treated samples at different time intervals during a 12-week aerobic incubation. The cumulative curves of CO2–C evolved over time fit the simple first-order kinetic model [Ct = Co (1 − e kt )], whose kinetic parameters were quantified. Differences in these parameters were observed between the two soils studied; the G soil, with a higher content in organic matter and microbial biomass C and lower atrazine application history, exhibited higher values of the total C mineralization and the potentially mineralizable labile C pool than those for the H soil. The addition of atrazine modified the kinetic parameters and increased notably the C mineralized; by the end of the incubation the cumulative CO2–C values were 33–41% higher than those in the corresponding non-added soils. In contrast, a variable effect or even no effect was observed on the soil microbial biomass following atrazine addition. The data clearly showed that atrazine application at normal agricultural rates may have important implications in the C cycling of these two contrasting acid soils.  相似文献   

13.
 Soil microbial biomass and the emission of CO2 from the soil surface were measured in yellow soils (Ultisols) of the karst areas of southwest China. The soils are relatively weathered, leached and impoverished, and have a low input of plant residues. The measurements were made for a 1-year period and show a reciprocal relationship between microbial biomass and surface CO2 efflux. The highest (42.6±2.8 mg CO2-C m–2 h–1) and lowest (15.6±0.6 mg CO2-C m–2 h–1) CO2 effluxes are found in the summer and winter, respectively. The cumulative CO2 efflux is 0.24 kg CO2-C m–2 year–1. There is also a marked seasonal variation in the amount of soil microbial biomass carbon, but with the highest (644±71 μg C g–1 soil) and lowest (270±24 μg C g–1 soil) values occurring in the winter and summer, respectively. The cumulative loss of soil microbial biomass carbon in the top 10 cm of the soil was 608 μg C g–1 year–1 soil over 17 sampling times. The mean residence time of microbial biomass is estimated at 105 days, suggesting that the carbon in soil microbial biomass may act as a source of the CO2 released from soils. Received: 13 July 1999  相似文献   

14.
Quantifying microbial biomass phosphorus in acid soils   总被引:10,自引:0,他引:10  
 This study aimed to validate the fumigation-extraction method for measuring microbial biomass P in acid soils. Extractions with the Olsen (0.5 M NaHCO3, pH 8.5) and Bray-1 (0.03 M NH4F–0.025 M HCl) extractants at two soil:solution ratios (1 : 20 and 1 : 4, w/v) were compared using eight acid soils (pH 3.6–5.9). The data indicated that the flushes (increases following CHCl3-fumigation) of total P (Pt) and inorganic P (Pi) determined by Olsen extraction provided little useful information for estimating the amount of microbial biomass P in the soils. Using the Bray-1 extractant at a soil:solution ratio of 1 : 4, and analysing Pi instead of Pt, improves the reproducibility (statistical significance and CV) of the P flush in these soils. In all the approaches studied, the Pi flush determined using the Bray-1 extractant at 1 : 4 provided the best estimate of soil microbial biomass P. Furthermore, the recovery of cultured bacterial and fungal biomass P added to the soils and extracted using the Bray-1 extractant at 1 : 4 was relatively constant (24.1–36.7% and 15.7–25.7%, respectively) with only one exception, and showed no relationship with soil pH, indicating that it behaved differently from added Pi (recovery decreased from 86% at pH 4.6 to 13% at pH 3.6). Thus, correcting for the incomplete recovery of biomass P using added Pi is inappropriate for acid soils. Although microbial biomass P in soil is generally estimated using the Pi flush and a conversion factor (k P) of 0.4, more reliable estimates require that k P values are best determined independently for each soil. Received: 3 February 2000  相似文献   

15.
 The fate of 15N-labeled plant residues from different cover-cropping systems and labeled inorganic N fertilizer in the organic, soil mineral, microbial biomass and soil organic matter (SOM) particle-size fractions was investigated in a sandy Lixisol. Plant residues were from mucuna (legume), lablab (legume), imperata (grass), maize (cereal) and mixtures of mucuna or lablab with imperata or maize, applied as a surface mulch. Inorganic N fertilizer was applied as 15N-(NH4)2SO4 at two rates (21 and 42 mg N kg–1 soil). Total N release from mucuna or lablab residues was 2–3 times higher than from the other residues, whereas imperata immobilized N throughout the study period. In contrast, 15N was mineralized from all the plant residues irrespective of the mineralization–immobilization pattern observed for total N. After 168 days, 69% of soil mineral N in mucuna- or lablab-mulched soils was derived from the added residues, representing 4–8% of residue N, whereas 9–30% of inorganic N was derived from imperata, maize and the mixed residues. At the end of the study, 4–19% of microbial biomass N was derived from the added residue/fertilizer-N, accounting for 1–3% of added residue-N. Averaged across treatments, particulate SOM fractions accounted for less than 1% of the total soil by weight but contained 20% of total soil C and 8% of soil N. Soils amended with mucuna or lablab incorporated more N in the 250–2000 μm SOM pool, whereas soil amended with imperata or the mixed residues incorporated similar proportions of labeled N in the 250–2000 μm and 53–250 μm fractions. In contrast, in soils receiving the maize or inorganic fertilizer-N treatments, higher proportions of labeled N were incorporated into the 53–250 μm than the 250–2000 μm fractions. The relationship between these differences in residue/fertilizer-N partitioning into different SOM particle-size fractions and soil productivity is discussed. Received: 12 March 1999  相似文献   

16.
A 42-day incubation was conducted to study the effect of glucose and ammonium addition adjusted to a C/N ratio of 12.5 on sugarcane filter cake decomposition and on the release of inorganic N from microbial residues formed initially. The CO2 evolved increased in comparison with the non-amended control from 35% of the added C with pure +5 mg g−1 soil filter cake amendment to 41% with +5 mg g−1 soil filter cake +2.5 mg g−1 soil glucose amendment to 48% with 5 mg g−1 soil filter cake +5 mg g−1 soil glucose amendment. The different amendments increased microbial biomass C and microbial biomass N within 6 h and such an increase persisted. The fungal cell-membrane component ergosterol initially showed a disproportionate increase in relation to microbial biomass C, which completely disappeared by the end of the incubation. The cellulase activity showed a 5-fold increase after filter cake addition, which was not further increased by the additional glucose amendment. The cellulase activity showed an exponential decline to values around 4% of the initial value in all treatments. The amount of inorganic N immobilized from day 0 to day 14 increased with increasing amount of C added, in contrast to the control treatment. After day 14, the immobilized N was re-mineralized at rates between 1.3 and 1.5 μg N g−1 soil d−1 in the treatments being more than twice as high as in the control treatment. This means that the re-mineralization rate is independent of the actual size of the microbial residues pool and also independent of the size of the soil microbial biomass.  相似文献   

17.
The response of the soil microbial biomass to seasonal changes was investigated in the field under pastures. These studies showed that over a 9-month period, microbial biomass carbon, phosphorus and sulphur (biomass C, P, S), and their ratios (C:P, C:S, and P:S) responded differently to changes in soil moisture and to the input of fresh organic materials. From October to December (1993), when plant residues were largely incorporated into the soils, biomass C and S increased by 150–210%. Biomass P did not increase over this time, having decreased by 22–64% over the dry summer (July to September). There was no obvious correlation between biomass C, P, and S and air temperature. The largest amounts of biomass C and P (2100–2300μg and 150–190μgg–1 soil, respectively) were found in those soils receiving farmyard manure (FYM or FYM+NPK) and P fertilizer, whereas the use of ammonium sulphate decreased biomass C and P. The C:P, C:S, and P:S ratios of the biomass varied considerably (9–276:1; 50–149:1; and 0.3–14:1, respectively) with season and fertilizer regime. This reflected the potential for the biomass to release (when ratios were narrow) or to immobilize (wide ratios) P and S at different times of the year. Thus, seasonal responses in biomass C, P, and S are important in controlling the cycling of C, P, and S in pasture and ultimately in regulating plant availability of P and S. The uptake of P in the pasture was well correlated with the sum of P in the biomass and soil available pools. Thus, the simultaneous measurement of microbial biomass P and available P provide useful information on the potential plant availability of P. Received: 25 May 1996  相似文献   

18.
 In New Zealand Hieracium is an opportunistic plant that invades high country sites more or less depleted of indigenous vegetation. To understand the invasive nature of this weed we assessed the changes in soil C, N and P, soil microbial biomass C, N and P contents, microbial C : N and C : P ratios, the metabolic quotient, and turnover of organic matter in soils beneath Hieracium and its adjacent herbfield resulting from the depletion of tussock vegetation. The amounts of soil organic C and total N were higher under Hieracium by 25 and 11%, respectively, compared to soil under herbfield. This change reflects an improvement in both the quantity and quality of organic matter input to mineral soil under Hieracium, with higher percentage organic C and a lower C : N ratio. The microbial biomass C, N and P contents were also higher under Hieracium. The amount of C respired during the 34-week incubation indicated differences in the nature of soil organic matter under Hieracium, the unvegetated "halo" zone surrounding Hieracium patches, and herbfield (depleted tussock grassland). Decomposition of organic matter in these zones showed that the Hieracium soil had the greatest rate of CO2 respired, and the halo soil had the lowest. We relate the enhanced organic C turnover to the invasive nature of Hieracium. Net N mineralization was significantly lower from the Hieracium soil (57 mg N g–1 soil N) than from herbfield and halo soils (74 and 71 mg N g–1 soil N, respectively), confirming that the nature of organic N in Hieracium soil is different from adjoining halo and herbfield soils. It seems plausible that specific compounds such as polyphenols and lignins released by Hieracium are not only responsible for increased organic N, but also control the form and amount of N released during organic matter transformations. We conclude that the key to the success of Hieracium in the N-deficient South Island high country of New Zealand lies in its ability to control and sequester N supply through modifying the soil organic matter cycle. Received: 1 December 1998  相似文献   

19.
Biuret is a known contaminant of urea fertilisers that might be useful as a slow release N fertiliser for forestry. We studied carbon (C), net nitrogen (N) mineralisation and soil microbial biomass C and N dynamics in two forest soils (a sandy loam and a silt loam) during a 16-week long incubation following application of biuret (C 23.3%, N 40.8%, O 30.0% and H 4.9%) at concentrations of 0, 2, 10, 100 and 1000 mg kg−1 (oven-dried) soil to assess the potential of biuret as a slow-release N fertiliser. Lower concentrations of biuret specifically increased C mineralisation and soil microbial biomass C in the sandy loam soil, but not in the silt loam soil. A significant decrease of microbial biomass C was found in both soils at week 16 after biuret was applied at higher concentrations. C mineralisation declined with duration of incubation in both soils due to decreased C availability. Biuret at concentrations from 10 to 100 mg kg−1 soil had a significantly positive priming effect on soil organic N mineralisation in both soils. The causes for the priming effects were related to the stimulation of microbial growth and activity at an early stage of the incubation and/or the death of microbes at a later stage, which was biuret-concentration-dependent. The patterns in NH4+-N accumulation differed markedly between the two soils. Net N mineralisation and nitrification were much greater in the sandy loam soil than in the silt loam soil. However, the onset of net nitrification was earlier in the silt loam soil. Biuret might be a potential slow-release N source in the silt loam soil.  相似文献   

20.
 The 15N isotope dilution method was combined with a field incubation technique to provide simultaneous measurements of gross and net rates of N turnover in three long-term swards: unfertilized (Z) or receiving N either from N fixation as clover (C), or as 200 kg fertilizer N ha–1 year–1 (F). Uniform N enrichment of soil microplots was achieved with a multi-point soil injector to measure mineralization/immobilization turnover and nitrification over a 4-day incubation. Net rates of mineralization ranged between 0.6 and 2.9 μg N g–1 day–1 and in all three treatments were approximately half the gross rates. Nitrification rates (gross) were between 1.0 and 1.6 μg N g–1 day–1. In the F treatment, the turnover of NH4 +-N and NO3 -N pools was on a 2- and 4-day cycle, respectively, whereas in the N-limited treatments (C and Z) turnover rates were faster, with the NO3 -N pools turning over twice as fast as the NH4 +-N pools. Therefore, available N was recycled more efficiently in the C and Z treatments, whereas in the F treatment a higher N pool size was maintained which would be more vulnerable to leakage. A large proportion of the added 15N was recovered in the soil microbial biomass (SMB), which represented a 4–5 times larger sink for N than the plant biomass. Although the C treatment had a significantly lower SMB than the grass-only treatments, there were no differences in microbial activity. Gross rates of nitrification increased along the gradient of N input intensity (i.e. Z<C<F), and the addition of a nitrification inhibitor (C2H2) tended to increase microbial immobilization, but did not influence plant N uptake. In this study, the value of combining different techniques to verify net rates was demonstrated and the improved methodology for 15N labelling of soil enabled measurements to be obtained from relatively undisturbed soil under natural field conditions. Received: 25 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号