首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study elucidates the activity of certain plants’ methanol extract: Anagallis arvensis, Solanum nigrum (green fruits), Chenopodium ambrosioides, Calendula officinalis and Sesbania sesban, on the infectivity of S. mansoni cercariae to albino mice. Then, some parasitological parameters, e.g. the worm load/mouse, number of ova/g tissue in liver and intestine and the developmental stages of ova in the small intestinal wall (Oogram) of infected mice were determined. In addition, certain biochemical parameters of serum from infected mice (total protein, albumin, the activities of AlT, AsT, AcP and AkP enzymes) were, also, recorded.The results showed that exposure of S. mansoni cercariae for 30 min to the tested plants’ methanol extract before mice infection has a higher suppressive effect on their infectivity to albino mice then those exposed to this extract during mice infection. The number of worms recovered/infected mouse and the number of ova/g tissue from liver and intestine of mice groups infected with cercariae exposed to the tested plants’ methanol extract either pre- or during mice infection were less than those of infected control groups (e.g. the reduction rates of worm load/mouse and number of ova/g tissue in the intestine were 46.1% and 76.8%, respectively, for mice infected with cercariae exposed to 5 ppm of A. arvensis during mice infection).The results, also, indicated that exposing S. mansoni cercariae to methanol extract of the experimental plants either pre- or during mice infection reduced the activities of the enzymes AlT, AsT, AcP and AkP that were elevated in mice infected with untreated cercariae, meanwhile, the concentrations of total protein and albumin were increased in the serum of mice infected with these treated cercariae in comparison with those of mice group infected with untreated cercariae.  相似文献   

2.
Sublethal effect of monocrotophos (pesticide) and ammonium chloride (fertilizer) was studied in the freshwater fish Oreochromis mossambicus, with reference to carbohydrate metabolism for a period of 96 h. The glycogen content was analysed in liver and muscle, while the lactate and pyruvate were assessed in blood along with liver and muscle. The results revealed that the glycogen content was found to be decreasing. In contrast increase in the tissues lactate and pyruvate level was found in the fishes exposed to pesticide and fertilizer individually and in combinations. The combined effects of these chemicals were more toxic to carbohydrate metabolism than the effect produced by the individual chemicals. The results were tested to search for statistical significance. The calculated lactate and pyruvate ratio (L/P) indicated that the fishes were under chemical stress.  相似文献   

3.
The purpose of this study was to evaluate oxidative stress and neurotoxic potential of organophosphorus (OP) insecticide diazinon in the sentinel freshwater fish, Oreochromis niloticus. Antioxidant and acetylcholinesterase (AChE) enzyme activities and malondialdehyde (MDA) and protein levels were measured spectrophotometrically in gill, kidney, alimentary tract, and muscle tissues of fish treated with sub-lethal diazinon concentrations for 1, 7, 15, and 30 days. Dose-dependent inhibitions of AChE were observed in all the experimental fish. On the contrary of alimentary tract, MDA levels were elevated in kidney and muscle and gill was not affected. AChE and MDA levels intercorrelated in kidney and muscle tissues. Diazinon had increased superoxide dismutase (SOD) activities in all the tissues, while kidney was the most affected tissue. Tissue-specific alterations were observed on catalase (CAT) and glutathione peroxidase (GPx) activities; however, the activities were not changed in gill and muscle tissues for GPx and in gill, muscle, and kidney tissues for CAT. Protein levels decreased in kidney, muscle, and alimentary tract, while increased in gill and alimentary tract in 15 days. With respect to these results, diazinon has oxidative and neurotoxic potentials in O. niloticus. Observed changes with diazinon treatment were generally tissue-specific and dose-dependent.  相似文献   

4.
The activity levels of glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) enzymes were estimated in liver, muscle and brain tissues of the fish, Sarotherodon mossambicus (Peters), which had been exposed to sub-lethal (3 mg litre−1) and lethal (25 mg litre−1) concentrations of the carbamate insecticide carbaryl. Based on the results obtained, the changes in GOT and GPT levels in liver, muscle and brain following different periods of sub-lethal and lethal carbaryl exposures suggested that S mossambicus showed adaptive elevation in the activity levels of the two aminotransferase enzymes in the tissues, thereby probably aiding gluconeogenesis through transamination of glucogenic amino acids to meet the energy demand under carbaryl toxicity. © 1999 Society of Chemical Industry  相似文献   

5.
Alterations in the levels of hemoglobin, total plasma proteins, glucose, and lactic acid in the blood; glycogen and lactic acid content of liver and white skeletal muscle; and the activities of lactate dehydrogenase, pyruvate dehydrogenase, and succinate dehydrogenase in liver, kidney, intestine, brain, gills, and muscles were examined in the fresh-water snake-head fish, Channa punctatus, after exposure to a sublethal concentration (25 μg/liter) of quinalphos for 60 and 120 days. Hemoglobin, plasma protein, glucose, and lactic acid decreased in pesticide-exposed fish. The glycogen content of the liver and muscles increased but lactic acid decreased. Lactate dehydrogenase activity decreased in all six tissues. Pyruvate dehydrogenase activity of liver, kidney, gill, and muscle decreased, but the enzyme activity was elevated in intestine and brain. In intestine, succinate dehydrogenase activity was elevated, and in the remaining five tissues the enzyme activity was significantly reduced. The present study showed that formation of glycogen and its breakdown was impaired in the liver, and aerobic oxidation of nutrients was adversely affected in quinalphos-exposed fish.  相似文献   

6.
Pesticides, such as herbicides can affect the metabolic and toxicological parameters on fish. For this reason, an experiment was carried out with the objective of to evaluate the effects of commercial formulations of clomazone and propanil herbicides on acetylcholinesterase (AChE), thiobarbituric acid-reactive substances (TBARS), catalase (CAT) and metabolic parameters in teleost fish (Leporinus obtusidens). Fish were exposed during 90 days to field measured concentration of the herbicides clomazone and propanil (376 and 1644 μg/L, respectively) on rice paddy water. Specific AChE activity in the brain and muscle decreased and TBARS levels decreased in brain, muscle and liver tissues. Liver catalase decreased after exposure to both herbicides. Metabolic parameters in the liver and white muscle showed different changes after exposure to both herbicides. In summary, the results showed that clomazone and propanil affects toxicological and metabolic parameters of piavas. These results suggest that environmentally relevant herbicides concentrations are toxic to Leporinus obtusidens.  相似文献   

7.
Four plant species, as a dry powder of their leaves, were tested against Biomphalaria alexandrina snails, the intermediate host of Schistosoma mansoni. The bioassay tests revealed the plants Datura stramonium and Sesbania sesban to be more toxic to the snails than the other two ones. Therefore, they were tested against snails’ fecundity (Mx), reproduction rate (Ro) and their infection with S. mansoni miracidia. In addition, total protein concentration and the activities of the transaminases (AsT and AlT) and phosphatases (AcP and AkP) enzymes in hemolymph and tissues of snails treated with these plants were determined. As well, glucose concentration in snails’ hemolymph was evaluated.Exposure of snails for 4 weeks to LC10 and LC25 of the plants D. stramonium and S. sesban dry powder markly suppressed their Mx and Ro. The reduction rates of Ro for snails exposed to LC25 of these plants were 62.1% and 76.4%, respectively. As well, a considerable reduction in the infection rates of snails exposed to these plants either during, pre- or post-miracidial exposure was recorded. Thus, infection rates of snails treated during miracidial exposure with LC10 of D. stramonium and S. sesban were 41.7% and 52.2%, respectively, compared to 92.6% for control group (P < 0.01). These plants, also, reduced the duration of cercarial shedding and cercarial production/snail. So, snails exposed to LC25 of these plants shed 372.8 and 223.2 cercariae/snail, respectively, compared to 766.3 cercariae/infected control snail (P < 0.01).The results, also, revealed that glucose and total protein concentrations in hemolymph of snails treated with LC10 and LC25 of these plants were decreased, meanwhile, the activities of the enzymes AsT, AlT, AcP and AkP were elevated (P < 0.01). However, the activity of AcP in tissues of treated snails was decreased compared to that of control ones. It is concluded that LC25 of the plants D. stramonium and S. sesban negatively interferes with biological and physiological activities of B. alexandrina snails, consequently it could be effective in interrupting and minimizing the transmission of S. mansoni.  相似文献   

8.
Freshwater fish, Channa punctatus, commonly known as the snakehead fish, was exposed to two sublethal concentrations (0.96 and 1.86 mg/L) (selected on the basis of 1/20 and 1/10 of 96 h LC50 value) of monocrotophos for two exposure periods (15 and 60 days). Effects of monocrotophos on Na+, K+-ATPase in liver, kidney, muscle, intestine, brain, heart and gills were determined. Results indicate that Na+, K+-ATPase activity in tissues decreased as concentration of monocrotophos and exposure period increased. Monocrotophos induced significant inhibitory effects on the Na+, K+-ATPase activity of C. punctatus, ranging from gills (70%) > Kidney (63%) > brain (57%) > intestine (52%) > liver (50%) > muscle (47%) > heart (44%) inhibition at a sublethal concentration of 0.96 mg/L. Significant inhibition was detected in Na+, K+-ATPase activity, ranging from gills (90%) > heart (78%) > kidney (78%) > muscle (74%) > intestine (71%) > brain (67%) > liver (63%) at sublethal concentration of 1.86 mg/L. After subacute exposure (15 days) only gills and brain showed significant inhibition after higher concentration (1.86 mg/L). However, it is evident that exposure duration is more important than dose in the inhibition of the activity of enzyme. At lower concentration initial stimulation of the activity of Na+, K+-ATPase activity was also noticed. It is suggested that the inhibition of the ATPase by monocrotophos blocked the active transport system of the gill epithelial as well as chloride cells, glomerular and epithelial cells of the tubules and thus altered the osmoregulatory mechanism of the fish. In fact, the impairment of the activity of enzymes which carry out key physiological roles could cause alterations of the physiology of the whole organism.  相似文献   

9.
The purpose of this study was to evaluate biochemical and morphological responses induced by carbaryl in the liver of Nile tilapia (Oreochromis niloticus) exposed during 21 days to sublethal concentrations (0.25 and 0.5 mg L−1), testing also recover for 14 days in clean water, after 14 days exposure. The activities of the following enzymes were measured: superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), glutathione reductase (GR), and reduced (GSH) and oxidized glutathione (GSSG). Globally, our data showed that exposure to carbaryl decreased the SOD, CAT, GR, and GST activities, except for the SOD and GST activities after 14 days exposure to 0.25 mg L−1. In contrast, after 14 days exposure the GR activity of the hepatic tissue from carbaryl-treated fish showed significant elevation in relation to the control. When fish were left to recover, a positive response was seen in the GSH and GSSG contents. The results of the recovery group suggest that the toxicity produced by carbaryl is reversible to some extent within 15 days. The liver histological analysis showed differences between fish concerning the cellular vacuolization degree (VD) of the hepatocytes. In fish exposed to carbaryl it was observed an increasing hepatocellular basophilia. No other histological alterations were observed when fish was exposed to carbaryl, except a few necrotic foci at day 7. The sections stained with PAS reaction showed that the vacuolization was always not due to glycogen deposits, thus suggesting lipid accumulation. The combined increased basophilia and glycogen depletion is a common, although non-specific, liver response to many toxicants. In short, this work shows a relation between histological and biochemical changes in liver and carbaryl exposure. The effects of carbaryl were observed at different concentrations.  相似文献   

10.
Impacts of chlorpyriphos (2, 4, 6 ppm) on the profiles of antioxidant (catalase) and anaerobic (lactate dehydrogenase) enzymes and other macromolecular contents (DNA, RNA, protein) of various tissues of the freshwater fish, Heteropneustes fossilis were studied. Chlorpyriphos significantly decreased the specific activity of catalase (CAT) and lactate dehydrogenase (LDH) in the brain, liver, gill and skeletal muscle of the fish. The reduction in specific activity might be due to the binding of chlorpyriphos or its metabolites with the enzyme molecules or affecting the synthesis and/or degradation of the enzymes. Like enzymes, the DNA, RNA and protein contents decreased in the brain, liver, gill and skeletal muscle of the fish as a function of increase in chlorpyriphos concentrations (2-6 ppm). The chlorpyriphos-induced reduction in these biochemical constituents might be because of alteration in their turnover (synthesis/degradation) in different tissues. The maximum effects on CAT, LDH, DNA, RNA and protein were obtained in response to 6 ppm chlorpyriphos. The present findings suggest chlorpyriphos concentration related impairment in antioxidative, anaerobic and protein synthesizing capacity of the fish. Therefore, the use of higher concentrations of chlorpyriphos should be avoided to protect the health of economically important freshwater food fish.  相似文献   

11.
Insecticide-resistant mosquito fish (Gambusia affinis) were found to be slightly more tolerant to two thiol esters of 2,4-dichlorophenoxyacetic acid (2,4-D) than were fish of a susceptible population. DEF (S,S,S,-tributyl phosphorotrithioate), at 0.1 ppm for 24 hr, slightly decreased the toxicity of both esters to both populations. Comparison of esterase activities in gill and liver preparations showed that the resistant fish had lower levels of liver esterases than the susceptible fish, but results with gill preparation were not consistent. With the ethyl thiol ester, susceptible fish had the higher activity, but with butyl thiol ester, resistant fish had the higher activity. DEF inhibited activities in both tissues of both populations, but inhibition was appreciably greater in the liver. Results suggest that (i) hydrolysis in the liver activaties 2,4-D esters, (ii) hydrolysis in the gill is a detoxication reaction, (iii) the slight increase in tolerance in the insecticide-resistant fish is primarily the result of decreased activation, and (iv) antagonism by DEF is the result of a greater inhibition of activation than of detoxication.  相似文献   

12.
In this study, fish Rhamdia quelen, were exposed to different concentrations of herbicide clomazone: 0.0 (control), 0.45 and 0.91 mg L−1. After exposure for 8 days to herbicide, fish were transferred to clean water for a recovery period (8 days). Oxidative stress indicators such as thiobarbituric acid reactive substances (TBARS) levels and protein carbonyl content, as well as antioxidant defenses, such as catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), ascorbic acid and non-protein thiols levels were studied, using the liver, brain and muscle tissues. Herbicide exposure increased TBARS in muscle and in liver at higher concentration. In liver protein carbonylation increased and catalase activity did not change in fish exposed to herbicide. SOD enhanced in liver at concentration of 0.91 mg L−1. GST, ascorbic acid and non-protein thiols levels increase at both concentrations. At the end of the recovery period the most of the parameters recovered whereas GST and ascorbic acid remain elevated. The present study demonstrates the occurrence of disorders in antioxidant parameters and importance in the assessment of the potential risk of herbicides as clomazone on fish species.  相似文献   

13.
The aim of the study was to evaluate the effect of subchronic exposure to the herbicide LASSO MTX (alachlor 42% W/V) on biometric parameters and important liver biomarkers in the common carp (Cyprinus carpio). One year old fish were exposed for 28 days to LASSO MTX added to the tank water at concentrations of 240 and 2400 μg L−1. The exposure did not affect fish biometric parameters. Glutathione-S-tranferase (GST) activity in liver (hepatopancreas) remained unchanged in exposed fish when compared to controls. However, significant induction of total cytochrome P 450 (CYP 450), ethoxyresorufin-O-deethylase (EROD) activity and elevated glutathione (GSH) in liver of exposed fish were detected.  相似文献   

14.
Diethyl phthalate (DEP) enter into aquatic environment from industries manufacturing cosmetics, plastic and many commercial products and can pose potential fish and human health hazard. This experiment evaluated effects of DEP in adult male (89 g) common carp (Cyprinus carpio) by exposing them to fractions of LC50 (1/500-1/2.5) doses with every change of water for 28 days. Vitellogenin induction metabolic enzymes, somatic indices and bioaccumulation were studied on 7th, 14th, 21st and 28th day. The 96th hour LC50 of DEP in fingerlings was found to be 48 mg/L. Compared to control, except increase (P < 0.01) in alkaline phosphatase activity (EC 3.1.3.1) and liver size, there was decrease (P < 0.01) in activity of acid phosphatase (EC 3.1.3.2), aspartate aminotransferase (EC 2.6.1.1), alanine aminotransferase (EC 2.6.1.2) and testiculosomatic index following exposure to 1, 5 and 20 ppm DEP. Significant (P < 0.01) dose dependant vitellogenin induction was observed with exposure of fish to 0.1, 1 and 5 ppm DEP. The bioaccumulation of DEP in testis, liver, brain, gills and more importantly in muscle tissues of fish increased significantly (P < 0.01) with increase of dose from 1 to 5 ppm. Significant interaction (P < 0.01) of dose and duration of exposure indicated that exposure period of a week to two was sufficient to bring about changes in quantifiable parameters studied. Fish exposed to 20 ppm DEP became lethargic and discolored during onset of the 4th week. This is the first report describing metabolic changes and vitellogenin induction following exposure of C. carpio to DEP dose that is as low as 1/500th fraction of LC50.  相似文献   

15.
The sublethal effect of a synthetic pyrethroid, cypermethrin on total protein, amino acids, ammonia, glycogen, and enzymes like aminotransaminases (AIAT, AAT), glutamate dehydrogenase, and glycogen phosphorylases (a and ab) was studied in physiological important tissues viz; liver and gill tissues of freshwater teleost air breathing fish, Clarias batrachus. The study was conducted during exposure of 1/3 (33%) of LC50 concentration and followed by cessation of exposure. Thirty-six fish were exposed to 0.07 mg/L cypermethrin for 10 days. After 10 days, 18 fish were released to freshwater and kept in the same for 10 days (recovery group). Thirty-six fish were kept in freshwater as control batch. Protein content in liver tissues decreased at the end of 1st and 5th day followed by slight increase at the end of 10th day. Gill tissue showed statistical significant decrease (P < 0.001) in protein content during exposure period of 10 days. Recovery in protein content was observed to a large extent in both the tissues. Total free amino acids were increased in liver and gill tissues throughout the treatment period, recovery response was seen after cessation of exposure. Ammonia level was decrease in both the tissues throughout the exposure period except in liver tissue at the end of 1st day of exposure. Recovery response was exhibited by both the tissues. A decreased in glycogen content of liver tissue was observed during exposure period, gill tissue also showed decrease in glycogen at the end of 1st and 5th day followed by increase at the end of 10th day of exposure period. When the fish were transferred to freshwater, recovery in glycogen content was noted. The activity level of alanine, aspartate aminotransaminase, glutamate dehydrogenase, and phosphorylases (a, ab) was increased in both the tissues, followed by recovery response after released of fish into freshwater. The present study showed that cypermethrin caused alterations in certain biochemical mechanisms of C. batrachus. This fish indicated recovery response when transferred to cypermethrin free water.  相似文献   

16.
Four extracts of Arisaema erubescens tubers by acetic acetal (AAE), benzinum (BZE), n-butanol (NBE) and chloroform (CFE) were obtained to evaluate their molluscicidal activities against the snail Oncomlania hupensis. The responses of choline esterase (ChE), alkaline phosphatase (ALP), esterase (EST), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) to the extracts (NBE) were also investigated. In the four extracts (AAE, BZE, NBE and CFE), NBE showed the highest toxicity on the snails after 48 h exposure. NBE also showed the time- and concentration-dependent effect, for example, the LC90 values of the NBE were decreased from 365.5 mg/L (24 h) to 36.4 mg/L (96 h). At the end of exposure to NBE (LC50 concentration), the activities of ChE and ALP in snail tissues (cephalopodium and liver) decreased significantly. Isozyme electrophoresis profiles indicated that responses of isozymes (EST, SOD and GSH-Px) to NBE were more intense in liver than in cephalopodium. After 72 h exposure to NBE, the EST activity in snail liver decreased and some enzyme bands (EST1 and EST4) disappeared. But the activities of SOD 1 and GSH 2 in liver increased after 48 h exposure. The results indicated that NBE was the highest toxic component in the four extracts. The decline of the detoxification ability and the oxidative damage in snail tissues might be the main reason for the molluscicidal activities.  相似文献   

17.
Thermal effluents discharged through cooling systems of nuclear power plants often contain chlorine (used to control bio-fouling), which may affect the metabolic status of fishes. In order to evaluate the hypothesis, we tested the effect of high temperature and a persistent sub-lethal chlorine exposure on stress responses in Cyprinus carpio advanced fingerlings. Fishes were acclimated to four different temperatures (26, 31, 33, and 36 °C) and maintained for 30 days in two different groups. Subsequently, one of the groups was exposed to persistent chlorine (0.1 mg L−1) for another 28 days and was compared with their respective temperature controls (without chlorine exposure). Sub-lethal doses of pollutants and increasing temperatures with in the tolerance range may not always register any morphological changes Therefore, we studied organ specific biochemical pathways viz. aspartate amino transferase, alanine amino transferase (enzymes of protein metabolism) in liver and muscle; fructose 1,6 diphosphatase (gluconeogenic pathway), in liver; pyruvate kinase, malate dehydrogenase, and lactate dehydrogenase (glycolytic pathway) in muscle; glucose-6-phosphate dehydrogenase (pentose phosphate pathway) in liver; alkaline phosphatase (phosphorus metabolism) in intestine, liver, and muscle; acetylcholine esterase (neurotransmitting enzyme) in brain, and adenosine triphosphate (for membrane transport) in gills at two different acclimation periods (14 and 28 days). The results indicate that C. carpio fingerlings demonstrated metabolic readjustments with increasing temperatures, in order to cope with energy demand of the cell. However, exposure to chlorine at higher temperatures affected protein metabolism, gluconeogenic pathway and subsequently glycolytic pathway, leading to an energy-limited condition. In addition, alteration of membrane transport and neurotransmission might be an early indication of cellular damage. Overall results indicate that persistent sub-lethal chlorine exposure elicits temperature induced stress response in C. carpio early fingerlings.  相似文献   

18.
In search for new local plant molluscicides for the control of the vectors of schistosomiasis, we compared the molluscicidal action of the extract of Ginkgo biloba sarcotesta by benzinum (EGSB) to that of arecoline (ARE) and niclosamide (NIC) against Oncomelania hupensis snails. NIC showed the highest toxicity on snails with 24 h LC50 vales of 0.12 mg/L and LC90 of 0.98 mg/L, while the LC50 and LC90 of EGSB were much lower than that of ARE. Sublethal in vivo 24 h exposure to 40% and 80% LC50 of NIC, EGSB and ARE altered the activities of different enzymes in different body tissues of snails. EGSB could significantly inhibit Choline esterase (ChE), Alanine aminotransferase (ALT), Alkaline phosphatase (ALP) and Malic dehydrogenase (MDH) activities both in the cephalopodium and liver. ARE could significantly cause a reduction in ChE, ALP activities in the cephalopodium and ChE, ALT, ALP, Succinodehydrogenase (SDH), MDH activities in the liver. NIC significantly altered activities of ChE, ALT, ALP, SDH, and MDH in the cephalopodium and ChE, ALT, ALP, SDH activities in the liver. All molluscicides could not affect Lactate dehydrogenase (LDH) activity in the cephalopodium and the liver. Maximum inhibition of ALT and MDH activities was found in the cephalopodium and liver of snails treated with 80% of 24 h LC50 of EGSB. However, NIC and ARE caused maximum reduction in ALP and SDH activities, respectively. The results indicated that molluscicidal action of EGSB was different to that of ARE and NIC in some extent.  相似文献   

19.
Adaptive changes in the levels of carbohydrate metabolites, glucose, glycogen and lactic acid, were studied in a freshwater edible fish, Sarotherodon mossambicus exposed to a carbamate fungicide, ziram. Based on the results obtained, it was concluded that the fish showed (i) adaptive utilization of stored glycogen, particularly in liver tissue; (ii) adaptive accumulation of glycogen in muscle and heart tissues, probably by glyconeogenesis and (iii) adaptive mechanism of operation of ‘diving syndrome’, to meet the stress of the pollutant under sub-lethal exposure. © 1998 SCI.  相似文献   

20.
The aim of this study was to evaluate the effects of different N-acetylcysteine doses on the tolerance to fenthion-induced oxidative stress, alterations in glutathione metabolism and cholinesterase specific activities in the liver by using freshwater fish Cyprinus carpio (Cyprinidae) as a model organism. An acute toxicity study was carried out to determine 96-h median lethal concentration of fenthion for this species (2.16 mg/L) and 80% of this concentration was applied in toxicity studies. Four groups, each containing eight fish were constituted as follows: Control group, fenthion treated group, 0.5 or 400 mg/kg NAC-injected + fenthion-treated groups. Biochemical analyses were carried out spectrophotometrically. Fenthion treatment significantly decreased total glutathione and glutathione levels, glutathione/glutathione disulfide ratio together with glutathione reductase and γ-glutamylcysteine synthetase specific enzyme activities. The higher dose of N-acetylcysteine increased the toxic effects of fenthion and γ-glutamyl transpeptidase specific activity while decreasing glutathione S-transferase specific activity. However, injection of the lower dose provided a limited protection against fenthion toxicity. In all exposure groups, lipid peroxidation increased and total protein levels decreased, while protein depletion was prevented by low dose of N-acetylcysteine application. Acetylcholinesterase and butyrylcholinesterase activities were at similar levels in the liver of C. carpio. A dose-dependent inhibition was observed in butyrylcholinesterase activity by N-acetylcysteine application. The results showed that fenthion had a significant oxidative stress inducing potential through the reduction of glutathione redox capacity. The critical point for overcoming oxidative stress by N-acetylcysteine in fenthion toxicity was the selection of the dose; N-acetylcysteine exerted its toxic effects by means of oxidative stress in fish liver at the higher dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号