首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Changes in land use can significantly affect soil properties. This study was conducted in the Taleghan watershed of Tehran Province, Iran, to determine the effects of land use changes on soil organic matter (SOM) and soil physical properties including soil aggregate stability, saturated hydraulic conductivity, infiltration rate, available water content, total porosity and bulk density (BD). In the present study, two sites contained adjacent land uses of natural pasture and dryland farming were selected. Soil samples were taken from depths of 0–15 and 15–30 cm for each land use. The results indicated that the conversion of natural pasture to dryland farming led to a significant decrease in SOM at 0–30 cm in the first and second sites (24.7 and 44.2%, respectively). In addition, a significant increase in BD was observed at a depth of 0–30 cm in dryland farm soils (1.39 g cm–3) compared to pastureland (1.20 g cm–3) at the first site. An increase in BD was also observed at the same depth of dryland farm soils (1.46 g cm–3) and pastureland soils (1.42 g cm–3) at the second site. In addition, total porosity, mean‐weight diameter of aggregates, saturated hydraulic conductivity, available water content and estimated final infiltration rate showed significant differences between land uses. The results showed that the conversion of natural pasture to dryland farming alters soil properties that negatively affect soil productivity and erodibility. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
ABSTRACT

Soil properties may exhibit large spatial variability. Frequently this variability is auto-correlated at a certain scale. In addition to soil-forming factors, soil management, land cover, and agricultural system may affect the spatial variability of agricultural soils. Soil organic matter (OM) is an important soil property contributing toward soil fertility and a key attribute in assessing soil quality. Increasing soil OM increases cation exchange capacity (CEC) and enhances soil fertility. We analyzed the impact of land use on the spatial variability of OM and CEC in a tropical soil, an Oxisol, within São Paulo state, Brazil. Land uses were prairie, maize, and mango. Soil samples were taken at 0–10 and 10–20 cm depths at 84 points within 1-ha plots, i.e., 100 m × 100 m. Statistical variability was higher for soil OM than for CEC. The mango plot contained the highest soil OM, whereas prairie the lowest. Also, soil OM and CEC were significantly related at all land use treatments and depths studied. All soil OM data sets and most of the CEC data sets (with two exceptions) exhibited spatial dependence. When spatial variability was present, the semivariograms showed a nugget effect plus a spherical or an exponential structure. Patterns of soil OM and CEC spatial variability (i.e., model type, ranges of spatial dependence, and nugget effects) were different between land uses and soil depths. In general, CEC exhibited a lower spatial autocorrelation and a weaker spatial structure than soil OM. Moreover, soil OM displayed a higher autocorrelation and was more strongly structured at the 0–10 cm depth than at the 10–20 cm depth. Interpolation by kriging or inverse distance weighting (IDW) allowed to illustrate how the spatial variability of soil OM and CEC differed due to land cover and sampling depth. Modeling and mapping the spatial distribution of soil OM and CEC provided a framework for spatially implicit comparisons of these soil properties, which may be useful for practical applications.  相似文献   

3.
陈峰峰    赵江平  陈云明   《水土保持研究》2023,30(1):190-196
为明确黄土丘陵区典型人工幼林土壤水分时空变化特征,采用ECH2O土壤水分监测系统,基于标准径流小区坡面土壤水分观测方法,收集土壤水分及气象数据,分析了撂荒地与不同类型人工幼林土壤水分状况及时间稳定性。结果表明:(1)与撂荒地相比,人工幼林土壤含水量整体较低,且具有明显的季节性变化特征,变化趋势基本一致,均随降水量的增加(减少)而升高(降低);(2)不同类型人工林土壤水分垂直分布差异较大,相较于撂荒地,刺槐和油松在50 cm深度土层土壤含水量较低,在80—120 cm深度土层土壤含水量较高,丁香幼林土壤水分整体偏低;(3)油松和撂荒地土壤水分代表深度分别为:120 cm和80 cm,决定系数(R2≥0.9)和纳什系数(NSE≥-0.1)对该结果的评价显示土壤水分代表深度的选择均是可接受的,刺槐和丁香不同深度土层土壤水分差异较大。研究认为,在黄土丘陵区,人工幼林显著影响土壤水分垂直分布规律,土壤含水量整体呈低态势,相较于撂荒地,刺槐和丁香土壤水分变异性较大,油松较为稳定。  相似文献   

4.
Pristine peat soils are characterized by large porosity, low density and large water and organic matter contents. Drainage and management practices change peat properties by oxidation, compaction and mineral matter additions. This study examined differences in physical properties (hydraulic conductivity, water retention curve, bulk density, porosity, von Post degree of decomposition) in soil profiles of two peatland forests, a cultivated peatland, a peat extraction area and two pristine mires originally within the same peatland area. Soil hydraulic conductivity of the drained sites (median hydraulic conductivities: 3.3 × 10?5 m/s, 2.9 × 10?8 m/s and 8.5 × 10?8 m/s for the forests, the cultivated site and the peat extraction area, respectively) was predicted better by land use option than by soil physical parameters. Detailed physical measurements were accompanied by monitoring of the water levels between drains. The model ‘DRAINMOD’ was used to assess the hydrology and the rapid fluctuations seen in groundwater depths. Hydraulic conductivity values needed to match the simulation of observed depth to groundwater data were an order of magnitude greater than those determined in field measurements, suggesting that macropore flow was an important pathway at the study sites. The rapid response of depth to groundwater during rainfall events indicated a small effective porosity and this was supported by the small measured values of drainable porosity. This study highlighted the potential role of land use and macropore flow in controlling water table fluctuation and related processes in peat soils.  相似文献   

5.
Soil microbial communities are very sensitive to changes in land use and are often used as indicators of soil fertility. We evaluated the microbial communities in the soils of four types of vegetation (cropland (CP), natural grassland (NG), broadleaf forest (BF) and coniferous forest (CF)) at depths of 0–10 and 10–20 cm on the Loess Plateau in China using phospholipid fatty acid (PLFA) profiling and denaturing gradient gel electrophoresis (DGGE) of DNA amplicons from polymerase chain reactions. The soil microbial communities were affected more by vegetation type than by soil depth. Total organic carbon, total nitrogen, soil-water content, pH, bulk density (BD) and C:N ratio were all significantly associated with the composition of the communities. Total PLFA, bacterial PLFA and fungal PLFA were significantly higher in the BF than the CP. The DGGE analyses showed that NG had the most diverse bacterial and fungal communities. These results confirmed the significant effect of vegetation type on soil microbial communities. BFs and natural grass were better than the CFs for the restoration of vegetation on the Loess Plateau.  相似文献   

6.
The lower Himalayan regions of north‐west India experienced a severe land‐use change in the recent past. A study was thus conducted to assess the effect of grassland, forest, agricultural and eroded land uses on soil aggregation, bulk density, pore size distribution and water retention and transmission characteristics. The soil samples were analysed for aggregate stability by shaking under water and water drop stability by using single simulated raindrop technique. The water‐stable aggregates (WSA) >2 mm were highest (17·3 per cent) in the surface layers of grassland, whereas the micro‐aggregates (WSA < 0·25 mm) were highest in eroded soils. The water drop stability followed the similar trend. It decreased with the increase in aggregate size. Being lowest in eroded soils, the soil organic carbon also showed an adverse effect of past land‐use change. The bulk density was highest in eroded lands, being significantly higher for the individual aggregates than that of the bulk soils. The macroporosity (>150 µm) of eroded soils was significantly (p < 0·05) lower than that of grassland and forest soils. The grassland soils retained the highest amount of water. Significant (p < 0·05) effects of land use, soil depth and their interaction were observed in water retention at different soil water suctions. Eroded soils had significantly (p < 0·05) lower water retention than grassland and forest soils. The saturated hydraulic conductivity and maximum water‐holding capacity of eroded soils were sufficiently lower than those of forest and grassland soils. These indicated a degradation of soil physical attributes due to the conversion of natural ecosystems to farming system and increased erosion hazards in the lower Himalayan region of north‐west India. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Soil compaction is an important component of the land degradation syndrome which is an issue for soil management throughout the world. It is a long standing phenomenon not only associated with agriculture but also with forest harvesting, amenity land use, pipeline installation, land restoration and wildlife trampling. This review concentrates on the impact of soil compaction on practical soil management issues, an area not previously reviewed. It discusses in the context of the current situation, the causes, identification, effects and alleviation of compaction. The principal causes are when compressive forces derived from wheels, tillage machinery and from the trampling of animals, act on compressible soil. Compact soils can also be found under natural conditions without human or animal involvement. Compaction alters many soil properties and adverse effects are mostly linked to a reduction in permeability to air, water and roots. Many methods can be used to measure the changes. In practical situations, the use of visual and tactile methods directly in the field is recommended. The worst problems tend to occur when root crops and vegetables are harvested from soils at or wetter than field capacity. As discussed by a farmer, the effects on crop uniformity and quality (as well as a reduction in yield) can be marked. By contrast, rendzinas and other calcareous soils growing mainly cereals are comparatively free of compaction problems. The effect of a given level of compaction is related to both weather and climate; where soil moisture deficits are large, a restriction in root depth may have severe effects but the same level of compaction may have a negligible effect where moisture deficits are small. Topsoil compaction in sloping landscapes enhances runoff and may induce erosion particularly along wheeltracks, with consequent off‐farm environmental impacts. Indirect effects of compaction include denitrification which is likely to lead to nitrogen deficiency in crops. The effects of heavy tractors and harvesters can to some extent be compensated for by a reduction in tyre pressures although there is concern that deep‐seated compaction may occur. Techniques for loosening compaction up to depths of 45 cm are well established but to correct deeper problems presents difficulties. Several authors recommend that monitoring of soil physical conditions, including compaction, should be part of routine soil management.  相似文献   

8.
[目的]黄土高原地区水资源短缺,探究不同土地利用方式下次降雨对土壤含水量变化的影响对区域水资源优化配置理论探索具有重要意义。[方法]基于甘肃省庆阳市南小河沟径流场自然降雨条件下的实测数据资料及4种土地利用方式(农、林、草、裸)覆盖下的降雨前后观测数据,分析了不同土地利用方式下5种不同次降雨等级的土壤含水量深层变化特征。[结果](1)土壤含水量的动态变化与土地利用方式关系较为密切。在4种土地利用方式中,林地比裸地的蓄水能力好,但裸地的土壤含水量在不同等级降雨影响下的波动最大。随着土层深度的增加,表层土壤含水量对降雨的响应比较明显,中间层和深层具有一定的滞后性。(2)特定降雨条件下,土壤不同深度的水分交换存在明显的水分活跃层分界点。大雨和暴雨条件下,在40 cm土层深度处出现明显的水分活跃层分界点;中雨条件下,除了农地雨后含水量差异较大之外,其他土地利用方式下,从60 cm处开始土壤含水量出现明显的水分活跃层分界点。(3)不同土地利用方式下降雨特征因子与表层土壤含水量的关联性都最小,与中间层和深层土壤含水量的关联性都较高;4种土地利用方式中相对于裸地,林地、草地和农地对土壤水分的调控作用较...  相似文献   

9.
I. Celik   《Soil & Tillage Research》2005,83(2):270-277
Forest and grassland soils in highlands of southern Mediterranean Turkey are being seriously degraded and destructed due to extensive agricultural activities. This study investigated the effects of changes in land-use type on some soil properties in a Mediterranean plateau. Three adjacent land-use types included the cultivated lands, which have been converted from pastures for 12 years, fragmented forests, and unaltered pastures lands. Disturbed and undisturbed soil samples were collected from four sites at each of the three different land-use types from depths of 0–10 cm and 10–20 cm in Typic Haploxeroll soils with an elevation of about 1400 m. When the pasture was converted into cultivation, soil organic matter (SOM) pool of cultivated lands for a depth of 0–20 cm were significantly reduced by, on average 49% relative to SOM content of the pasture lands. There was no significant difference in SOM between the depths in each land-use type, and SOM values of the forest and pasture lands were almost similar. There was also a significant change in soil bulk density (BD) among cultivation (1.33 Mg m−3), pasture (1.19 Mg m−3), and forest (1.25 Mg m−3) soils at depth of 0–20 cm. Only for the pasture, BD of the depth of 0–10 cm was significantly different from that of 10–20 cm. Depending upon the increases in BD and disruption of pores by cultivation, total porosity decreased accordingly. Cultivation of the unaltered pasture obviously increased the soil erodibility measured by USLE-K factor for each soil depth, and USLE-K factor was approximately two times greater in the cultivated land than in the pasture indicating the vulnerability of the cultivated land to water erosion. The mean weight diameter (MWD) and water-stable aggregation (WSA) were greater in the pasture and forest soils compared to the cultivated soils, and didn’t change with the depth for each land-use type. Aggregates of >4.0 mm size were dominant in the pasture and forest soils, whereas the cultivated soils comprised aggregates of the size ≤0.5 mm. I found that samples collected from cultivated land gave the lowest saturated hydraulic conductivity values regardless of soil depths, whereas the highest values were measured on samples from forest soils. In conclusion, the results showed that the cultivation of the pastures degraded the soil physical properties, leaving soils more susceptible to the erosion. This suggests that land disturbances should be strictly avoided in the pastures with the limited soil depth in the southern Mediterranean highlands.  相似文献   

10.
西南山区采煤塌陷对水田土壤物理性质的影响   总被引:4,自引:1,他引:3  
为探讨西南山区采煤塌陷对水田土壤物理性质的影响及受损水田复垦途径,通过野外试验与室内测定方法分析了水田受损前后土壤物理性质的变化,结果表明:1)0~40 cm受损水田土壤容重显著增加,含水率、孔隙度(0~20 cm旱地1、2除外)显著下降;0~60 cm土壤垂直剖面除含水量干化趋同外,构型及演替规律未发生变化;2)水田受损后黏粒含量与成土母质密切相关:0~20 cm土层中0.005 mm黏粒含量高低呈现旱地3(泥页岩风化物)旱地1(泥页岩+灰岩风化物)旱地2(泥页岩+灰岩+砂岩风化物)变化,水耕历史较长、受损漏失严重的水田土壤黏粒(0.005 mm)质量分数均值分布自上而下累积增加;3)试验点土壤剖面构型、成土母质是造成渗透流量和渗透速度随累计时间增加呈减小趋势和波动与趋稳现象的主要原因,采煤塌陷并未对土壤包气带层渗水性产生严重影响;4)根据试验数据分析结果,研究区受损水田复垦可优先选择泥页岩、灰岩风化物沉积区、水耕历史较长、渗透系数小于3 m/d的沟谷区进行。该研究可为研究区采煤塌陷对水田土壤物理性质的影响提供系统诊断依据,并为受损水田复垦提供有效途径。  相似文献   

11.
农田土壤热特性受地表能量平衡、土壤特性和作物生长的影响,存在显著的时空变异性,而目前缺乏关于作物行尺度土壤热特性变异特征的研究。本研究采用定位试验,利用热脉冲技术监测了玉米农田行尺度四个位置处(1/2行间、1/4行间、棵下和棵间)两个深度(2 cm和4.5 cm)土壤热特性的时空变异规律,并分析了土壤温度和含水量对土壤热特性的影响。结果表明,在试验期间,热导率、热容量和热扩散率的变化范围分别为0.66—2.22 W/(m?K),1.46—4.49 MJ/(m3?K)和4.07×10-7—6.88×10-7 m2/s。降雨之后,热导率和热容量增加,且随着时间推移逐渐降低。2 cm深度的土壤热特性的波动较大,棵下位置土壤热导率和热容量值最大,波动最为明显;土壤热扩散率在1/2行间位置最大。在4.5 cm深度,各位置土壤热特性变化趋势基本一致,土壤热导率和热容量值在1/2行间位置最大,土壤热扩散率在棵间位置最大。综合两个土层数据得出1/4行间位置的热导率和热容量更具代表性。本研究中土壤热特性对土壤含水量的响应规律较为明显,随着土壤含水量增加,热导率和热容量线性增加,热扩散率则表现出先增加后降低的规律。在测定的土壤温度范围内,热扩散率随土壤温度增加呈上升趋势。该研究可以为农田水热管理提供理论依据。  相似文献   

12.
Spatial variability of hydro‐physical properties has long been observed, whereas temporal variation is much less documented and considered in studies and applications, particularly of paddy clay soils under different cropping systems. The objective of this study was therefore to assess the seasonal‐ and inter‐seasonal variation of selected hydro‐physical properties of a paddy clay soil under different rice‐based cropping systems with contrasting tillage. In a long‐term experiment, plots were arranged in a randomized complete block design with four treatments and four replications: (i) rice–rice–rice; (ii) rice–maize–rice; (iii) rice–mung bean–rice; and (iv) rice–mung bean–maize. Soil samples were collected at three depths (0–10, 10–20 and 20–30 cm) at three times during two cropping seasons, i.e., 15 days after soil preparation (DASP), 45 DASP and 90 DASP during the winter–spring and spring–summer seasons. Results show that temporal variability of soil bulk density, macro‐porosity (MacP) and matrix‐porosity within both seasons and between seasons was limited for cropping systems with upland crop rotations, whereas within season variation was significant for rice monoculture system. Observed variation in bulk density, matrix‐porosity and MacP was mainly associated with cropping system and soil depth. Field saturated hydraulic conductivity of topsoil showed great temporal variability, both seasonal and inter‐seasonal, in correspondence with MacP (r  = 0·58). These results highlight the need of depth differentiated soil sampling and time consideration when evaluating management practices on soil physical properties and modeling the hydrological behavior of paddy soil. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
Several decades of intensive dry land farming in the Gadarif region, located in the Eastern part of Sudan, has led to rapid land use/land cover (LULC) changes mainly due to agricultural expansion, government policies and environmental calamities such as drought. In this paper, an attempt has been made to analyse and monitor the LULC changes using multi‐temporal Landsat data for the years 1979, 1989 and 1999 and ASTER data for the year 2009. In addition, efforts were made to discuss the impact of LULC changes on the selected soil properties. For this, a post‐classification comparison technique was used to detect LULC changes from satellite images. Primarily, three main LULC types were selected to investigate the properties of soil, namely, cultivated land, fallow land and woodland. Moreover, soil samples were also collected at two depths of surface soil from ten sample plots for each of the LULC type. For these soil samples, various soil properties such as texture, bulk density, organic matter, soil pH, electrical conductivity, sodium adsorption ratio, phosphorous and potassium were analysed. The results showed that a significant and extensive change of LULC patterns has occurred in the last three decades in the study area. Further, laboratory tests revealed that soil properties were significantly affected by these LULC changes. The change of the physical and chemical properties of the soil may have attributed to the changes in the LULC resulting in land degradation, which in turn has led to a decline in soil productivity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
旨在探讨不同植被恢复策略对土壤入渗特征空间变化的影响,通过对贵州石漠化治理试验区自然草灌木混合林、次生林地、退耕自然生草地、芒果地、坚果地及玉米地的土壤容重、土壤孔隙度、土壤有机质和土壤渗透特性的分析。结果表明:不同植被恢复策略下土壤容重、孔隙度和有机质含量存在显著差异,具体表现为自然植被恢复(草—灌木混合林和次生林地)和秸秆还田种植方式均能有效降低土壤容重,增加土壤孔隙度。随着土层深度增加,土壤容重呈增大趋势,土壤孔隙度和有机质含量变化趋势相反;植被恢复方式和土层深度显著改变了土壤的水分渗透特性,自然植被恢复(草—灌木混合林和次生林地)土壤渗透性能高于人工植被恢复(芒果地和坚果地),主要是因为自然植被恢复下土壤扰动小,植物根系和凋落物增加,从而改变土壤物理性质,降低土壤容重,提高土壤孔隙度的综合效益。随着土层深度增加,土壤稳渗速率和累积入渗量减小。通过测定不同植被恢复方式的土壤水文特征,为喀斯特地区植被恢复方式及土壤入渗性能评估提供科学依据。  相似文献   

15.
This study assessed the impact of compost on the hydraulic properties of three soils (sandy loam, clay loam and diesel‐contaminated sandy loam) with relatively poor physical quality typical of brownfield sites. Soils were amended with two composts at 750 t/ha. Samples were also collected from a clay‐capped brownfield site, previously amended with 250, 500 or 750 t/ha of compost. Water‐release characteristics and saturated hydraulic conductivity were determined for all soils and physical quality indicators derived. Unsaturated flow in field profiles after compost application with two depths of incorporation and two indigenous subsoils was simulated using Hydrus‐1D. Compost generally increased water retention. Hydraulic conductivity tended to decrease following compost application in sandy loam but increased in clay and clay loam, where compost addition resulted in a larger dominant pore size. Although compost improved physical quality indicators, they remained suboptimum in clay and clay loam soil, which exhibited poor aeration, and in the contaminated sandy loam, where available water capacity was limited, possibly due to changes in wettability. Increasing application rates in the field enhanced water retention at low potentials and hydraulic conductivity near saturation but did not alter physical quality indicators. Numerical simulation indicated that the 500 t/ha application resulted in the best soil moisture regime. Increasing the depth of incorporation in the clay cap improved drainage and reduced waterlogging, but incorporation in more permeable subsoil resulted in prolonged dry conditions to greater depths.  相似文献   

16.
采用湿筛法测量了岷江流域不同土地利用方式下不同土层(0—10,10—20,20—30 cm)土壤大团聚体(> 2 mm)、中间团聚体(0.25~2 mm)、微团聚体(53 μm~0.25 mm)以及粉+黏团聚体(<53 μm)的质量分数及各粒径团聚体中的有机碳含量,并探讨了各粒径土壤团聚体的有机碳储量。结果表明,土地利用方式对土壤团聚体稳定性及其有机碳具有重要影响;土壤养分均呈现出一致性规律,大致表现为撂荒地 > 次生林 > 人工林 > 灌草丛 > 坡耕地,土壤全磷差异并不显著(p>0.05);林地的开垦行为会导致大团聚体的破碎化,灌草丛及坡耕地>0.25 mm的大团聚体含量较林地低,土壤结构趋于恶化;而坡耕地闲置为撂荒地后,则会促使粉+黏团聚体向粒径大的微团聚体及中间团聚体转化,使土壤结构趋于改善,在0—30 cm土层内,灌草丛及坡耕地土壤颗粒的MWD(平均质量直径)和GMD(几何平均直径)值均显著低于林地和撂荒地(p<0.05),坡耕地撂荒后,MWD和GMD值均显著升高(p<0.05),表明林地开垦为坡耕地导致土壤团聚体的稳定性降低,而坡耕地弃耕撂荒会增强团聚体的稳定性,提高土壤抵抗外力破坏的能力。不同土地利用方式下各粒径土壤团聚体有机碳含量均随土层深度的增加而降低。在0—30 cm土层深度内,不同土地利用方式下各粒径土壤团聚体有机碳储量表现为:大团聚体有机碳储量为林地 > 撂荒地 > 灌草丛 > 坡耕地,中间团聚体有机碳储量为撂荒地 > 林地 > 灌草丛 > 坡耕地,微团聚体有机碳储量为撂荒地 > 林地 > 灌草丛 > 坡耕地;粉+黏团聚体有机碳储量为撂荒地 > 林地 > 灌草丛 > 坡耕地。各粒径土壤团聚体内有机碳储量均为林地和撂荒地高于果园和坡耕地,表明将林地开垦为坡耕地后,将导致各团聚体组分内有机碳的损失,而坡耕地撂荒则有助于土壤有机碳的恢复和截存;林地和撂荒地土壤有机碳主要蓄积在中间团聚体内,而坡耕地则主要蓄积在粉+黏团聚体内,表明在土地利用变化过程中,粒径较大的团聚体有机碳不稳定,更容易发生变化。  相似文献   

17.
雅鲁藏布江中游河岸交错带沙地土壤水分的空间异质性   总被引:2,自引:1,他引:1  
土壤水分是制约西藏高寒河谷风沙化土地植物群落自然演替和人工促进植被恢复的重要因子之一,准确把握沙地土壤水分的分布状况,对指导正在进行的沙地植被恢复与重建具有重要实践意义。该文采用地统计学与GIS相结合的方法,以雅鲁藏布江中游河谷风沙化土地为对象,研究了河岸交错带沙地土壤水分的空间分布及不同类型沙地和沙丘部位的差异性。结果表明:1)试验地不同深度土壤含水率平均值为6.14%~14.20%,随着湿沙层深度的增加,土壤含水率平均值随之增大。各层土壤含水率均表现为强变异性。2)除0~20cm土壤含水率具有强烈的空间相关性外,其它各层土壤含水率具有中等的空间相关性。随着土层深度的增加,空间相关性减弱。不同深度土壤含水率的空间分布格局存在着较强的相关性,以20~40cm和40~60cm相关性最高。3)流动沙丘迎风坡和河滩地土壤含水率明显高于背风坡、沙砾地、沙丘顶。雅鲁藏布江河水丰枯变化、微地形和风沙运动则是造成不同类型沙地、沙丘部位土壤含水率差异的主要原因。  相似文献   

18.
Physical properties of field soil vary both spatially and temporally. Because so little information is available concerning the changes in magnitude of soil physical properties as functions of soil depth, distance normal to a crop row, and time, they have largely been ignored in model development. The purpose of this study was to evaluate quantitatively the spatial and temporal variability imposed by several tillage operations on several soil physical properties. Three tillage treatments, replicated 4 times in a randomized complete block design, were (1) conventionally-disked 3 times before planting, (2) full width strip chisel plowed to a 27-cm depth, and (3) in-row-subsoiled plus bedding. Soil physical properties measured were cone index (CI), weight percentage water (Pw), bulk density (Db), soil water characteristic curve, saturated hydraulic conductivity (Ksat) and soil settling. These properties were measured 3 times: immediately after planting soybeans (Glycine max (L.) Merr.) on 16 May; on 3 June; on 8 July 1977. Soil properties were measured at the 0–14, 14–28, and 28–41-cm soil depths at 3 positions relative to the row i.e., in the row, in the trafficked interrow, and in the non-trafficked interrow. Significant differences due to tillage treatment were found for Db, CI, and the soil water characteristic. The greatest spatial variation occurred in the 0–14-cm depth and decreased with depth. Significant differences for most variables were also found for the tillage by depth and tillage by position interactions. All properties exhibited significant temporal variation.  相似文献   

19.
典型黑土区主要水保树种土壤水文效应研究   总被引:1,自引:0,他引:1  
对典型黑土区的主要水土保持树种林下枯枝落叶层、土壤水分物理性质进行了分析研究,结果表明:随着土层深度的增加,造林地土壤总孔隙度减小容重增大,未造林地无明显变化,白皮柳林下平均土壤容重最小,总孔隙度最大,改良土壤效果最明显,依次为长白落叶松、小黑杨、樟子松;各树种土壤渗透性能均好于未造林地,其中白皮柳土壤渗透性能最好;营造水土保持林可有效增加土壤蓄水、透水能力,各树种土壤水文效应综合评价结果是白皮柳和长白落叶松优于小黑杨和樟子松。  相似文献   

20.
原状土与扰动土导气率、导水率与含水率的关系   总被引:7,自引:3,他引:4  
为分析土壤导气特性与土壤导水特性间的关系,该文通过研究陕西杨凌小麦试验田士样导水率和导气率随含水率的变化特征,比较原状土与扰动土导气和导水特征,分析相对导水率和相对导气率与饱和度的关系,结果发现导水率随含水率的增加而减小,且无论导水率还是导气率原状土都比扰动土大,证实土壤结构及孔隙特征对水和气的传输有巨大的影响,扰动土和原状土变化趋势虽然基本相同,但曲线不重合,说明扰动土和原状土的孔隙连接性和弯曲程度不尽相同.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号