首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以250份宁夏粳稻为材料,根据7个农艺性状的遗传多样性,研究粳稻核心种质的构建方法.采用混合线性模型统计分析方法无偏预测材料各性状的基因型值,根据2种遗传距离(马氏距离和欧氏距离),3种取样方法(多次聚类随机取样法、多次聚类优先取样法、多次聚类偏离度取样法),8种聚类方法(最短距离法、最长距离法、中间距离法、重心法、类平均法、可变类平均法、可变法、离差平方和法),用均值、方差、极差、变异系数及秩次评价不同遗传距离、取样方法、聚类方法的优劣.结果表明,马氏距离优于欧氏距离;偏离度取样法优于优先取样法和随机取样法,聚类方法最好的是最短距离法、可变类平均法,适宜取样比例是15%.用马氏距离、偏离度取样法、15%取样比例、最短距离聚类法构建了37份宁夏粳稻核心种质.  相似文献   

2.
为更好地发掘和利用现有闽楠种质资源,本研究利用7个SSR位点对江西和福建16个闽楠群体的237份材料进行基因型分析,采用逐步聚类(随机取样策略,位点优先取样策略)和模拟退火算法(等位基因数目最大化策略,遗传距离最大化策略)4种取样方法构建闽楠核心种质,并将各遗传多样性指标进行分析。结果表明:7个SSR位点共检测到50个等位基因,平均为7.143,平均有效等位基因为2.115,Shannon信息指数为0.778,观测杂合度为0.302,期望杂合度为0.442。基于逐步聚类方法构建的核心种质相较于基于模拟退火算法构建的核心种质各遗传参数指标都相对较高。对其进行t检验后,选择以基于逐步聚类位点优先取样策略在25%的取样比例下选取的种质为核心种质,其等位基因数、平均有效等位基因数、多态性位点百分率、Shannon多样性指数的保留率分别为初始种质的98%、104.92%、90.09%、97.94%。筛选出的59份核心种质材料能够较好地代表闽楠种质资源的遗传多样性,为闽楠的种质资源保存提供科学依据。  相似文献   

3.
低酚棉品种资源聚类分析及核心品种抽取方法的探讨   总被引:12,自引:0,他引:12  
对我国低酚棉品种资源进行了聚类分析并探讨了核心品种的抽取方法。以116份低酚棉品种为材料,通过16个性状的分析,采用离差平方和法进行聚类,根据树状图,将该低酚棉群体分为5个类群,对各类群品种性状进行了分析。根据取样比例,将该群体分为20个类群,在各类群内,采用随机抽样、按样品间最小遗传距离和最大遗传距离抽样三种方法,构建了3个低酚棉核心种质库,并加以比较。结果显示最大遗传距离法构建的核心种质库,能最大限度地保存原群体的遗传多样性。  相似文献   

4.
为了调查收集珍稀濒危沙芦草种质资源,提高保护利用效率,以76份沙芦草种质为材料,测定26个表型性状数据,采用2种遗传距离、3种取样方法、8种系统聚类方法和7种取样比例构建了55组候选沙芦草核心种质,利用筛选得到的最佳构建方案构建初级核心种质;应用均值差异百分率(MD)、方差差异百分率(VD)、极差符合率(CR)和变异系数变化率(VR)4个参数检验各取样策略的优劣。同时,以t检验对核心种质的变异程度及代表性进行评价,并用主成分分析法对核心种质进行确认。结果表明:“多次聚类偏离度取样法+欧式距离+可变类平均法+25%的取样比例”是构建沙芦草初级核心种质取样最佳策略;核心种质的主成分累计贡献率高于原种质,表明核心种质均匀分布在原始种质范围内,无重叠现象,有效地避免了核心种质的冗余;构建的19份沙芦草种质资源初级核心种质有效且质量较高,能够在保证冗余较少的情况下充分代表原种质遗传差异。  相似文献   

5.
构建作物种质资源核心库的一种有效抽样方法   总被引:24,自引:0,他引:24  
徐海明  胡晋  朱军 《作物学报》2000,26(2):157-162
本文提出了基于基因型值构建作物种质资源核心库的抽样方法。 采用包括基因型与环境互作的遗传模型及混合线性模型统计分析原理, 无偏预测基因型值。 用基因型值计算基因型间的马氏距离, 并采用不加权类平均法进行聚类。 根据树型图, 确定合理的分类水平, 将群体分成若干不同的类群。 计算各基因型的平均离差度, 在各类  相似文献   

6.
显性核不育亚麻种质资源聚类分析及核心种质库的建立   总被引:1,自引:0,他引:1  
为核不育亚麻资源的有效利用提供依据,构建了核不育亚麻核心种质库。以78份核不育亚麻资源材料为研究材料,通过10个农艺性状的形态学观察、RAPD标记和聚类分析,采用随机抽样和最大遗传距离法结合的策略,构建了由22个材料组成的核心种质库。通过各性状的均值、方差、变幅及变幅保持率等进行评价。结果表明,根据10个农艺性状聚类分析结果,将78份不育亚麻种质资源,可分为8个类群,其欧氏距离在0.394 0~10.709 1之间,均值为4.050 0。而根据RAPD遗传多样性分析结果,将其可分为3个类群,其遗传相异系数在0.013~0.897之间,均值为0.361。构建的核不育亚麻核心种质库基本上能够代表原有种质资源的遗传多样性。  相似文献   

7.
苎麻核心种质构建方法   总被引:6,自引:3,他引:3  
栾明宝  陈建华  许英  王晓飞  孙志民 《作物学报》2010,36(12):2099-2106
选用国家长沙苎麻圃的790份种质资源,在已有的25个性状数据的基础上,采用不同取样方法、不同系统聚类方法、不同遗传距离方法构建苎麻核心种质,用质量性状的多样性指数均值、表型保留比率均值和数量性状均值差异百分率、方差差异百分率、极差符合率和变异系数变化率等6个指标评价不同方法组合(取样方法、聚类方法、遗传距离)构建核心种质的优劣。选出合适的构建方法,构建苎麻核心种质。结果表明,不同的取样方法对质量性状和数量性状的遗传多样性影响不同,就质量性状的最大遗传多样性而言,选择优先取样+多次聚类随机取样方法比较适宜,而对数量性状的最大遗传多样性而言,选择优先取样+多次聚类变异度取样方法则较适宜。用优先取样+多次聚类随机取样方法取样时,采用最短距离法和重心法构建的核心种质最好,用优先取样+多次聚类变异度取样时,采用离差平方和法则是构建苎麻核心种质的最佳聚类方法。苎麻核心种质构建与质量性状的不同遗传距离无关,但数量性状以欧氏距离最佳。  相似文献   

8.
中国绿豆种质资源初选核心种质构建   总被引:8,自引:2,他引:6  
以国家作物种质资源数据库中5 072份国内绿豆资源为材料, 根据14个农艺性状, 利用地理来源(省)和性状群进行分组, 分别采用比例法、平方根法和多样性指数法确定取样数及聚类选择和随机选择2种个体选择法构建了13个不同的绿豆初选核心样本, 对不同的取样方法及总资源间进行了品种间平均相似性系数、性状符合度、遗传多样性指数和数量性状变异系数的比较。结果表明, 聚类选择取样优于随机取样, 按照性状群分组优于按省分组; 在聚类选择条件下采用多样性指数法确定取样数优于平方根法和比例法。最终确定按性状群分组, 利用多样性指数确定取样数, 聚类选择个体为绿豆核心种质构建的最佳方案。用此方案, 构建了包含719份绿豆种质的初选核心种质, 取样比例为14.2%, 性状符合度达100%。  相似文献   

9.
《种子》2021,(9)
以224份山西玉米自交系为材料,采用多次聚类结合优先取样法构建了包含68份种质的核心种质。经过对以SSR标记8次抽样比例形成的候选核心种质进行分析,30.36%为构建核心种质的最佳抽样比例。核心种质、原始种质及保留种质的4个遗传参数t检验结果表明,该核心种质最大程度代表了原始种质的遗传多样性,同时保留种质也保留了原始种质的遗传多样性。构建的核心种质将有利于育种人员对育种材料的评价、保存、研究和在育种中的有效利用。  相似文献   

10.
高淀粉马铃薯种质资源核心样品的初建   总被引:1,自引:0,他引:1  
以国家种质克山马铃薯试管苗保存库保存的1910份种质资源为研究材料,筛选出淀粉含量大于17%的高淀粉马铃薯种质资源103份,在22个表型性状聚类的基础上,按最大遗传距离取样法取样,并依据代表性检测加以调整,提出在生产上或育种中起过重要作用的品种(系)为必选材料,初步构建了高淀粉马铃薯种质资源核心样品16份,占高淀粉马铃薯全部种质的15.5%。  相似文献   

11.
探讨分子水平构建燕山板栗核心种质的适宜方法,以利于燕山种质的保存、保护和研究利用.基于SSR标记,采用非加权算数平均聚类(UPGMA)法对燕山地区10个市(县)的161份板栗种质进行多次聚类抽样分析,比较使用3种遗传相似系数(SM系数、Dice系数和Jaccard系数)和2种取样方法(随机取样法和位点优先取样法)相组合确定的不同样本群的有效等位基因数(Ne)、Nei′s多样性指数(H)和Shannon′s信息指数(I)的大小,确定构建燕山板栗核心种质的适宜方法;再分别对核心种质与原种质、核心种质与保留种质的遗传多样性指标进行t检验,以评价核心种质的代表性;通过绘制主坐标分布图观察核心种质和原种质的分布情况,并结合表型特征对构建的核心种质进行确认.结果表明:应用位点优先取样法取得的样本群比随机取样法具有更高的Ne、H和I,应用SM系数取得的样本群,其遗传多样性指标要优于Dice系数和Jaccard系数,综合利用位点优先取样法和SM系数筛选了46份燕山板栗核心种质,保留了原种质28.57%的样品,Ne、H和I分别为1.5317,0.3218和0.4910.t检验表明,核心种质的遗传多样性指标显著大于原种质,经主坐标分析和表型特征确认,核心种质在原种质的主坐标图中分布均匀,能够较全面地代表整个板栗种质资源的遗传多样性.采用位点优先取样法和SM相似性系数进行多次聚类,是构建燕山板栗核心种质较适宜的方法,构建的容量为46份的板栗核心种质,能充分代表原种质的遗传多样性.  相似文献   

12.
通过分析评价野生刺梨(Rosa roxburghii Tratt.)资源居群遗传多样性和遗传结构,同时构建核心种质,为刺梨资源的保护和发掘利用提供科学依据。本研究利用10对EST-SSR引物和9个果实品质性状指标对收集的12个刺梨自然居群(共102份种质)的遗传多样性及遗传结构进行分析,同时结合原贵州省32份初级核心种质,采用位点优先取样策略进一步构建西南地区核心种质。结果表明,黔西(QX)居群拥有最高的Shannon信息指数I=0.6965,基因多样性指数h=0.3935,多态位点百分率p=84.62%;而古丈(GZ)居群则无论在分子数据还是表型数据都表现为遗传多样性最低;AMOVA分析表明刺梨居群内遗传变异在87%以上,居群间基因流Nem在3.5以上、平均Nei’s遗传距离(GD)0.223。构建的19份核心种质等位基因保留率和稀有等位基因保留率均为100%,能够代表原种质的遗传多样性。西南地区野生刺梨的遗传变异主要发生在居群内,居群间具有基因交流频繁、Nei’s遗传距离小等特点,构建的19份核心种质从等位基因保留率、稀有等位基因保留率及地理分布均能够较好地代表原种质的遗传多样性。自然居群以黔西(QX)居群遗传多样性最高。因此,野生刺梨的保护策略可采用就地保护黔西(QX)居群与迁地保护19份核心种质相结合的方法进行。  相似文献   

13.
为深入发掘和筛选中国野生山胡椒种质资源,本研究利用18对SSR引物(5叶绿体SSR和13核SSR),以基本涵盖中国大陆自然分布区的22个自然群体共303份野生山胡椒种质为材料,进行SSR基因分型分析,并绘制出原始种质的亲缘关系图。结果表明,18对引物共检测到Na=88,Ne为1.18~3.76,He为0.14~0.74,Ho为0~0.58,I为0.30~1.52,以及PIC为0.13~0.70。STRUCTURE分析和UPGMA聚类的结果都显示出22个自然群体适合被划分为三个亚类群。利用等位基因最大化(M策略)和遗传距离最大化(SAGD)法分别至少要在25%(71份种质)、15%取样比例下(45份种质)构建的核心种质才能够在所有遗传多样性指标上代表原始种质的遗传多样性(t检验不显著),并符合核心种质构建的标准。结合核心种质构建工作的同类研究,确定SAGD法(15%取样比例)是较适宜于构建山胡椒核心种质的方法。基于nSSR标记,SAGD法15%比例下构建的核心种质在Na、Ne和I指标参数上的保留率分别达到了原始种质的93.24%、104.67%和100.85%;基于cpSSR标记,与之对应的保留率分别为85.14%、107.45%和108.82%。通过此法筛选出的45份核心种质材料能够一定程度地代表中国整个野生山胡椒种质资源的遗传多样性。研究结果可为其他对非作物型木本植物的核心种质构建,尤其是兼有无性与有性繁殖的物种提供参考。  相似文献   

14.
中国石榴核心种质的初步构建   总被引:3,自引:1,他引:2  
构建中国石榴的核心种质,对中国石榴种质资源的保存、研究和利用,具有重要意义。根据中国石榴135份总体种质的14个植物学、农艺学性状,采用Popgen Version 1.31软件,分析总体种质、初级核心种质以及8个不同产区石榴种质资源的遗传多样性。用SPSS 11.0 for Windows软件,以欧氏距离平方为系数,采用组间连接法,对总体种质进行系统聚类,采取系统取样和随机取样法,构建石榴初级核心种质。对不同产区初级核心种质、总体种质的香浓信息指数以及总体和初级核心种质性状的Nei基因多样性进行差异显著性测验,计算初级核心种质和总体种质性状的符合率,以检测初级核心种质构建效果。试验结果表明,135份总体种质的观察位点数是2-6、有效等位基因位点数为1.211-4.084、Nei基因多样性系数0.174-0.755、香浓信息指数0.317-1.511。选取41份资源构建了石榴初级核心种质。初级核心种质和总体种质遗传多样性t检验未达到显著水平。初级核心种质和总体种质14个性状均值、极差、标准差和变异系数的平均符合率分别为96.77%、95.1%、93.7%、92.1%,说明构建的核心种质能够代表全部种质资源的遗传多样性。  相似文献   

15.
《分子植物育种》2021,19(10):3463-3472
为更好地保存、研究和利用现有菊芋种质资源,本研究以250份种质材料的19个表型性状数据为基础,采用逐步系统聚类并优化聚类和取样方法,初步构建遗传冗余少、代表性强的菊芋核心种质。结果表明,在25%取样比例下多种系统聚类方法抽取的核心种质中,以最短距离法(C4)和优先取样法(S3)组合的C4S3方法所抽取的核心种质评价参数优于其他方法,对原种质的代表性最强。在C4S3法下优化取样比例,结果显示最合适的取样比例为20%,所抽取的核心种质C4S3-20用较少的材料获得了较高的遗传代表性。在C4S3-20方法下继续进行分组取样,评价参数表明分组取样效果不如整体取样,因而不予采纳。主成分分析显示C4S3-20保留了原种质的主成分,去掉了原种质的遗传冗余。最终获得了菊芋核心种质C4S3-20,包括50份材料,其与原种质的性状均值差异百分率为0%,方差差异百分率63.63%,极差符合率为100%,变异系数变化率为131.38%,表型保留比例为96.15%;Shannon多样性指数为1.595。本研究发现该核心种质很好地代表了原种质的遗传多样性,在一定程度上为菊芋资源的有效利用奠定了基础。  相似文献   

16.
利用表型性状构建杜仲雄性资源核心种质   总被引:1,自引:0,他引:1  
以306份杜仲雄性种质为试验材料,通过测量杜仲雄花和叶片等相关的22个表型性状,从遗传距离、取样方法、取样比例、聚类方法 4个层次探讨了构建杜仲雄性资源核心种质的最佳取样策略。应用均值差异百分率(MD)、方差差异百分率(VD)、极差符合率(CR)和变异系数变化率(VR)4个参数来检验各取样策略的优劣。通过比较核心种质和原始种质的表型多样性指数、符合率和主成分,对构建的核心种质进行代表性检验。结果表明:"多次聚类优先取样法+10%的取样比例+马氏距离+最短距离法"取样策略最佳,其均值差异百分率、方差差异百分率、极差符合率和变异系数变化率分别为0%、86.36%、100%和157.62%。核心种质的最终取样比例为10.8%。核心种质与原始种质22个表型性状上的多样性指数t检验结果不显著。核心种质与原始种质在22个指标上的均值符合率在92%~100%之间,最大值、最小值符合率为100%,多样性指数符合率在89%~100%之间。原始种质和核心种质的前10个主成分相同,累积贡献率分别为84.834%和90.422%。获得的33份杜仲雄性种质能够代表306份原始种质的表型变异特征。  相似文献   

17.
遴选黄麻核心种质可为黄麻种质创新及新品种选育奠定基础。本研究以300份黄麻种质资源为基础,基于SSR分子标记和农艺性状考察,结合地理来源构建核心种质。结果表明,11个农艺性状变异系数变幅在13.06%~84.87%,表现出丰富的遗传多样性。按农艺性状聚类分析可划分为8个类群,按分子标记聚类可划分为10个类群。结合2个聚类分析、地理位置并按比例取样,建立一个由108份品种(系)组成的预选核心种质。采用44对SSR引物对其进行遗传差异分析,在遗传相似系数为0.65时,可把108份品种(系)分成圆果种和长果种两大类。根据遗传差异分析,剔除遗传相似系数大于或等于0.85的遗传冗余,获得84份品种(系)的核心种质,其中圆果种60份和长果种24份。比较84份核心种质与300份种质的农艺性状变异系数及Shannon-Wiener指数发现,两者之间相差不大,表明遴选的84份核心种质可以最大限度代表300份黄麻种质资源的遗传多样性加以利用和保存。  相似文献   

18.
旨在评价陆地棉种质资源的遗传多样性和筛选代表性种质,为科学评价和高效利用陆地棉种质资源提供理论依据。基于367份陆地棉种质的SNP标记及其中353份种质的表型数据分别分析其遗传多样性、构建系统进化树及初级核心种质,并对初级核心种质的构建效果进行评价。结果显示,原始陆地棉群体SNP位点多态性信息含量为0.24,各表型性状的遗传多样性指数均接近或大于2.00,与前人研究结果相近。基于SNP标记可以将供试群体划分为3个类群,构建了73份基因型初级核心种质,初级核心种质的Nei′s遗传多样性指数、多态性信息含量等指标数值大于原始种质。基于表型数据可将供试群体划分为3个类群,各性状均值呈第Ⅰ类群最小、第Ⅱ类群居中、第Ⅲ类群最大的趋势。构建了含70份材料的表型初级核心种质,各性状均值较原始种质的差异均不显著,极差、遗传多样性指数与原始种质相近,变异系数均高于原始种质。基于SNP标记构建的初级核心种质和基于表型数据构建的初级核心种质有15份重合,这些种质多为基因型第Ⅱ类群和表型第Ⅱ类群。以上结果表明,陆地棉种质资源基因型遗传多样性较低,但表型变异丰富、遗传多样性较高。本研究构建的基因型和表型初级核心...  相似文献   

19.
大豆核心种质和微核心种质的构建、验证与研究进展   总被引:27,自引:4,他引:23  
我国作物种质资源长期库中保存大豆资源2.3万余份,数量居世界之首。然而,在大豆新品种培育中的利用率仅为1%左右,导致大豆育成品种的遗传基础趋于狭窄。主要原因是缺少对其重要经济性状的鉴定,尤其是缺少多年多点的评价,难以有目的选择有重要价值的育种亲本。为了加速大豆种质资源的评价并促进其利用,在国家基础研究项目(973)的连续资助下,开展了“大豆核心种质构建(1998-2003)”和“大豆微核心种质基因多样性(2004-2009)”研究,目的是浓缩大豆资源的遗传多样性,强化其表型和基因型鉴定,为发掘和利用大豆资源中的优异基因提供指导。本文在研究构建不同比例(占总体2%~5%)大豆核心种质和大豆微核心种质(占总体1%)的同时,介绍了核心种质补充和完善的研究进展。为了验证核心种质的代表性,在构建方法方面,从SSR位点、样本组成、取样比例、低频率等位变异4个方面对代表性进行了分析,并用随机抽样方法对核心种质代表性进行了检测和验证。文中还介绍了利用核心种质和微核心种质在新基因发掘、种质创新和育种利用方面的研究进展,尤其介绍了与育种单位密切合作,建立基于核心种质的种质创新与利用体系的研究成效。围绕遗传多样性、核心种质利用方式进行了讨论,指出大豆核心种质为性状鉴定、新基因发掘、新种质创造和新品种培育等理论研究和实际应用提供材料基础,具有潜在的应用前景。实践证明,大豆种质资源的系统研究与利用,将促进我国大豆种质资源由数量保存型向研究应用型转变。  相似文献   

20.
本研究应用SRAP标记技术,利用10对高效多态性标记对128份乌桕种质资源的遗传多样性进行分析,再根据逐步聚类和随机取样2种方法进行组内个体选择,构建了包含有17份种质的初级核心种质库,结果显示128份乌桕种质资源变异丰富,多态性较高,构建的核心种质保留了13%的初始种质,比较核心种质和初始种质遗传多样性保留率(多态性位点83.95%,观测等位基因数92.17%,有效等位基因数101.79%,Nei's遗传多样性指数104.52%,Shannon's信息指数102.09%)符合核心种质的要求,表明本研究所构建的核心种质很好的保留了原始种质的遗传多样性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号