首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We estimated between-farm transmission parameters of the highly pathogenic avian-influenza (HPAI) epidemic that struck the poultry industry of northern Italy (including turkeys, layer hens, broilers, gamebirds, and waterfowl) from December 1999 through April 2000. We estimated the average number of susceptible farms that were infected with HPAI virus by each infectious farm during a day (β) with a generalised linear model (GLM). The HPAI's reproductive ratios (Rh; the average number of new infected farms (IFs) that were caused by an infectious farm) were calculated separately for the regions of Lombardy and Veneto, where 382 out of 413 (92.5%) of IFs were located. In both regions, Rh decreased to 1 during the second month of the epidemic (showing that its containment had been initiated). Subsequently, during the last two months of the epidemic, β and Rh were reduced to 0.04/day and 0.6, respectively, in Veneto and to 0.07/day and 0.8 in Lombardy. The reduction of the susceptible population through strict control measures, including pre-emptive slaughter of at-risk poultry flocks, was implemented to a greatest extent in Veneto and this might have been associated with a more rapid control of the epidemic in this region than in Lombardy.  相似文献   

2.
We conducted an observational study to estimate prevalence and risk factors for Salmonella spp. and Campylobacter spp. caecal colonization in poultry. Eighty-one broiler chicken and 59 turkey flocks selected among flocks slaughtered in the province of Quebec, Canada, were included in the study. Flock status was evaluated by culturing pooled caecal contents from about 30 birds per flock. Exposure to potential risk factors was evaluated with a questionnaire. Odds ratios were computed using multivariable logistic regression.

The prevalence of Salmonella-positive flocks was 50% (95% CI: 37, 64) for chickens and 54% (95% CI: 39, 70) for turkeys, respectively. Odds of Salmonella colonization were 2.6 times greater for chicken flocks which failed to lock the chicken house permanently. In turkeys, odds of Salmonella colonization were 4.8–7.7 times greater for flocks which failed to be raised by ≤2 producers with no other visitors allowed onto the premises, or origin from a hatchery.

The prevalence of Campylobacter-positive flocks was 35% (95% CI: 22, 49) for chickens and 46% (95% CI: 30, 62) for turkeys. Odds of colonization were 4.1 times higher for chicken flocks raised on farms with professional rodent control and 5.2 times higher for flocks with manure heap >200 m from the poultry house, and also increased with the number of birds raised per year on the farm and with the age at slaughter. For turkeys, odds of Campylobacter flock colonization were 3.2 times greater in flocks having a manure heap at ≤200 m from poultry house and 4.2 times greater in flocks drinking unchlorinated water.  相似文献   


3.
Objective   To describe the structure of the Australian poultry industry and discuss the potential for highly pathogenic avian influenza (HPAI) to spread between Australian poultry farms.
Procedure   High densities of poultry farms, frequent contacts between farms by service providers, the supply of live poultry markets (LPM) and the presence of free-range duck flocks in affected regions have been identified as risk factors for the spread of HPAI between flocks in outbreaks causing the death or destruction of over 1 million poultry overseas. Data on 1,594 commercial Australian chicken meat, chicken egg, duck and turkey farms were collected by a telephone questionnaire of farm managers to assess the risk of a HPAI outbreak in Australia.
Results and Discussion   Five regions of Australia had farm densities comparable to overseas regions that experienced widespread HPAI. Common service providers routinely contacted different classes and types of farms over wide geographic areas. However, no responding farms supplied LPM and the majority of duck farms did not produce free-range ducks.
Conclusion   Outbreaks of HPAI have the potential to cause serious impacts on the Australian poultry industry. The risk posted by LPM and free-range ducks is limited, but the movement of genetic stock and common service providers could spread infection between companies, industries or geographical regions. Biosecurity measures are therefore considered critical to limit the secondary spread of infection should an outbreak occur.  相似文献   

4.
Ducks are considered to play a major role in the spread of highly pathogenic avian influenza (HPAI) H5N1 in Viet Nam, but detailed information on their management is limited. We distinguished two different systems (1) stationary duck flocks that are not commonly driven to rice fields beyond village boundaries and that are confined overnight on farms and (2) moving duck flocks that are intentionally driven to rice fields beyond village boundaries, that are not returning to home farms for extended periods and that are housed overnight in temporary enclosures in rice paddies. A total of 115 stationary and 22 moving flock farmers were interviewed in 2007 in the Mekong Delta of Viet Nam. Moving duck flocks are larger than stationary flocks, which is indicative of their more commercial production. Moving flock farmers apparently are more aware of HPAI risks than stationary flock farmers, as their flocks are more likely fully vaccinated and have less contact with chickens during scavenging. On the other hand, the spread of HPAI virus between birds might be promoted by moving duck flocks as they repeatedly use transport vehicles and numerous rice paddies for scavenging and are often visited by hatchery owners in the field for purchasing duck eggs. In addition, long distances travelled by moving duck flocks might also result in widespread dissemination of HPAI virus. Further studies are necessary to describe HPAI prevalence and travel patterns of moving duck flocks and to explore the moving duck flock network in detail.  相似文献   

5.
Low‐pathogenicity avian influenza (LPAI) viruses have caused illness in poultry and humans with poultry contact. To determine whether there is evidence of exposure to avian influenza viruses (AIV) among backyard poultry in Minnesota and their human caretakers, 150 flocks of backyard birds were sampled for antibodies to AIV from August 2007 through December 2008. One hundred flocks were tested through routine slaughter surveillance by the Minnesota Board of Animal Health and an additional 50 flocks were contacted and sampled by study investigators. Blood was collected from 10 to 13 birds from each flock and a survey of biosecurity and management practices was administered to the flock owner. Blood samples were tested by agar gel immunodiffusion (AGID) for influenza A antibodies. Tested flocks had a median flock size of 100 birds (range: 12–800 birds), and were most commonly owned for meat for personal use (81% of respondents), fun or hobby (58%) and eggs for personal use (56%). Although 7% of flock owners reported that their birds had shown respiratory signs in the previous 3 months, only 1 of 150 flocks tested positive for influenza by AGID. Antibodies to LPAI H6N1 were detected in the positive flock. The owner of the positive flock did not have antibodies to H6 or other common AIV. Based on the findings of this study, the risk of transmission of LPAI viruses from backyard poultry to owners in Minnesota appears to be low under current conditions and management practices.  相似文献   

6.
In 1999-2000, Italian poultry production was disrupted by an H7N1 virus subtype epidemic of highly pathogenic avian influenza (HPAI). The objectives of the present study were to identify risk factors for infection on poultry farms located in regions that had the highest number of outbreaks (Veneto and Lombardia) and the impact of pre-emptive culling as a complementary measure for eradicating infection. A Cox regression model that included spatial factors, such as the G index, was used. The results confirmed the relationship between risk of infection and poultry species, production type and size of farms. The effectiveness of pre-emptive culling was confirmed. An increased risk of infection was observed for poultry farms located near an infected farm and those at altitudes less than 150m above sea level. The measures for the control and eradication of AI virus infection need to consider species differences in susceptibility, the types of production and the density of poultry farms in the affected areas.  相似文献   

7.
8.
禽流感病毒(avian influenza virus,AIV)是一种重要的人兽共患病病原,严重制约养禽业的健康发展,并对公共卫生安全构成极大威胁。其中,H5(H5N1、H5N2、H5N6、H5N8等)和H7N9亚型高致病性禽流感病毒(highly pathogenic avian influenza virus,HPAIV)引起的高致病性禽流感(highly pathogenic avian influenza,HPAI)对我国养禽业危害巨大。通过实施强制免疫,疫情得到了控制,但在禽群中仍散状暴发,并出现多种新型病毒,防控形势依然严峻。本文总结了截至2021年9月我国禽类暴发H5和H7N9亚型HPAI的所有官方公布的疫情暴发事件以及监测数据,分析了其流行特点,以期为禽流感的预警和防控提供参考。  相似文献   

9.
The huge potential economic impact of highly pathogenic avian influenza (HPAI) substantiates specific and rigorous legal regulations worldwide. According to the O.I.E. Terrestrial Animal Health Code fowl plague is a notifiable disease. International trading activities concerning poultry and poultry products originating from countries with active HPAI are rigorously restricted. In EU member states directive 92/40/EEC subsumes measures against fowl plague and has been transferred into German legislation by the "Geflügelpest-Verordnung". These acts specify that vaccination against HPAI is principally prohibited. The aim of all sanctions is the extinction of disease and the eradication of the causative agent. However, HPAI viruses, exclusively belonging to subtypes H5 and H7, can re-emerge de novo from progenitor viruses of low pathogenicity which are perpetuated in the wild bird population. An outbreak of HPAI requires prompt action by a stamping out strategy. Fast and accurate diagnosis, a strict stand-still and the culling of affected flocks are at the basis of success. In areas with a high density of poultry holdings preemptive culling and creation of buffer zones, devoid of susceptible poultry, may be neccessary. In these cases emergency vaccinations can be considered as a supportive measure in order to limit mass culling. Vaccinations on merely prophylactic grounds, not being connected to acute outbreaks, should be avoided beware of selective pressures on the virus leading to antigenic drift and escape of vaccine-induced immunity. Instead, high standard biosecurity measures, particularly limiting direct and indirect contacts with wild birds, should be maintained.  相似文献   

10.
11.
In recent years, outbreaks of highly pathogenic avian influenza (HPAI) viruses have caused the death of millions of poultry and of more than 200 humans worldwide. A proper understanding of the transmission dynamics and risk factors for epidemic spread of these viruses is key to devising effective control strategies. The aim of this study was to quantify the epidemiological contributions of backyard flocks using data from the H7N7 HPAI epidemic in the Netherlands in 2003. A dataset was constructed in which flocks in the affected area were classified as susceptible (S), infected but not yet infectious (E), infectious (I), and removed (R). The analyses were based on a two-type SEIR epidemic model, with the two types representing commercial poultry farms and backyard poultry flocks. The analyses were aimed at estimation of the susceptibility (g) and infectiousness (f) of backyard flocks relative to commercial farms. The results show that backyard flocks were considerably less susceptible to infection than commercial farms (), while estimates of the relative infectiousness of backyard flocks varied widely (). Our results indicate that, from an epidemiological perspective, backyard flocks played a marginal role in the outbreak of highly pathogenic avian influenza in the Netherlands in 2003.  相似文献   

12.
Low-pathogenicity avian influenza (LPAI) subtype H7N3 was diagnosed on a two-age broiler breeder farm in Abbotsford, British Columbia (BC), in early February 2004. The presenting complaint in the older index flock was feed refusal, with 0.5% mortality over 72 hr that resolved over the following week Ten days after the initial complaint in the index flock, a younger flock in an adjacent barn experienced an abrupt spike in mortality (25% in 48 hr). The gross lesions of tracheal hyperemia and hilar pulmonary consolidation were subtle and nonspecific, and the diagnosis of avian influenza required laboratory confirmation. Two different viruses were isolated from the index farm: a LPAI (H7N3) was isolated from the older flock and a high-pathogenicity avian influenza (HPAI) (H7N3), which had an additional 21 base insertion at the hemagglutinin-cleavage site, was isolated from the younger flock. The presence of this insertion sequence and the similarity of adjacent sequences indicate that the LPAI had mutated into HPAI at some point between the first and second barn. Despite enhanced on-farm biosecurity measures, the virus was not contained on the index farm and eventually spread to over 40 commercial poultry facilities before massive depopulation efforts enabled its eradication.  相似文献   

13.
Between November 2005 and March 2006, a total of 253 poultry flocks in the Gyeonggi-do of Korea were examined for seroprevalence against avian influenza (AI) using a hemagglutination inhibition (HI) test and an agar gel precipitation test. No low pathogenic avian influenza (LPAI) virus was isolated from 47 seropositive flocks that lacked clinical signs during sampling. The unadjusted percentage of seroprevalence rates of layer and broiler flocks were not significantly different, i.e., 26% (25/96) and 23% (22/97), respectively. The HI titer of the layers (mean = 89) was higher than the broilers (mean = 36; p < 0.001). A cross-sectional study was conducted for the seroprevalence of LPAI in the layers. Of 7 risk factors, farms employing one or more workers had a higher seropositive prevalence as compared to farms without hired employees (adjusted prevalence OR = 11.5, p = 0.031). Layer flocks older than 400 d had higher seropositivity than flocks younger than 300 d (OR = 4.9, p = 0.017). The farmers recognized at least one of the clinical signs in seropositive flocks, such as decreased egg production, respiratory syndromes, and increased mortality (OR = 2.3, p = 0.082). In a matched case-control study, 20 pairs of case and control flocks matched for type of flock, hired employees, age, and flock size were compared. Frequent cleansing with disinfectants was associated with a decreased risk of seropositivity (OR = 0.2, p = 0.022). Although there was a low statistical association, using a foot disinfectant when entering the building led to a decreased rate of seropositivity (OR = 0.3, p = 0.105).  相似文献   

14.
Surveillance programmes for low pathogenicity (LPAI) and high pathogenicity avian influenza (HPAI) infections in poultry are compulsory for EU Member States; yet, these programmes have rarely been evaluated. In Italy, following a 1999 HPAI epidemic, control measures, including vaccination and monitoring, were implemented in the densely populated poultry area (DPPA) where all epidemics in Italy have been concentrated. We evaluated the monitoring system for its capacity to detect outbreaks rapidly in meat‐type turkey flocks. The evaluation was performed in vaccination areas and high‐risk areas in the DPPA, in 2000–2005, during which four epidemics occurred. Serum samples and cloacal swabs were taken from vaccinated birds and unvaccinated (sentinel) birds. We compared the detection rate of active, passive and targeted surveillance, by vaccination status, using multinomial logistic regression. A total of 13 275 samplings for serological testing and 4889 samplings for virological testing were performed; 6315 production cycles of different bird species were tested. The outbreaks detection rate in meat‐type turkeys was 61% for active surveillance (n = 222/363 outbreaks), 32% for passive surveillance and 7% for targeted surveillance. The maximum likelihood predicted values for the detection rates differed by vaccination status: in unvaccinated flocks, it was 50% for active surveillance, 40% for passive surveillance and 10% for targeted surveillance, compared to respectively 79%, 17% and 4% for vaccinated flocks. Active surveillance seems to be most effective in detecting infection, especially when a vaccination programme is in place. This is the first evaluation of the effectiveness of different types of surveillance in monitoring LPAI infections in vaccinated poultry using field data.  相似文献   

15.
Highly pathogenic avian influenza (HPAI) virus H5N1 is now endemic in South-East Asia but HPAI control methods differ between countries. A widespread HPAI vaccination campaign that started at the end of 2005 in Viet Nam resulted in the cessation of poultry and human cases, but in 2006/2007 severe HPAI outbreaks re-emerged. In this study we investigated the pattern of this first post-vaccination epidemic in southern Viet Nam identifying a spatio-temporal cluster of outbreak occurrence and estimating spatially smoothed incidence rates of HPAI. Spatial risk factors associated with HPAI occurrence were identified. Medium-level poultry density resulted in an increased outbreak risk (Odds ratio (OR) = 5.4, 95% confidence interval (CI): 1.6–18.9) but also climate-vegetation factors played an important role: medium-level normalised difference vegetation indices during the rainy season from May to October were associated with higher risk of HPAI outbreaks (OR = 3.7, 95% CI: 1.7–8.1), probably because temporal flooding might have provided suitable conditions for the re-emergence of HPAI by expanding the virus distribution in the environment and by enlarging areas of possible contacts between domestic waterfowl and wild birds. On the other hand, several agricultural production factors, such as sweet potatoes yield, increased buffalo density, as well as increased electricity supply were associated with decreased risk of HPAI outbreaks. This illustrates that preventive control measures for HPAI should include a promotion of low-risk agricultural management practices as well as improvement of the infrastructure in village households. Improved HPAI vaccination efforts and coverage should focus on medium poultry density areas and on the pre-monsoon time period.  相似文献   

16.
Thailand has had multiple poultry outbreaks of highly pathogenic avian influenza (HPAI) H5N1 since its first emergence in 2004. Twenty-five human cases of HPAI H5N1 avian influenza have been reported in the country, including 17 fatalities, and contact with infected dead or dying poultry has been identified as a risk factor for human infection. This study assessed the use of protective equipment and hand hygiene measures by Thai poultry-owning households during activities involving poultry contact. Surveys conducted in 2008 included questions regarding poultry-related activities and protective measures used during an HPAI outbreak (2005) and 3 years after the study location's last reported outbreak (2008). For both time periods, poultry owners reported limited use of personal protective equipment (PPE) during all activities and inconsistent hand washing practices after carrying poultry and gathering eggs. This is the first time that PPE use in Thailand has been quantified for a large study group. These data are important for ongoing characterization of HPAI risk and for the crafting of educational messages.  相似文献   

17.
Several outbreaks of virulent Newcastle-disease occurred in Australia in 1998–2000. We conducted a cross-sectional survey of 753 Australian chicken farms to identify risk factors associated with the seroprevalence of chicken flocks with Newcastle-disease virus (NDV). We had a 99.7% response rate to the survey and the overall prevalence of NDV seropositive farms was 39.8%. Associations were analysed for the layer, chicken-meat and breeder production sectors in sector-specific logistic-regression models using 187, 198 and 146 farms, respectively. In the layer sector, increased risk of seroprevalence was associated with increasing age of the chickens, and decreased risk when the nearest-neighbour poultry farm was >10 km distant (odds ratio (OR) = 0.30). In the chicken-meat sector, increased risk of seroprevalence was associated with location in the Sydney basin (OR = 13.67), eastern Victoria (OR = 26.10) or western Victoria (OR = 5.43), and decreased risk when the nearest-neighbour poultry farm was greater than 0.5 km distant (OR = 0.34). In the breeder sector, increased risk of seroprevalence was associated with increasing age of the chickens, the presence of wild birds on the farm (OR = 5.28) and location in eastern Victoria (OR = 16.19). A conditional logistic-regression for 112 pairs of farms matched for age, survey region and production sector identified a distance of >1.0 km to the nearest-neighbour poultry farm (OR = 0.24) and ownership by owner 2 (OR = 0.02), owner 5 (OR = 0.11) or owner 9 (OR = 0.25) as significant in reducing the risk of NDV seroprevalence. Our survey found that high levels of biosecurity and hygiene practices had been adopted by most farms.  相似文献   

18.
Increased animal intensification presents with increasing risks of animal diseases. The Egyptian household poultry is peculiar in its management style and housing and this present with particular challenges of risk of infection to both the flock and humans. Biosecurity remains one of the most important means of reducing risks of infection in the household poultry, however not much information is available to support its feasibility at the household level of production. In this study financial feasibilities of biosecurity were modeled and evaluated based on certain production parameters. Risks of particular importance to the household poultry were categorized and highly pathogenic avian influenza H5N1 was the most risky disease while people-related risk was the most important risk category. It was observed that basic biosecurity measures were applicable in the household poultry and it would be 8.45 times better to implement biosecurity than to do nothing against HPAI H5N1; 4.88 times better against Newcastle disease and 1.49 times better against coccidiosis. Sensitivity analyses proved that the household poultry project was robust and would withstand various uncertainties. An uptake pathway for basic biosecurity was suggested. The outcome of this work should support decisions to implement biosecurity at the household sector of poultry production.  相似文献   

19.
The California poultry industry experienced an outbreak of H6N2 avian influenza beginning in February 2000. The initial infections were detected in three commercial egg-laying flocks and a single noncommercial backyard flock but later spread to new premises. The vaccination of pullet flocks with a commercially prepared, killed autogenous vaccine prior to their placements on farms with infected or previously infected flocks was used as a part of the eradication programs for some multiage, commercial egg production farms. The purpose of this study was to follow three vaccinated flocks on two commercial farms to track the immune responses to vaccination. The antibody-mediated responses of the three flocks followed in this study were markedly different. One flock achieved 100% seroconversion at 12.5 wk of age, but by 32 wk of age, all of the hens were seronegative by agar gel immunodiffusion (AGID). In contrast, at 32 wk of age, flocks from the other farm (flocks 2A and 2B) were 95% and 72% seropositive by AGID, respectively. Of the differences that were identified between the vaccination protocols on the two farms, the distinction that could explain the level of disparity between responses is the delivery of the second dose of vaccine with a bacterin on the first farm, which may have interfered with the persistence of immunity in this flock. Hens from flocks 2A and 2B were experimentally challenged at 25 wk of age with H6N2 avian influenza virus. Hens from flock 2A did not transmit virus to naive contact-exposed hens, but hens from flock 2B did. At 34 wk of age, hens from flock 2A were again challenged and naive contact-exposed hens were infected in this second trial. These challenge experiments served to demonstrate that despite detectable antibody responses in flocks 2A and 2B, the birds were protected from infection for less than 21 wk after the second vaccination.  相似文献   

20.
The contamination of poultry in the Netherlands with Salmonella enteritidis was tested. For this, different methods (detection of S. enteritidis in faecal samples of 25 g; detection of S. enteritidis in cloacal swabs; detection of S. enteritidis by serological testing of antibodies in serum) were compared for their efficiency to detect S. enteritidis in flocks of poultry. Testing of faecal samples clearly yielded the best results. This method was used in a transmission study, in which 14 flocks descending from a contaminated primary mother flock were screened for the presence of S. enteritidis. The method was also used for screening 49 flocks of laying hens and 52 flocks of broiler chickens throughout the Netherlands. From the transmission study it became clear that S. enteritidis, phage type 2 (Dutch phage set) was isolated both from the mother flock and from five of the descendent flocks. Screening of poultry flocks for the presence of salmonella revealed that salmonella was present in 47% of the layer flocks and in 94% of the broiler flocks. S. enteritidis was isolated from 15% of the flocks screened.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号