首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, the color and whiteness properties of fabrics knitted from ring, siro and compact core-spun yarns containing metal wire were investigated. In general, an increase in the metal ratio of yarns causes a decrease in the whiteness and color strengths of fabrics. In our study, spinning method had no statistically significant effect on either the T w or K/S values of fabrics while the effect of spinning method on the whiteness index of fabrics was briefly observed. Fabrics knitted from siro spun yarns showed higher whiteness properties than those of fabrics knitted from compact and ring spun yarns. This might be explained by the superior covering effectiveness of the siro spinning method on metal wire.  相似文献   

2.
Spirality is one of the major potential problems in knitted fabrics and garments. It affects the aesthetics and physical properties of the garment produced, such as the seam displacement, shape retention, pattern distortion and sewing difficulties. In this paper, a comparative study has been carried out to evaluate the physical performance of 100 % cotton knitted fabrics and garments produced by the modified low twist and conventional ring yarns through the actual wearing and washing trials. Experimental results showed that the properties of side seam displacement, fabric spirality, dimensional stability and skewness change of the T-shirts and sweaters made by the modified single yarns are comparable to those of garments made from the control plied yarns but much improved when compared to those from the control single yarns. In addition, the pilling resistance and bursting strength of the knitted fabrics made by the modified single yarns can still maintain a reasonably high level at a low yarn twist.  相似文献   

3.
The intrinsic torque of freshly spun wool yarns is affected by ageing of wool roving prior to spinning as well as the storage time of the yarn after spinning. The effect of physical ageing of roving on yarn torque properties has not been observed before and this study shows that the yarn intrinsic torque increases with ageing of the roving and decreases or relaxes with the yarn storage time. The dependency of the intrinsic torque on the roving ageing time and the yarn storage time after spinning show a simple double-logarithmic shift factor of 0.42 compared with the value of 1 found generally for amorphous polymeric materials. The self-plying twist of the yarns used in this study shows a close link to the intrinsic torque and both are affected by the history of the roving prior to spinning. Significant reductions in the self-plying twist were obtained when deaged rovings were used in spinning. When self-plying twist is used as a predictor of fabric spirality the roving and yarn history needs to be considered. This study shows that low intrinsic torque yarns can be produced by deageing of the roving prior to spinning.  相似文献   

4.
Leveraging the antibacterial properties of polyester-cotton knitted fabrics has been attempted in this research by admixture of small proportion of polyester-silver nanocomposite fibres. Polyester-cotton (50:50) yarns were spun by mixing 10, 20 and 30 % (wt.%) polyester-silver nanocomposite fibres with normal polyester fibres so that overall proportion of polyester fibre becomes 50 %. The proportion of cotton fibre was constant (50 %) in all the yarns. Three parameters, namely blend proportion (wt.%) of nanocomposite fibres, yarn count and knitting machine gauge were varied, each at three levels, for producing 27 knitted fabrics. Polyester-cotton knitted fabrics prepared from polyester-silver nanocomposite fibres showed equally good antibacterial activity (65-99 %) against both S. aureus and E. coli bacteria. Antibacterial properties were enhanced with the increase in the proportion of polyester-silver nanocomposite fibres, yarn coarseness and increased compactness of knitted fabrics. Yarn count and blend proportion of nanocomposite fibre were found to have very dominant influence in determining the antibacterial properties of knitted fabrics.  相似文献   

5.
A low torque spinning method has been recently developed by integrating the ring spinning process with false twisting techniques. As a result of false twist and true twist, a novel single yarn of low torque and soft handle is generated. Based on the similar spinning principle, this paper proposed a 2-step spinning method, which is composed of twisting-anduntwisting operation and can be considered as a variant of the low torque spinning method. The proposed spinning method separates the false twisting process into twisting and untwisting processes which are combined in one step in the low torque spinning method. In this paper, physical properties of yarns produced by the proposed spinning method were evaluated and compared with the conventional yarns. Influences of various spinning parameters on the properties of 2-step yarns were also examined. Furthermore, a systematic study of the physical properties of the 2-step yarns and resultant fabrics with respect to the conventional and low torque ones was carried out. The experimental results showed that the 2-step yarns exhibit slightly higher tenacity, lower wet snarl and much less hairiness than the conventional yarns, which, however, are inferior to the low torque yarns, particularly the evenness. The fabrics made by the 2-step yarns show the softest handle feeling, best airpermeability and moderate spirality angle with acceptable pilling resistance.  相似文献   

6.
苎麻与沟槽纤维混纺织物性能测试与分析   总被引:1,自引:1,他引:0  
本文对采用纯苎麻纱作经纱及沟槽异形涤纶纤维混纺纱(交捻纱和sirofil纺纱)和其它纱线作为纬纱的不同织物试样的性能进行了测试和对比,分析了沟槽纤维混纺对织物吸湿排湿及其它性能的影响及其机理。  相似文献   

7.
Microorganisms can lead to functional, hygienic and aesthetic (e.g. deterioration, staining) problems on textile products. Natural fibers especially cotton are more easily affected by microorganisms. Blending of cotton fibers with antimicrobial fibers can enhance the protective properties of products against microorganisms. Demand of antimicrobial performance from the products changes depending on the application area. Therefore determination of suitable antimicrobial fiber quantity for the desired application is important. In this study the spinning performance of SeaCell Active/cotton blended open end rotor yarns and antibacterial activities of fabrics produced by these blended yarns were investigated. Five different cotton/SeaCell Active blended slivers with SeaCell Active content from 3 % up to 53 % were prepared on drawframe machine and all slivers were spun into yarns on open end rotor spinning machine at a yarn count of 20 tex with αTt=3827 twist coefficient. The effects of rotor speed, opening roller speed, rotor, opening roller and navel type on the quality parameters of SeaCell Active/cotton blended yarns were investigated. Tensile properties, hairiness, unevenness and IPI values of the yarns were reported. All types of cotton/SeaCell Active blended yarns were knitted on a circular knitting machine. Antibacterial activity of the fabrics was analyzed quantitatively. Antibacterial tests showed that good antibacterial activity can be achieved after several washings even with 3 % of SeaCell Active fibers in fabrics.  相似文献   

8.
In this study, spinning with a contact surface was introduced as a simple and energy-saving method to reduce spun yarn hairiness. Theoretical analysis indicated that yarn hairiness could be reduced via a sufficient long contact surface applied in other part of yarn formation zone in addition to spinning triangle. Then, a simple contact apparatus was installed on ring frame to validate the theoretical analysis. Results proved that yarn hairiness was reduced via a contact surface in the yarn formation zone. However, unevenness was deteriorated for most yarns spun with contact apparatus during the spinning, which might be due to fiber mass concentration. Most of yarns spun with contact apparatus had a lower strength than the conventional yarns. This might be because evenness deterioration to decrease yarn strength overpowered hairiness reduction to increase yarn strength for most yarns spun with a contact surface.  相似文献   

9.
In this work, the effects of machine parameters on the fabric spirality, which is an important quality problem of single jersey knitted fabrics, are investigated. For this aim, two circular knitting machines with the same gauge, but one of them revolving in the reverse direction, are chosen. Single jersey fabric samples with the same weight per square meter and the same yarn count (Ne 20 Cotton) are knitted on the chosen machines at four different numbers of knitting systems. The effects of the number of the knitting systems and the rotation directions of the machines on the spirality angles are investigated.  相似文献   

10.
Biodegradable products are parts of a natural cycle. The biopolymers and the fibers that can be produced from them are very attractive on the market because of the positive human perception. Therefore, PLA being a well known biodegradable fiber and some conventional fibers were selected for the current study to examine the differences between them and to emphasize the importance of biodegradability beside fabric performance. 14.8 tex (Ne 40/1) combed ring spun yarns produced from biodegradable fiber PLA, new generation regenerated fibers Modal and Tencel, synthetic and blends 50/ 50 % cotton/polyester and 50/50 % viscose/polyester, polyester were selected as yarn types and by using these yarns, six knitted fabrics were produced and some important yarn and fabric properties were compared. In this context, moisture and the tensile behavior of yarns and pilling, bursting strength, air permeability and moisture management properties of the test fabrics are discussed.  相似文献   

11.
There are several studies related with knitted fabric containing elastomeric yarn. These studies have been carried out only on fabrics containing naked elastomeric yarn, i.e., without intermingling. And most of them have focused on dimensional and extension-recovery properties of the fabric. Of course, intermingling yarn parameters such as number of knots and draw-ratio will affect the properties and performance of the fabrics. This paper presents a study about the effect of draw-ratio and number of knots, which are important parameters in intermingled nylon-elastomeric yarns, on the physical and comfort properties of hosiery knit products. To see the relationship and significance, bivariate correlation analysis and analysis of variance have been carried out. It has been seen that increase of draw ratio and number of knots lead to an increase in dimensional change, stitch density, fabric weight, and lead to a decrease in fabric spirality, abrasion, fabric wicking (wickability in course direction is less than that of wale direction). Fabric thickness increases with an increase in draw ratio and a decrease in number of knots. The number of knots and the draw-ratio do not affect the fabric drying rate. However, an increase in the draw ratio and the number of knots result in an increase in initial water content before beginning the drying process. But, an increase in initial water content is not so high as to affect the drying rate.  相似文献   

12.
Our aim in this study was to investigate the effects of course density, yarn linear density and thickness and type of conductive wire on electromagnetic shielding effectiveness. Metal/cotton conductive composite yarns were produced by the core-spun technique on the ring spinning machine, involving stainless steel, copper and silver coated copper wires with 40 μm, 50 μm, 60 μm thicknesses and Ne10/1 and Ne20/1 count yarns. The interlock fabrics were knitted on a 7G flat knitting machine with the three different machine settings. The EMSE and the surface resistivity of knitted fabrics were measured by the co-axial transmission line method according to the ASTM-D4935-10 standard in the frequency range from 15 to 3000 MHz and by the ASTM D257-07 standard, respectively. It was observed that all fabrics shielded around 95 % of electromagnetic waves at low frequencies, 80 % at medium frequencies and 70 % at high frequencies. Increasing the course density and thickness of conductive wire in interlock knitted fabrics increased the EMSE correspondingly. The knitted fabrics that had been produced with high yarn count showed greater EMSE because there was less isolation. The effect of the metal wire type was highly significant between 15 and 600 MHz.  相似文献   

13.
The mechanical and physical properties of spun yarns and fabrics depend not only on mechanical properties of the fibers making up the yarn, but also geometrical arrangement of fibers, known as fiber migration. The main aim of this research is to introduce a new approach to predict migratory behavior of spun yarns. Achieving the objectives of this research, general physical, mechanical and structural properties of spun yarns together with existing standards were thoroughly studied. A hybrid intelligent model was developed based on a Genetic Fuzzy System (GFS) to model the relationships between migration of fibers in spun yarns and some physical and mechanical properties of spun yarns. Results indicated that the developed fuzzy expert system can be used as an intelligent simulator to predict yarn migratory parameters.  相似文献   

14.
Spandex has been successfully applied on modified worsted spinning system to produce spandex core spun yarn. However it’s difficult to produce wool/spandex core-spun yarn on woolen spinning system with the same modified device because the drafting device of the two systems is quite different. A new method is introduced to apply spandex on woolen spinning system in this paper. Core-spun yarn produced in this way has good appearance and quality by comparing with normal yarn. A series of experiments were carried out to study the influence of spandex drafting ratio and yarn twist factor on tensile properties and elasticity of core-spun yarns. The results indicate that core-spun yarn with spandex drawing ratio of 2.5 and twist factor of 13.63 has highest value of tenacity and breaking elongation.  相似文献   

15.
There are derivative problems of electromagnetic wave radiation accompanying the advances of science and technology nowadays and secure protections are also emphasized gradually. To shield these electromagnetic wave radition jeopardizing people’s health, in this study, stainless steel wires were the core yarn and bamboo charcoal polyester textured yarns were the wrapped yarn. The bamboo charcoal polyester/stainless steel (BC/SS) complex yarns were manufactured using a rotor twister machine. The BC/SS complex knitted fabrics were woven with the complex yarns employing a circular knitting machine. Three manufacture parameters were the wrapped amount of the complex yarn (2 to 6 turns/cm), the lamination amount of the knitted fabrics (1 to 6 layers) and lamination angles of the knitted fabrics (0°/0°/0°/0°/0°/0°, 0°/45°/90°/−45°/0°/45°, and 0°/90°/0°/90°/0°/90°). The knitted fabric exhibited the lowest surface resistance 32.3 Ω/sq. Optimum electromagnetic shielding effectiveness (EMSE) was 45 dB when the knitted fabrics were with 0°/45°/90°/−45°/0°/45° laminating in 0.51 GHz.  相似文献   

16.
This study reports on the analysis of tenacity and breaking elongation of ring-, rotor- and air-jet-polyester/viscose spun yarns measured using static- and dynamic tensile testers. The weavability, a measure of performance of these yarns in post spinning operations is quantified. The yarn diameters and helix angles of fibres in these yarns are measured in order to analyze the effect of types of spun yarn and blend proportion on yarn elongations. The dynamic tenacity is highly correlated with the weavability than the average static tenacity measured at 500 mm gauge length. The minimum static tenacity obtained from 100 tests has high correlation with the dynamic tenacity. The present study indicates that it is appropriate to evaluate the performance of spun yarns in winding, warping and weaving based on the dynamic yarn tenacity measured while running a 200 m length of yarn in a constant tension transport tester or the minimum static yarn tenacity obtained using any conventional constant rate extension (CRE) tensile testers corresponding to a total test length of 50 m.  相似文献   

17.
Cellulase is useful for bio-polishing cotton fabrics which enhances their aesthetic performance instead of stonewashing process. Torque-free ring spun process is a widely used technique to produce newly low-twist and balanced torque yarns with soft hand. In this paper, denim fabrics woven with torque-free ring spun yarn and conventional ring spun yarn respectively were treated with cellulase under the same condition and their fabric handle, expressed as low stress mechanical properties, such as tensile strength, bending, shearing, compression and surface performance were investigated by Kawabata Evaluation System for Fabric (KES-F). After cellulase treatment, both denim fabrics revealed better flexibility, elasticity recovery, raised shearing stiffness, fluffier and improved smoothness. While torque-free ring spun yarn made denim fabric showed a better fabric handle than conventional ring spun yarn made denim fabric.  相似文献   

18.
In the paper, one kind of super draft ring spinning frame with four drafting rollers and corresponding three drafting zones were introduced. The yarn qualities spun by the super draft ring spinning frame were analyzed by studying the shape of spinning triangles. Using the high speed camera system OLYMPUS i-speed3 and one kind of transparent front top roller, the spinning triangles were captured, and the geometry size of spinning triangle were measured. Then, according to the theoretical model of fiber tension in the spinning triangle, fiber tension distributions in the spinning triangles were presented by using Matlab software. Using the combed roving of 350 tex as raw material, three kinds of cotton yarns, 27.8 tex (21S), 18.2 tex (32S) and 14.6 tex (40S), were spun in the common ring spinning frame with three different suitable spindle speeds, travelers and twist factors. Using the combed roving of 350 tex and 500 tex as raw material, 14.6 tex cotton yarns were spun in the super draft ring spinning frame with three different drafting ratios at back zone. It is shown that with the increasing of spindle speed, a more asymmetric shape of spinning triangle would be produced, and lead to worsen yarn evenness. With the decreasing of traveler weight, the height and horizontal deviation of the spinning triangle is decreased, and may lead to better yarn evenness and less long hairiness. By taking suitable large yarn twist factors, the comprehensive qualities can be improved. Comparing with the common ring spinning, the spinning triangle is larger in the super draft ring spinning. That is, in the super draft ring spinning, the fibers in the strand in the front roller nip are more dispersed, and not benefit for yarn qualities. Therefore, the compact device was introduced into the super draft ring spinning, and the cotton pure yarns and blend yarns were spun, and the yarn qualities were measured and analyzed.  相似文献   

19.
The dynamic testing conditions simulate actual manufacturing conditions more closely than static testing. In most cases, as results from dynamic tests differ significantly from static tests, dynamic tests are more relevant from the point of view of processing of yarn. The yarns are in motion when they are running on different machines during the production process viz. weaving; knitting etc. Compact ring spun yarns have created a fundamental change how the industry views the ring spinning. The new technology compact yarns such as EliTe® yarns need to be compared with the normal doubled yarns in a dynamic way. This study involves dynamic testing of the EliTe® compact yarns and normal ring spun doubled yarns using CTT (Constant Tension Transport) machine, a versatile test instrument to measure the yarn properties such as dynamic breaking strength, elongation, abrasion, lint, yarn faults (thick, thin places, neps), hairiness etc. EliTe® compact yarns showed higher breaking strength, more elongation, with lesser yarn faults and hairiness, less abrasiveness and less lint generating tendencies during the dynamic testing as compared to the normal ring spun doubled yarns.  相似文献   

20.
The mechanical and physical properties of spun yarns and fabrics depend not only on properties of constituent fibers, but also the yarn structure characterized by geometrical arrangement of fibers in the yarn body. Although there are many studies related to analyzing the migratory properties of spun yarns, there are no studies available about predicting yarn migration parameters. Therefore, the main aim of this research is to introduce a new approach to predict migratory properties of different kinds of spun yarns, namely siro, solo, compact and conventional ring-spun yarns. To achieve the objectives of the research, general physical and mechanical properties of spun yarns together with existing standards were thoroughly studied. Spun yarn migratory properties were predicted using intelligent technique of artificial neural network (ANN). Results signified that the ANN models can predict precisely the yarn migratory properties on the basis of a series of yarn physical and mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号