首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.

BACKGROUND

Aerial treatments for invasive species management are now common, but we are unaware of any work published in the scientific literature quantifying how the interplay of numerous factors affects flight time and therefore operational costs. Here, we analyse aerial treatment data collected from two ant-eradication programmes, quantifying how the relationships between flight time and area are influenced by numerous aircraft/delivery system/bait/flight speed combinations.

RESULTS

For bait dispersal by helicopters, and when swath widths are equivalent, side-mounted Isolair was significantly more efficient than the simultaneous use of two underslung buckets, and use of two buckets was slightly but not significantly more efficient than one bucket. In this scenario, delivery by Isolair was, on average, 39.8% and 31.5% more efficient than the use of one or two buckets, respectively. However, when the swath width used with Isolair was halved to 10 m and flight speed was increased slightly, flight time was significantly greater compared to the other configurations. For bait dispersed by drone, flights conducted using an upgraded Flight Management System (FMS) and greater flight speed but smaller swath width were significantly more efficient than flights using the older FMS and lower flight speed. Over 10 and 50 ha the helicopter was 2.87 and 4.82 times more time efficient than the drone.

CONCLUSION

We encourage practitioners to publish data from their aerial treatments, and to try new methods, to accelerate improvements in efficiency and reduce the costs of aerial treatments. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

2.

BACKGROUND

Sublethal effects of insecticides may negatively affect several biological and behavioral traits of insects. The lethal effects of pirimiphos-methyl and chlorfenapyr have been previously showed on Trogoderma granarium, but little knowledge is available about their sublethal effects at low concentrations on both sexes. Herein, the sublethal effects of pirimiphos-methyl and chlorfenapyr on the mobility of T. granarium males and females were investigated.

RESULTS

Lethal concentration (LC) values of pirimiphos-methyl and chlorfenapyr were lower for T. granarium females than males. LC values on males were LC10 = 0.000788 and 0.00139 mg active ingredient (a.i.) cm−2, LC30 = 0.00350 and 0.00535 mg a.i. cm−2, and LC50 = 0.00986 and 0.0136 mg a.i. cm−2 for pirimiphos-methyl and chlorfenapyr respectively. LC on females were LC10 = 0.000704 and 0.00110 mg a.i. cm−2, LC30 = 0.00323 and 0.00428 mg a.i. cm−2, and LC50 = 0.00925 and 0.0110 mg a.i. cm−2 for pirimiphos-methyl and chlorfenapyr respectively. The walking duration of beetles exposed to LC30 of pirimiphos-methyl was significantly lower than the individuals exposed to LC10 and LC30 of both insecticides and control ones. Pirimiphos-methyl LC30-exposed males remained more time on their back (101.7 s) than females (46.9 s), while the latter stayed immobile longer than males (381.7 s versus 371.9 s). The highest speed was recorded for control beetles (14.17 mm s−1 females vs. 12.44 mm s−1 males), while the lowest speed was observed in pirimiphos-methyl LC30-treated males (8.36 mm s−1) and females (9.66 mm s−1).

CONCLUSIONS

Overall, males and females exposed to low concentrations of pirimiphos-methyl and chlorfenapyr showed reduced motility. This knowledge can be exploited further to unlock behavioral effects of insecticides for effective pest management programs in warehouses. © 2023 Society of Chemical Industry.  相似文献   

3.

BACKGROUND

Ethanedinitrile (EDN) is a fumigant being commercialized worldwide as an alternative phytosanitary treatment to methyl bromide (MB) for forest products. The penetration characteristics of MB and EDN were measured through the bark of wooden blocks (100 × 100 × 50 mm) cut from the upper (average bark thickness 5 ± 2 mm) and lower (average bark thickness 25 ± 5 mm) trunk of recently felled pine (Pinus radiata D.Don) trees. Doses of 48 g m−3 MB and 50 g m−3 EDN were applied to chambers at 10 and 20°C for 10 h.

RESULTS

Penetration of MB was influenced by the interaction between fumigation time and temperature, with concentrations increasing at a higher rate at 20°C compared with at 10°C. After 10 h, an average concentration of 8.05 ± 0.89 g m−3 had penetrated the bark of log sections at 20°C, whereas 5.20 ± 0.89 g m−3 was measured at 10°C. By contrast, the factors examined in this study did not significantly impact the penetration of EDN. Concentration × time (CT) values for MB under the bark were 35.20 ± 2.30 g h m−3 at 10°C and 55.85 ± 9.58 g h m−3 at 20°C; whereas for EDN, CT values were 19.50 ± 6.80 g h m−3 at 10°C and 19.08 ± 4.10 g h m−3 at 20°C.

CONCLUSION

MB can achieve a higher concentration under the bark of log sections during simulated fumigations, but all of the factors examined affected the ability of MB to penetrate the bark of wooden blocks. By comparison, the penetration of EDN through the bark is more consistent than MB under laboratory conditions. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

4.

BACKGROUND

Bemisia tabaci is a globally significant agricultural pest including in Australia, where it exhibits resistance to numerous insecticides. With a recent label change, buprofezin (group 16), is now used for whitefly management in Australia. This study investigated resistance to pyriproxyfen (group 7C), spirotetramat (group 23) and buprofezin using bioassays and available molecular markers.

RESULTS

Bioassay and selection testing of B. tabaci populations detected resistance to pyriproxyfen with resistance ratios ranging from 4.1 to 56. Resistance to spirotetramat was detected using bioassay, selection testing and sequencing techniques. In populations collected from cotton, the A2083V mutation was detected in three populations of 85 tested, at frequencies ≤4.1%, whereas in limited surveillance of populations from an intensive horticultural region the frequency was ≥75.8%. The baseline susceptibility of B. tabaci to buprofezin was determined from populations tested from 2019 to 2020, in which LC50 values ranged from 0.61 to 10.75 mg L−1. From the bioassay data, a discriminating dose of 200 mg L−1 was developed. Recent surveillance of 16 populations detected no evidence of resistance with 100% mortality recorded at doses ≤32 mg L−1. A cross-resistance study found no conclusive evidence of resistance to buprofezin in populations with high resistance to pyriproxyfen or spirotetramat.

CONCLUSIONS

In Australian cotton, B. tabaci pest management is challenged by ongoing resistance to pyriproxyfen, while resistance to spirotetramat is an emerging issue. The addition of buprofezin provides a new mode-of-action for whitefly pest management, which will strengthen the existing insecticide resistance management strategy. © 2023 Commonwealth of Australia. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

5.
6.
The lack of robust estimates of soybean yield losses due to target spot led to this study. The objective was to determine whether soybean yield at stage R8 (W, expressed as kg ha−1) was related to target spot severity at soybean stage R5–R6 (S, expressed as %) and to identify variables that could affect this relationship. Plot-level estimates of mean disease severity and yield from 41 selected Uniform Fungicide Trials carried out in Brazil during 2012–2016 growing seasons were used to estimate linear regression coefficients for the relationship between yield and target spot severity through random-coefficient mixed effects model analysis. The overall estimated mean regression intercept and slope were  = 3564 kg ha−1 (disease-free yield) and  = −17.1 kg ha−1 %−1 (W decrease per percent increase in S), respectively. The model was then refitted with different covariates to determine their effects on model parameters. β0 was influenced by baseline yield (less than or greater than 3300 kg ha−1) and β1 was affected by yield response to fungicide treatments. Estimated yield loss at 50% target spot severity ranged from 8% to 42%. Cultivar also had a significant effect on the magnitude of yield reduction due to target spot, which ranged from 11% to 42%, depending on the cultivar.  相似文献   

7.
Fundamental to the development of models to predict the spread of cucurbit downy mildew is the ability to determine the escape of Pseudoperonospora cubensis sporangia from infected fields. Aerial concentrations of sporangia, C (sporangia m?3), were monitored using Rotorod samplers deployed at 0·5 to 3·0 m above a naturally infected cucumber canopy in two sites in central and eastern North Carolina in 2011, where disease severity ranged from 1 to 40%. Standing crop of sporangia was assessed each morning at 07·00 h EDT and ranged from 320 to 16 170 sporangia m?2. Disease severity and height above the canopy significantly (< 0·0001) affected C with mean concentration (Cm) being high at moderate disease. Values of Cm decreased rapidly with canopy height and at a height of 2·0 m, Cm was only 7% of values measured at 0·5 m when disease was moderate. Daily total flux (FD) was dependent on disease severity and ranged from 5·9 to 2242·3 sporangia m?2. The fraction of available sporangia that escaped the canopy increased from 0·028 to 0·171 as average wind speed above the canopy for periods of high C increased from 1·7 to 3·6 m s?1. Variations of Cm and FD with increasing disease were well described (< 0·0001) by a log‐normal model with 15% as the threshold above which Cm and FD decreased as disease severity increased. These results indicate that disease severity should be used to adjust sporangia escape in spore transport simulation models that are used to predict the risk of spread of cucurbit downy mildew.  相似文献   

8.
Growth of the submerged weed Potamogeton pectinatus L. is a major problem in the irrigation channels located in the Lower Valley of the Colorado River (39°10′–39°55′S; 62°05′–63°55′W) in Argentina. Previous studies indicate that weed control with acrolein is effective in reducing submerged plant biomass. In this study, we evaluated the influence of some variables affecting acrolein and its dissipation in water. Three main parameters, acrolein dosage, the height of the plants and the velocity of water contributed to 80% of the reduction of the submerged weed biomass. Water flow and concentration of the chemical explained 68% of the factors influencing the dissipation of the herbicide. Water velocity, electrical conductivity, pH and the duration of application have a secondary effect in the dissipation process. The constant rate of dissipation (K) was 0.235 L h−1 (SD ±0.125), implying that the chemical will disappear from the system in <24 h. As a practical guideline for the control of mature, dense stands of P. pectinatus within the irrigation system under study, the following conditions are advisable: flow volumes of 500 L s−1 or higher, water velocity of 0.42 m s−1 or more and c. 6.5 mg L−1 concentration of acrolein for at least a 11-h period.  相似文献   

9.

BACKGROUND

Tillage operations will change the distribution in soil for any pesticide residues still present from earlier applications. This redistributive effect of tillage has been neglected in the study of pesticide leaching behavior. This study reviews the literature to characterize this redistributive effect for different tillage operations and uses a pesticide leaching model to investigate the impact of redistribution on pesticide transport to subsurface drains which is a significant input route to surface water bodies.

RESULTS

Inversion ploughing moves the majority of any residues of pesticide present at or near the soil surface into the bottom two-thirds of the plough layer, whereas non-inversion ploughing has only a limited redistributive effect. Incorporating this redistributive effect into model simulations resulted in large changes (typically 5–10-fold difference) in both the maximum concentration and total mass of pesticide transported to drains over the winter following cultivation. More intense cultivation decreased subsequent leaching for relatively mobile compounds (Koc ≤1000 mL g−1), but increased it for strongly sorbed pesticides (Koc ≥2000 mL g−1).

CONCLUSION

The redistributive effect of soil tillage on pesticide residues can have a large effect on subsequent transport to subsurface drains. This effect has been neglected in the literature. Field research is required to validate the model simulations presented here, and consideration should be given as to whether the effect needs to be included within risk assessment procedures. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

10.

BACKGROUND

In recent years, biofungicides have drawn increasing interest in vineyards for a more sustainable integrated and copper-limited pest management. Among alternatives, botanicals could represent valuable tools, being rich sources of biologically active compounds. Conversely to the well-known antioxidant and biological properties in relation to health benefits, investigation on bioactivity of hot pungent Capsicum sp. products against fungal phytopathogens in vineyards is still scarce. Therefore, the present study aimed at exploring the biologically active compounds profile of a chili pepper (Capsicum chinense Jacq.) pod extract and its antimicrobial properties against some of the major fungal and Oomycetes pathogens of grapevine, including Botrytis cinerea Pers., Guignardia bidwellii (Ellis) Viala & Ravaz and Plasmopara viticola (Berk. & M.A. Curtis) Berl. & De Toni.

RESULTS

The ethyl acetate-extracted oleoresin from the most pungent varieties was rich in capsaicinoids and polyphenols (371.09 and 268.5 μg mg−1 dry weight, respectively). Capsaicin and dihydrocapsaicin, hydroxycinnamic and hydroxybenzoic acids and quercetin derivatives were the most abundant, while carotenoids represented only a minor fraction. The oleoresin was efficient to inhibit all three pathogenic fungi and ED50 values were determined, evidencing that G. bidwellii was the more sensitive (0.233 ± 0.034 mg mL−1).

CONCLUSION

The results suggested a potentiality of chili pepper extract for the control of some important grapevine pathogens, their possible application being helpful for the recommended limitation in extensive use of copper in vineyard. The complex mixture of high amounts of capsaicinoids, associated to specific phenolic acids and other minor bioactive components might contribute to the observed antimicrobial action of chili pepper extract. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

11.
Using models from atmospheric chemistry and physics, this study examined the wet deposition of single uredospores of soybean rust caused by Phakopsora pachyrhizi associated with rainfall and its importance compared with dry deposition. First, a measurement of the terminal velocity of freshly collected P. pachyrhizi uredospores was conducted in Nanning, China. The observed terminal velocities associated with different sizes of the uredospore clumps were fitted by negative exponential models. The average terminal velocity of single uredospores (0.0187 m s−1) determined by the fitted models was used to estimate the dry deposition. The wet deposition of single uredospores associated with different rainfall rates was determined numerically using coupled models, in which raindrop capture efficiency of uredospores was based on Slinn’s semi-empirical model. The results showed that at a rainfall rate of 0.5 mm h−1, wet deposition can remove 50% of the single uredospores in the air within 1 h. If the rainfall rate is 5 mm h−1, 10 min is sufficient to remove 50% of the uredospores. The dry deposition of the single uredospores was estimated with simplified scenarios: i.e., assuming the uredospore cloud was continuously from 1,000 to 2,000 m in height above a field with a uniform concentration. In the first 16 h, almost no uredospores reached the ground, while the wet deposition caused by 2 mm h−1 rainfall within 30 min was even much greater than dry deposition of 24 h duration. The comparisons indicated that the wet deposition of soybean rust uredospores was much more efficient than the dry deposition.  相似文献   

12.
Green mould disease causes serious economic losses in Pleurotus ostreatus crops worldwide, including in Italy, where prochloraz is the only chemical fungicide allowed to control the disease. The effectiveness of the doses 0.01, 0.05, 0.25 and 1.25 μL L−1 (field dose) of prochloraz (Sponix Flow, 450 g L−1), against colony growth rate and spore germination of Trichoderma pleuroti, T. pleuroticola and T. guizhouense strains on wheat straw extract agar plates were evaluated. Complete inhibition of Trichoderma pleuroti and T. pleuroticola growth was shown by the field dose of prochloraz, and also by the 0.25 μL L−1 dose for T. pleuroti. Complete inhibition of spore germination occurred for all Trichoderma strains at field dose, and at 0.25 μL L−1 for T. pleuroti strains. In in vivo assays, the effect of prochloraz doses 0.05, 0.25 and 1.25 μL L−1 on colonization of straw substrate by Tpleuroti, T. pleuroticola and T. guizhouense inoculated at two spore densities (102 and 105 spores mL−1) immediately after P. ostreatus spawn was studied. Trichoderma pleuroti and T. pleuroticola were both responsible for green mould disease, whereas T. guizhouense was not pathogenic. Trichoderma pleuroti was more aggressive than T. pleuroticola. Prochloraz was effective against T. pleuroti at the field dose, and against T. pleuroticola at 0.25 and 1.25 μL L−1. The study on Trichoderma × Pleurotus interaction type showed that Trichoderma species were active against the mycelial growth of P. ostreatus by competition for space and nutrients, and neither hyphal interaction nor effect by volatile or nonvolatile metabolites occurred.  相似文献   

13.
RH‐1965 is a new bleaching herbicide which causes newly developing leaf tissue to emerge devoid of photosynthetic pigments. Mode‐of‐action studies revealed that RH‐1965 inhibited the accumulation of both total chlorophyll and β‐carotene. Concomitantly, it induced the accumulation of the β‐carotene precursors, phytoene, phytofluene and, in particular, ξ‐carotene. Inhibition of chlorophyll accumulation by RH‐1965 is attributed to the photo‐oxidative destruction of chlorophyll in the absence of β‐carotene because RH‐1965 blocked chlorophyll accumulation to a greater extent under high light (50–330 µE m−2 s−1) than under low light (0.8 µE m−2 s−1) conditions. Radish (Raphanus sativus L) and barnyardgrass (Echinochloa crus‐galli (L) Beauv) were very senstive to RH‐1965. Under high light (330 µE m−2 s−1), the I50 values for inhibition of chlorophyll accumulation were 0.10 and 0.15 µM , respectively. Wheat (Triticum aestivus L), on the other hand, was much less sensitive to RH‐1965 (I50 = 1.4 µM ). It is concluded that the mode of action of RH‐1965 involves the inhibition of ξ‐carotene desaturation. © 2000 Society of Chemical Industry  相似文献   

14.
Podosphaera xanthii and Golovinomyces orontii are the causal agents of cucurbit powdery mildew. The effect of temperature on conidial germination, infection and sporulation was studied under controlled conditions. Conidia were inoculated on cucumber leaf discs, and incubated at six constant temperatures (from 10 to 35 °C in 5 °C steps) for 3 to 72 h to evaluate conidial germination and infection, and for 6–15 days to evaluate sporulation intensity. Germination took place at all tested temperatures, but was close to zero at 35 °C. The longest germ tubes measured in this experiment were 141.74 μm for the secondary germ tube of Pxanthii at 20 °C after 48 h of incubation, and 67.92 μm for G. orontii for the primary germ tube at 20 °C after 48 h of incubation. The optimal temperatures for conidial germination, infection and sporulation were 24.4, 25.7 and 22.3 °C, respectively, for P. xanthii, and 17.9, 17.3 and 14.9 °C, respectively, for G. orontii. Equations were developed to describe conidial germination with a coefficient of determination (R2) of 0.85 and 0.90 for P. xanthii and Gorontii, respectively. Infection equations resulted in R2 of 0.94 and 0.93 for Pxanthii and Gorontii, respectively; and for sporulation, R2 of 0.75 and 0.76 for P. xanthii and G. orontii respectively, as a function of temperature. These results can be used to develop models for the risk of cucurbit powdery mildew under field conditions.  相似文献   

15.

BACKGROUND

Arboviroses such as dengue, Zika and chikungunya represent a serious public health issue as a consequence of the absence of approved vaccines or specific antiviral drugs against the arboviruses that cause them. One way to prevent these diseases is by combating the vector mosquito, Aedes aegypti (Diptera), which has serine proteases in the midgut. Protease inhibitors are molecules that can block enzyme activity, impairing digestion and nutrition, which can lead to death. Thus, we purified and characterized a novel chymotrypsin‐trypsin inhibitor (LsCTI) from Lonchocarpus sericeus seeds and investigated its effect upon Ae. aegypti egg hatching, larval development and digestive proteases.

RESULTS

LsCTI showed a single protein band in sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS‐PAGE), and the molecular mass determined by matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) was 8870.45 Da. Kinetics analyses revealed a noncompetitive type of inhibition and low inhibition constant (Ki) for chymotrypsin (8.24 x 10‐8 m ). The thermal resistance was remarkable, even at 100 °C for 180 min. The inhibitor concentration required for 50‐percent enzyme inhibition (IC50) of LsCTI was 4.7 x 10‐7 m for Ae. aegypti midgut larval enzymes. LsCTI did not affect egg hatchability at 0.3 mg mL‐1, but caused a high larval mortality rate (77%) and delayed development (37%).

CONCLUSIONS

LsCTI is a novel protease inhibitor with remarkable biochemical characteristics and is a potential tool to control Ae. aegypti development. © 2017 Society of Chemical Industry
  相似文献   

16.
Hormesis is a dose response phenomenon in which low, non-damaging doses of a stressor bring about a positive response in the organism undergoing treatment. Evidence is provided here that hormetic UV-C treatments of tomato seed can control disease caused by Botrytis cinerea, Fusarium oxysporum f. sp. lycopersici (FOL) and f. sp. radicis-lycopersici (FORL) on tomato (Solanum lycopersicum). Treating seeds with a 4 kJ m−2 dose of UV-C significantly reduced both the disease incidence and progression of B. cinerea, with approximately 10% reductions in both on cv. Shirley. Disease severity assays for FOL and FORL on cv. Moneymaker showed dose-dependent responses: UV-C treatments of 4 and 6 kJ m−2 significantly reduced the disease severity scores of FOL, whilst only the 6 kJ m−2 showed significant reductions for FORL. To determine the effects of treatment on germination and seedling growth, UV-C doses of 4, 8 and 12 kJ m−2 were performed on cv. Shirley. No negative impacts on germination or seedling growth were observed for any of the treatments. However, the 8 kJ m−2 treatment showed significant biostimulation, with increases in seedling, root and hypocotyl dry weight of 11.4%, 23.1% and 12.0%, respectively, when compared to the control. Furthermore, significant increases in the root-mass fraction (10.6%) and root:shoot ratio (13.1%) along with a decrease in shoot-mass fraction (2.0%) indicates that the 8 kJ m−2 treatment stimulated root growth to the greatest extent. There was no effect on hypocotyl and primary root length or the number of lateral roots, indicating no adverse effects to basic root architecture or seedling growth.  相似文献   

17.

BACKGROUND

Cultivated bread wheat (Triticum aestivum L.) spontaneously hybridizes with wild/weedy related Aegilops populations, but little is known about the actual rates at which this hybridization occurs under field conditions. It is very important to provide reliable empirical data on this phenomenon in order to assess the potential crop–wild introgression, especially in the context of conducting risk assessments for the commercialization of genetically modified (GM) wheat, as gene flow from wheat to Aegilops species could transfer into the wild species genes coding for traits such as resistance to herbicides, insects, diseases or environmental stresses.

RESULTS

The spontaneous hybridization rates between wheat and A. geniculata and A. triuncialis, which are very abundant in the Mediterranean area, have been estimated for the first time in the northern part of the Meseta Central, the great central plateau which includes the largest area of wheat cultivation in Spain. Hybridization rates averaged 0.12% and 0.008% for A. geniculata and A. triuncialis, respectively. Hybrids were found in 26% of A. geniculata and 5% of A. triuncialis populations, at rates that can be ≤3.6% for A. geniculata and 0.24% for A. triuncialis.

CONCLUSION

The detection of Aegilops spp.–wheat hybrids in Aegilops populations indicates that gene flow can occur, although wheat is considered a crop with a low-to-medium risk for transgene escape. These data on field hybridization rates are essential for GM wheat risk assessment purposes. © 2023 Society of Chemical Industry.  相似文献   

18.
It is important to understand the likely response of plant pathogens to increased temperatures due to anthropogenic climate change. This includes evolutionary change due to selection on genetically based variation in growth rate with temperature. We attempted to quantify this in two ways. First, radial mycelial growth rates in agar culture were determined for a collection of 44 English isolates of Leptosphaeria maculans and 17 isolates of L. biglobosa, at 14 temperatures. For L. maculans the genotypic variances in four parameters were measured: minimum temperature allowing growth, optimum temperature, growth rate at the optimum temperature, and growth rate at the highest usable temperature, 31.8°C. The standard deviations were 0.068°C, 1.28°C, 0.21 mm/day, and 0.31 mm⋅day−1⋅°C−1, respectively. For L. biglobosa, these figures were, respectively: immeasurably small, 1.31°C, 0.053 mm/day, and 0.53 mm⋅day−1⋅°C−1. In addition, the incidence and severity of phoma stem canker in planta over a natural growing cycle at four temperatures (16, 20, 24, and 28°C) around the average culture optimum were determined. There was no correlation between in vitro and in planta growth, and the decrease in pathogen measures either side of the optimum temperature was much less for in planta growth than for in vitro growth. We conclude that both pathogens have the capacity to evolve to adapt to changes in environmental conditions, but that predictions of the effect of this adaptation, or estimates of heritability in natural conditions, cannot be made from measurements in vitro.  相似文献   

19.
Fipronil seed treatments were evaluated to determine whether they directly influence germination and subsequent seedling growth in rice (Oryza sativa L). Continuous seed exposure to fipronil (four days) at 2 000 mg litre−1 significantly impaired germination (P < 0.001). When exposure was restricted to a 1-h period 48 h after the initiation of germination, early post-germination growth was also impaired (assessment two days after exposure, P < 0.05). The proportion of seeds satisfying our criteria for normal germination fell by 2.3 and 2.6% respectively across 17 cultivars. Cultivar effects were highly significant (P < 0.001). When exposure to fipronil (2 000 mg litre−1) was restricted to 2 h at initial seed wetting no significant growth impairment occurred. No significant differences (P > 0.05) were found between shoot lengths or root system dry weights of control plants and plants developing from seed exposed continuously (two days) to fipronil at rates of up to 2 000 mg litre−1 during germination and harvested nine days after sowing. Treating germinated seed with fipronil for 1 h immediately prior to sowing at rates of up to 4 000 mg litre−1 did not result in significant changes (P < 0.05) in plant growth parameters at either nine or 25 days after sowing. No evidence of fipronil having a direct phytostimulatory effect on rice was obtained. © 1999 Society of Chemical Industry  相似文献   

20.
The effects of lethal and sublethal concentrations of chlorpyrifos and endosulfan on oxygen consumption and ammonia excretion rate of the crab Trichodactylus borellianus were evaluated. Oxygen consumption and energy expenditure had significant effect in relation to exposure times. Regarding endosulfan, a significant difference in consumption among times of exposure was registered in 625 μg L−1. Moreover, at the highest concentration, energy expenditure rate was observed stabilized during 1–3 h. A significant increase in ammonia excretion was evidenced in 150 and 300 μg L−1 of chlorpyrifos. The O:N ratio showed a decrease in chlorpyrifos and in 2500 μg L−1 of endosulfan. This indicated a shift towards protein primary metabolism. An increment in the O:N ratio was observed in the lower endosulfan solutions. The relation oxygen:nitrogen showed a shift towards lipid and carbohydrate primary metabolism. This work indicated the complexity of the metabolism in the freshwater crab affected by xenobiotic elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号