首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以碱性大红模拟废水为对象,采用Fe~(2+)和Fe~(3+)作为催化剂与H_2O_2构成芬顿体系进行了Fenton氧化反应,考查了pH值、反应时间、Fenton试剂配比与用量等影响因子对色度处理效果的影响。结果表明:最佳处理条件为:初始pH=3、C(Fe~(2+))∶C(H_2O_2)=1∶5或C(Fe~(3+))∶C(H_2O_2)=1∶5、反应时间为30 min。当碱性大红模拟废水浓度为1000 mg/L,初始H_2O_2浓度为5 mmol/L时,最佳条件下Fe~(2+)、Fe~(3+)芬顿体系的脱色率去除效率分别为92.30%、95.68%。对比了Fe~(2+)和Fe~(3+)作为催化剂进行Fenton氧化反应的处理效果。说明Fe~(3+)作为催化剂与Fe~(2+)效果相近。  相似文献   

2.
进行了芬顿体系催化氧化降解染料甲基橙水溶液的研究,考察了pH值、Fe~(2+)和H_2O_2投加量、温度等因素在对甲基橙降解率的影响。结果表明:在室温20℃下,pH=3.0、[Fe~(2+)]0=0.4mmol/L、[H_2O_2]0=1.2mmol/L的条件下,反应30min后,甲基橙水溶液(30mg/L)的降解率达到90%。升高反应温度,有利于Fenton体系中甲基橙的降解,但影响并不显著。结果可为利用芬顿体系处理含甲基橙的印染废水提供理论依据。  相似文献   

3.
罗臻  李婷 《绿色科技》2015,(1):178-180
指出了丙烯腈废水作为一种常见工业废水,其水质复杂,COD高,难进行生物处理。电化学法形成的羟基自由基具有强氧化性,可有效提高丙烯腈废水生化性并去除COD。比较了用电芬顿和电催化氧化处理丙烯腈废水的可行性,研究结果表明:电芬顿法在初始pH值为2,电流密度为6mA/cm2,H2O2投加量为10mL/L,反应时间为90min时效果最佳,TOC去除率为32.2%:电催化氧化法阳极采用二氧化铅,阴极为不锈钢,投加NaCl调节电导率对TOC去除效果最佳为19.8%。上述结果为进一步进行组合工艺试验研究奠定了基础。  相似文献   

4.
采用酸化-芬顿法对成分复杂、有机污染物浓度高、色度大及难生化降解的煤焦油废水进行了预处理实验研究,主要考察了反应时间、pH值、温度、FeSO4及H2O2投加量等不同反应条件对煤焦油废水中COD去除率的影响。结果表明:Fe2+质量浓度为20.g/L的FeSO4溶液用量为2mL/100mL废水,质量分数为15%的H2O2用量为4mL/100mL废水,pH值为5.0,反应时间为3h时,CODcr从4.58g/L降至1.20g/L以下,去除率达85%以上,处理后的水质可满足后续生物处理的要求。  相似文献   

5.
采用酸化-芬顿法对成分复杂、有机污染物浓度高、色度大及难生化降解的煤焦油废水进行了预处理实验研究,主要考察了反应时间、pH值、温度、FeSO4及H2O2 投加量等不同反应条件对煤焦油废水中COD 去除率的影响。结果表明:Fe2+质量浓度为20.g/L的FeSO4溶液用量为2mL/100mL废水,质量分数为15%的H2O2用量为4mL/100mL废水,pH值为5.0,反应时间为3h时,CODcr从4.58 g/L降至1.20 g/L以下,去除率达85%以上,处理后的水质可满足后续生物处理的要求。  相似文献   

6.
采用"Fenton氧化+双碱软化"法处理垃圾渗滤液膜滤浓缩液,考察了初始pH值、H_2O_2投加量、H_2O_2/Fe~(2+)摩尔比、反应时间和双碱投加量对CODcr和硬度去除率的影响并确定最优处理方案。结果表明:"Fenton氧化+双碱软化"法处理垃圾渗滤液膜滤浓缩液有很好的处理效果,对CODcr的去除率可达81%,硬度去除率可达98.5%。  相似文献   

7.
为探究还原剂盐酸羟胺(HAH)强化Fenton体系(Fe~(2+)/H_2O_2)降解水中苯胺(AN)的过程,以AN模拟废水为实验对象,分别考察了HAH初始浓度、pH值、H_2O_2投加量、Fe~(2+)投加量对HAH/Fe~(2+)/H_2O_2体系降解水中AN的影响,并初步探讨了HAH强化Fe~(2+)/H_2O_2体系的作用方式及机理。结果表明:该体系在HAH初始浓度为50μmol/L、Fe~(2+)投加量为10μmol/L、H_2O_2投加量为100μmol/L、pH值为3.0,10min时AN的去除率最高,可达到77.6%,与Fe~(2+)/H_2O_2体系相比较,AN的去除率提高了约40.2%;最后HAH的强化机理主要归因于HAH作为强还原剂促进Fe~(3+)/Fe~(2+)的氧化还原循环,高效地活化H_2O_2产生源源不断的·OH,从而氧化降解AN。  相似文献   

8.
在常压条件下,以铁碳微电解和芬顿试剂的联合氧化法为氧化工艺处理乙氧基喹啉合成过程中的工艺废水和其它收集水,分析了铁、碳用量,探讨了温度变化对芬顿氧化剂H_2O_2,用量和COD去除率的影响,并与单一芬顿氧化进行了比较。试验表明:COD去除率达到96.9%,配合脱氮处理工艺,总氮去除率达到91.3%,色度去除率达到92%,与单一芬顿处理相比较氧化剂减少8.7%,出水经过沉降、过滤分离处理后,水质可进行生化处理,并且水质处理工艺稳定,便于操作。  相似文献   

9.
针对焦化废水二级生化处理出水COD、色度无法达标的问题,通过实验研究了铁碳微电解-Fenton氧化-絮凝沉淀集成技术深度处理焦化废水的效果,分别探讨了初始pH值、H2 O2投加量以及水力停留时间 HRT的变化对COD去除率的影响,确定了各工段最佳运行参数。结果表明:铁碳微电解工段微电解进水pH=2.5,HRT=1.0h对COD去除率为36%,Fenton氧化工段的最佳运行参数10% H2 O2投加量为2.0mL/L ,Fenton氧化出水COD去除率为22%。在确定最佳工艺参数后连续运转一个月,实验结果所示:该集成技术对COD的总去除率可达52%,色度去除率可达90%,可生化性(B/C )由0.11提高到0.35,反应出水COD和色度均满足国家污水综合排放标准(GB8978-1996)的二级排放标准。  相似文献   

10.
利用Fenton试剂进行了处理高浓度设备清洗废水的实验,分别考察了初始pH值、nH2O2∶nFe2+、H2O2和FeSO4·7H2O(g)投加量以及温度对废水COD去除率的影响,结果表明:在反应时间为3h,初始pH值为3,nH2O2∶nFe2+为30∶1,H2O2投加量为80mL/L,FeSO4·7H2O为7.27g/L,且温度为50℃时,Fenton试剂处理高浓度设备清洗废水效果最好,最高COD去除率为69.3%。  相似文献   

11.
研究了芬顿氧化法、臭氧/过氧化氢氧化法及臭氧/活性炭氧化法3种方法对造纸废水进行深度处理的最佳工艺条件。结果表明:臭氧/活性炭氧化法对废水的处理效果最优,其次是芬顿氧化法,最后是臭氧/过氧化氢氧化法。确定各个氧化方法的最佳工艺条件为:芬顿氧化法中反应pH值为3,芬顿试剂投加量为30%过氧化氢3.00mL/L,10%硫酸亚铁36mL/L,反应时间为30min;臭氧/过氧化氢氧化法中反应pH值为5,过氧化投加量为5.0mL/L,反应时间为60~90min;臭氧/活性炭氧化法中反应pH值为8,活性炭投加量为5.0mg/L,反应时间为60~180min。  相似文献   

12.
指出了天然气净化厂废水采用Fenton试剂进行高级氧化处理。通过实验得到了不同H2O2和Fe^2+浓度、反应时间、pH值等因素对废水COD去除效果的影响。由实验结果可以得出:当H2O2的投加量为600mmol/L,FeSO4·7H2O投加量170mmol/L,反应时间60min,pH值-3.5时,废水中的COD浓度从2280mg/L降解至46mg/L,去除率为98%,出水能够达到国家一级A排放标准的要求。  相似文献   

13.
指出了天然气净化厂废水采用Fenton试剂进行高级氧化处理。通过实验得到了不同H2O2和Fe2+浓度、反应时间、pH值等因素对废水COD去除效果的影响。由实验结果可以得出:当H2O2的投加量为600mmol/L,FeSO4·7H2O投加量170mmol/L,反应时间60min,pH值=3.5时,废水中的COD浓度从2280mg/L降解至46mg/L,去除率为98%,出水能够达到国家一级A排放标准的要求。  相似文献   

14.
吹脱法对半焦废水预处理研究   总被引:2,自引:0,他引:2  
采用吹脱法对半焦废水进行了预处理研究,以降低其氨氮、COD含量,达到后续生化处理的条件。实验结果表明:控制温度在50℃时,调节半焦废水pH值为9.6,反应时间为1.5h,其氨氮和COD的去除率分别达到75%和26%,可满足后续生化处理的要求。  相似文献   

15.
基于响应面分析法优化热活化Na_2S_2O_8氧化处理木材活性染料染色废水处理工艺。根据响应面分析法中的Box-Behnken中心组合设计原则选取实验因素与水平,从中选取对废水处理结果有影响的Na_2S_2O_8加入量、初始pH值、反应温度、反应时间4个因素进行优化,并利用Design Expert 8.0.6分析软件对实验数据进行分析,拟合得到二次多项式回归方程的预测模型。结果表明:50 g/L Na_2S_2O_8加入量、87℃反应温度、3.3 h反应时间、p H值保持初始不变为木材活性染料染色废水最优处理工艺。在此参数下,废水COD去除率为96.16%,与预测值95.49%接近,说明根据预测模型和响应面分析法得到的优化工艺准确可靠。  相似文献   

16.
以某化工园区集中式污水厂一期工程处理废水为研究对象,研究了Fenton氧化预处理和臭氧催化氧化深度处理的工艺条件。实验结果表明:Fenton氧化能有效地去除废水中的COD,提高废水的可生化性,有利于后续生化处理;臭氧催化氧化能进一步降低生化出水COD,起到达标保障作用。在此基础上,该污水厂扩建工程(处理规模1.5万m~3/d)设计采用了"Fenton氧化+初沉池+A~2/O+二沉池+臭氧催化氧化+砂滤+紫外消毒"的主体工艺。  相似文献   

17.
采用传统Fenton法和UV-vis/H_2O_2/草酸铁络合物法进行了污泥调理单因素实验。对比两种方法的实验结果得出了较合适的调理方法为UV-vis/H_2O_2/草酸铁络合物法。通过正交实验确定:UV-vis/H_2O_2/草酸铁络合物法的最佳工艺参数是反应时间为35 min,反应温度为27.5℃,反应pH值为2.5,H_2O_2/Fe~(2+)为4.5,Fe~(2+)投加量为15mg/gDS,Ca~(2+)投加量为90mg/gDS,污泥比阻由9.33×10~8 s~2/g降至0.31×10~8 s~2/g,污泥脱水性能得到改善。  相似文献   

18.
周兵 《绿色科技》2013,(3):192-193,196
采用微电解-Fenton氧化组合应用的方式预处理垃圾渗滤液,研究了其可行性及不同工艺条件对COD去除率的影响。结果表明:最佳微电解进水pH值控制在2.5,反应时间为40min,出水中H2O2的投加量为8mL/L,反应时间为60min,在此条件下,最高去除率可达到77.4%。  相似文献   

19.
对生物吸附材料处理高浓度有机废水的各种影响因素进行了研究,结果表明:菇渣等生物吸附材料对废水中COD的去除效果较好,在粒径为2mm,投加量为5g,处理COD浓度为1478.40mg/L,pH值为4.92的废水中,COD去除率可达35.98%,废水可生化性增强,有利于废水的后续生化处理。  相似文献   

20.
以配制的活性艳蓝P-3R染料废水为研究对象,研究了复合氧化法O3/H2O2降解染料活性艳蓝P-3R的效果,并分析了反应时间、H2O2投加量、H2O2投加方式、pH值等各种因素对处理效果的影响。结果表明:O3/H2O2比单独O3反应的效果要好;反应时间越长,脱色率和TOC去除率也越大;H2O2投加量对氧化反应的影响很大,存在一个最佳投加量;总量相同的H2O2一次投加优于多次投加;pH值越大,去除率也越大;Na2CO3作为自由基清除剂在一定程度上抑制了O3/H2O2氧化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号