首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 40‐day experiment was conducted to investigate the effects of different Ca2+ concentration fluctuation on the moulting, growth and energy budget of juvenile Litopenaeus vannamei with an initial wet body weight of (1.20±0.01) g. The Ca2+ concentration of the control group C385 was 385 mg L?1 throughout the experiment, while the Ca2+ concentration of the C591, C803, C1155 and C2380 groups periodically fluctuated from 385 to 591, 803, 1155 and 2380 mg L?1 respectively. The moulting frequency (MF) of the shrimp in the Ca2+ concentration fluctuating groups was significantly higher than those in the control group (P<0.05). The specific growth rates (SGRd) and feed intake of the shrimp in the C591 and C803 groups were significantly higher than those in other groups (P<0.05), but no significant differences in feed efficiency were found among all groups (P>0.05). The shrimp in C591 and C803 groups spent significantly less energy in respiration, while depositing significantly more energy for growth than those in other three groups (P<0.05). These results showed that proper Ca2+ concentration fluctuation could increase the MF and growth rate of the juvenile L. vannamei, and according to the regression formula made using SGRd and range of Ca2+ concentration fluctuation, periodically enhanced Ca2+ concentration of 295 mg L?1 in the seawater was suggested to be used in shrimp culture.  相似文献   

2.
This study was carried out to examine the effect of Artemia urmiana nauplii enriched with HUFA, and vitamins C and E on stress tolerance, hematocrit, and biochemical parameters of great sturgeon, Huso huso juveniles. Cod liver oil (EPA 18% and DHA 12%), ascorbyl-6-palmitate and α-tocopherol acetate were used as lipid, and vitamin C and E sources, respectively. Beluga juveniles at the stage of first feeding (69.7 ± 5.9 mg body weight) were randomly divided into five treatments and three tanks were assigned to each diet. All fish groups were fed non-enriched Artemia for the initial 5 days and then fed enriched Artemia for 7 days. Juveniles were fed with Artemia enriched with HUFA + 20% vitamin C (C group); HUFA + 20% vitamin E-enriched Artemia nauplii (E group); HUFA + 20% vitamin C + 20% vitamin E (C and E group); HUFA without vitamins (HUFA) and non-enriched Artemia (control). After the period of enrichment, Juveniles were fed with Daphnia sp. from the 13th to the 40th day. At day 40, the fish were transferred directly from fresh water (0.5 ppt) to brackish water (6 ppt for 4 days and 12 ppt for 2 days) and warm water (from 27 to 33°C) to evaluate juvenile resistance to salinity and thermal shocks. Moreover, all treatments were separately exposed to freshwater in tanks with the same capacity as used for osmotic and thermal tests (as fresh water control). The addition of vitamins C, E, and C + E to HUFA significantly increased fish resistance to 12 ppt salinity and temperature stress tests, whereas survival was not significantly different among challenges at 6 ppt. There was no significant difference in the hematocrit index under stress conditions. Enrichment had significant influence on plasma Na+ level in the C group on the 4th day at 6 ppt. Na+ and Ca2+ concentrations in C, E, and C and E groups on the 1st day at 12 ppt, and Ca2+ level in E group on the 2nd day at 12 ppt were lower than the other groups. The glucose level in the C and C and E groups was lower than the other treatments on the 1st day at 12 ppt and the 2nd day at 33°C. Regardless of Artemia enrichment, plasma ions (Na+, K+, Ca2+, and Mg2+) and glucose concentrations in fish exposed to salinity stress tests were higher than fish in fresh water. Glucose concentration in plasma also increased after 2 days at 33°C. Although most of our results were not significantly different, the use of vitamins C, E, and HUFA in Artemia enrichment can improve Juveniles tolerance under stress conditions, and regardless of enrichment, these data show that beluga juveniles are partly sensitive to high salinity and temperature.  相似文献   

3.
Over‐wintering of Penaeus semisulcatus (20.61 g) at three different temperatures (14, 18 and 22°C) was carried out in a greenhouse in three different closed recirculating systems. Temperature significantly influenced specific growth rate (SGR) and moulting interval (MI) (P<0.05). The SGR was 15‐fold higher and the MI was 2.7‐fold shorter at 22°C in comparison with 14°C. The relationship between SGR and temperature (T) was: Y=?0.053+0.070T (R2=0.97). Shrimps over‐wintered at 14°C consumed almost three times less food (0.43% body weight) than those at 22°C (1.28%) (P<0.05). A positive relationship (FR=0.426T–0.020, R2=0.99) was observed between feeding rate (FR) and temperature. The survival rate achieved at 14, 18 and 22°C over the experimental period of 70 days was 87%, 67% and 73% respectively. Our data indicate that it is possible to over‐winter this shrimp species in the sub‐tropical regions by maintaining water temperature at around 14°C and 39 ppt salinity, in which little energy expenditure is needed, and the shrimp can survive and consume minimum amount of feed.  相似文献   

4.
Two trials were conducted to compare L‐lysine HCl and L‐lysine sulphate regarding its availability to Penaeus monodon, and further evaluate the optimum dietary lysine requirement. In experiment 1, five experimental diets were formulated (D1, D2, D3, D4 and D5), a basal diet (D1), aimed at a low‐lysine concentration (2.22% dry matter), with lysine concentration of the other four diets increasing in two 0.25% L‐lysine intervals from either L‐lysine HCl (D2 and D3) or L‐lysine sulphate (D4 and D5). Each diet was fed at a restricted rate to three groups of 40 shrimp for 74 days. The highest values of growth performance (weight gain, WG; specific growth rate, SGR) and survival were observed with shrimp fed the L‐lysine HCl diet. Feed efficiency (FE) of shrimp fed D2 was significantly higher than that of shrimp fed D1 and D5 (P < 0.05), but without significant difference with shrimp fed D3 and D4 (P > 0.05). In experiment 2, six diets (d1, d2, d3, d4, d5 and d6) were formulated with six graded levels of lysine (2.21%, 2.41%, 2.59%, 2.87%, 3.11% and 3.29% of diet). Each diet was randomly assigned to triplicate groups of 40 shrimp for 74 days. WG, SGR and survival increased increasing levels of lysine up to 2.41% of diet and reached an apparent plateau. Broken‐line model analysis on WG and SGR indicated that the optimum dietary lysine level for optimal growth of shrimp was 2.37% of diet, corresponding to 5.78% of dietary protein. In conclusion, results of this trial suggest that L‐lysine HCl is superior to L‐lysine sulphate when fed to Penaeus monodon and optimal growth can be obtained at lysine levels corresponding to 2.37% of diet, or 5.78% of dietary protein in this specie.  相似文献   

5.
An 8‐week study was conducted to explore the results of Macsumsuk® as a feed additive on the stress tolerance and growth of Litopenaeus vannamei in 15 culture tanks of 36 L each. Three hundred shrimp averaging 0.1 ± 0.01 g were fed with five isonitrogenous (48.38 ± 0.38% CP) diets (in triplicate groups) containing kaolinite (Macsumsuk®) at 0%, 0.3%, 0.6%, 1.2% and 2.4%, namely Mk0, Mk0.3, Mk0.6, Mk1.2 and Mk2.4. Specific growth rate (SGR) and weight gain (WG) of shrimp fed diets Mk1.2 and Mk2.4 were significantly better than those of shrimp fed diet Mk0 (p < .05). However, SGR and WG of shrimp fed diets Mk0.6, Mk1.2 and Mk2.4 were not significantly different. Protein efficiency ratio (PER) and feed efficiency (FE) of shrimp fed diets Mk1.2 and Mk2.4 were significantly better than those of shrimp fed diets Mk0, Mk0.3 and Mk0.6. Furthermore, the survival of shrimp fed diet Mk2.4 was significantly lower than that of shrimp fed diet Mk0.6 (p < .05). Cumulative mortality of shrimp fed diet Mk1.2 was significantly lower than that of shrimp fed diet Mk0 at 1–1.5 hr post‐stress to low dissolved oxygen (from 6.1 mg/L to 2.9 mg/L) and 4–5 hr post‐stress to low salinity (from 32‰ to 1‰) (p < .05). The optimum dietary Macsumsuk® level for juvenile L. vannamei was determined as 1.97% by the polynomial regression analysis of weight gain.  相似文献   

6.
The metabolic responses of the juvenile Miichthys miiuy in terms of oxygen consumption and ammonia excretion to changes in temperature (6–25°C) and salinity (16–31 ppt) were investigated. At a constant salinity of 26 ppt, the oxygen consumption rate (OCR) of the fish increased with an increase in temperature and ranged between 133.38 and 594.96 μg O2 h−1 g−1 DW. The effect of temperature on OCR was significant (P < 0.01). Q10 coefficients were 6.80, 1.41, 1.29 and 2.36 at temperatures of 6–10, 10–15, 15–20 and 20–25°C, respectively, suggesting that the juveniles of M. miiuy will be well adapted to the field temperature in the summer, but not in the winter. The ammonium excretion rates (AER) of the fish were also affected significantly by temperature (P < 0.01). The O:N ratio at temperatures of 6, 10, 15 and 20°C ranged from 13.12 to 20.91, which was indicative of a protein-dominated metabolism, whereas the O:N at a temperature of 25°C was 51.37, suggesting that protein-lipids were used as an energy substrate. At a constant temperature of 15°C, the OCRs of the fish ranged between 334.14 (at 31 ppt) and 409.68 (at 16 ppt) μg O2 h−1 g−1 DW. No significant differences were observed in the OCR and AER of the juveniles between salinities of 26 and 31 ppt (P > 0.05). The OCR and AER at 16 ppt were, however, significantly higher than those at 26 and 31 ppt (P < 0.05), indicating salinity lower than 16 ppt is presumably stressful to M. miiuy juveniles.  相似文献   

7.
Litopenaeus schmitti juveniles (total length 15 ± 0.4 cm) were exposed to different concentrations of nitrite using the static renewal method at different salinity levels (5‰, 20‰ and 35‰) at pH 8.0 and 20 °C. The 24, 48, 72 and 96 h LC50 values of nitrite in L. schmitti juveniles were 40.72, 32.63, 24.63, and 19.12 mg L−1 at 5‰; 53.52, 38.60, 27.76, 25.55 mg L−1 at 20‰; 54.32, 47.87, 41.67 and 38.88 mg L−1 at 35‰ salinity. As the salinity decreased from 35‰ to 5‰, susceptibility to nitrite increased by 33.4%, 46.7%, 69.2% and 103.3%, after 24, 48, 72 and 96 h of exposure respectively. Furthermore, we found that exposure of shrimp to nitrite caused an increase in oxygen consumption by 137.3%, 99.2% and 81.4% and an increase in the ammonia excretion level by 112.5%, 87% and 64.3% with respect to the control with decreasing salinity levels.  相似文献   

8.
Growth, immunological and physiological parameters of white shrimp Litopenaeus vannamei reared at different salinity levels (1, 10, 15, 25 and 35 g/L) at stocking density of 214 shrimp/m3 were examined at 1, 30 and 63 days. Results showed that the total haemocyte count (THC) of shrimp decreased with time at all salinity levels, indicating a potential reduction in the resistance of shrimp against pathogens, since a low value of THC indicates a perturbation of the immune system. Glucose and protein values observed in the haemolymph throughout the study indicate that shrimp adapted well to low salinities (1, 10 and 15 g/L). Although of those shrimp reared at 10 g/L only 83.3% survived, at this salinity, shrimp depicted a higher glucose concentration in haemolymph at the beginning and end of the study.  相似文献   

9.
pH值和Ca2+浓度对日本沼虾生长和能量收支的影响   总被引:18,自引:1,他引:18  
董双林  堵甫山  赖伟 《水产学报》1994,18(2):118-123
本文报道了不同pH值(6.5、7.5和8.5)和不同Ca^2+浓度(38.8、61.1和78.8ppm)对日本沼是生长和能量收支的影响,实验结果表明,pH值对该虾的生长有一定的影响,Ca^2+和pH值在影响其生长的过程中可能有一定的交互作用,pH值和Ca^2+对该虾生长的影响主要是通过影响其能量摄入量实现的,本实验条件下,该虾摄入的能量平均有15.8%用于生长,1.8%作为粪便排出体外,其余用于呼  相似文献   

10.
Reuse of fish effluent for the culture of marine shrimp, such as Pacific white shrimp, Litopenaeus vannamei, could provide an opportunity for the US shrimp farming industry to ease constraints (e.g., environmental concerns and high production costs) that have limited them in the past. In this study under laboratory‐scale conditions, the feasibility of culturing L. vannamei in effluents derived from a commercial facility raising tilapia in recirculating aquaculture systems (RAS), supplemented with various salt combinations, was compared to the shrimp’s survival and growth in well water supplemented with 17.6 (control) and 0.6 (freshwater treatment) g/L synthetic sea salt. Three independent trials were conducted in RAS in which survival and growth in the control, the freshwater treatment, and two effluent treatments were compared. Water quality during this study was within safe levels and no differences (P < 0.05) between treatments were observed for dissolved oxygen, nitrite, pH, total ammonia nitrogen, and temperature. However, average nitrate and orthophosphate levels were consistently more than an order of magnitude greater in the effluent treatments compared to the control and the freshwater treatments. Survival and growth of shrimp over 6‐wk periods did not vary significantly between the control and the freshwater treatments; however, shrimp tested in the tilapia effluents often exhibited significant effects (P < 0.05) depending on the salts added. In the low‐salinity waters, correlations (P < 0.05) were observed between Ca2+, Mg2+, Ca2+ and Mg2+, K+, Na+ : K+ and Ca2+ : K+, and shrimp survival and growth. The results of this study revealed that L. vannamei can be raised in tilapia effluent when supplemented with synthetic sea salt (0.6 g/L), CaO (50 mg/L Ca2+), and MgSO4 (30 mg/L Mg2+).  相似文献   

11.
Inland shrimp culture is being practiced in several regions of the United States. In Alabama, the culture of shrimp (Litopenaeus vannamei) in inland low salinity well water (approximately 4.0 ppt) faces several challenges. The ionic composition of these waters is deficient in several key minerals, including potassium (K+) and magnesium (Mg2+). The objective of the present study was to evaluate the effects of several aqueous K+ and Mg2+ concentrations on survival, growth, and respiration in juvenile L. vannamei. Two experiments, a 14-day trial with postlarvae and a 7-week trial with juvenile (∼ 0.2 g) shrimp were conducted to evaluate effects of K+ supplementation to culture water. Four different levels of K+ (5, 10, 20, and 40 mg l 1) were utilized and a treatment of 4 ppt reconstituted seawater was used as a reference for comparison to ideal ionic ratios. Additionally, a 6-week growth trial (∼ 1 g juvenile shrimp) was performed to evaluate the effects of five concentrations of Mg2+ (10, 20, 40, 80, 160 mg l 1). Following completion of growth trials, measurements of basal respirometry rates were conducted to assess stress. Results from the 7-week K+ growth trial indicated significant differences (P < 0.05) in survival and growth among treatments. Individual weight, specific growth rate, and percent weight gain appeared to increase with increasing K+ concentration (decreasing Na:K ratios). Results from the Mg2+ experiment reveal a significant difference in survival between the lowest Mg2+ treatment (60%) and all other experimental treatments (90–97%). However, no differences in growth were observed. Shrimp respiration in the lowest Mg2+ treatment (10 mg l 1) was significantly higher than in the 80 mg l 1 treatment. These results suggest a potentially higher energetic cost associated with depressed aqueous Mg2+ concentrations that are common in low salinity environments.  相似文献   

12.
A 16‐week indoor culture trial was conducted to evaluate the effect of varying C:N ratio on growth performance, physico‐chemical parameters, microbial dynamics, feed utilization, and immunological parameters. The experiment comprised of five biofloc treatment groups (with varying C:N ratio 5:1, 10:1, 15:1, 20:1) and a control with three replicates each, having 100 nos/m3 as stocking density in 500 L tanks with constant aeration. The C:N ratios of the treatments were manipulated using molasses as an organic carbon source whereas there was no carbon source added in control. The water quality parameters monitored throughout the experiment were found to be within permissible limits in shrimp culture. At the end of the experiment, it was observed that there were significant differences between the treatment groups and the control regarding absolute growth, SGR, FCR, PER, and FER. Furthermore, a considerable difference in immunological parameters, namely, THC, phagocytosis, and PO activity (17.5 × 106 cells per ml, 43.5%, 0.112 Units min?1 mg min?1), was recorded among the treatments compared to that of the control groups (6.2 × 106 cells per ml, 31.5%, 0.051 Units min?1 mg min?1) respectively. Enhanced growth and survival with substantial disease resistance were recorded in C15 treatment. The results indicate that the CN15 ratio coupled with minimal water exchange is optimal for improved survival, growth, and immune activity.  相似文献   

13.
《Aquaculture Research》2017,48(6):2803-2811
The brown shrimp Farfantepenaeus californiensis and the seaweed Ulva clathrata, both native to north‐west Mexico, were co‐cultured in lined ponds during 18 weeks. The aim of this study was to evaluate different stocking densities (10, 20, 30, 40 and 50 per m2) in terms of shrimp yield to see if the co‐culture method results in shrimp yields suitable for commercial production. The presence of Ulva results in good water quality and allows culture of brown shrimp with low water exchange (10% weekly) and with low nitrogen and phosphorus content in discharged water. The final weight and specific growth rate (SGR) in shrimp between 10 and 30 per m2 were significantly higher (12.5–12.0 g and 4.56–4.53% day−1 respectively) than 40 and 50 per m2 (9.1 and 8.6 g, and 4.31% and 4.26% day−1 respectively). Total shrimp biomass generated in 30 or more shrimp per m2 was significantly higher (2.7–3.1 t ha−1) compared with 10 and 20 shrimp per m2 (1.0 and 2.0 t ha−1 respectively). The lowest feed conversion ratio (FCR) (0.97) was shown in the 10 shrimp per m2 case, and the highest FCR was seen with 50 shrimp per m2 (1.37). Shrimp survival ranged between 71% and 81%, where the highest mortality was shown in 50 shrimp per m2. The results show that the co‐culture method can result in commercially interesting yields, suggesting that 30 shrimp per m2 is the best stocking density for co‐culturing F. californiensis with U. clathrata, based on the shrimp performance.  相似文献   

14.
The effects of salinity fluctuation on the growth, intermoult period and energy budget of juvenile Litopenaeus vannamei were investigated. Salinity fluctuation regimes were set in different frequencies of 2, 4 and 8 days and different amplitudes of ±2, ±5 and ±10 g L?1 from a control salinity of 20 g L?1. After a 48‐day feeding trial, the intermoult period of shrimp became shorter with increasing amplitude and frequency of salinity fluctuation (P<0.05). Both the frequency and the amplitude of salinity fluctuation had a significant effect on the growth rate of L. vannamei juveniles (P<0.05). At the frequency of 4 days, the highest growth rates occurred at amplitudes of 5–10 g L?1, whereas the growth rate was the lowest at 10 g L?1 when the frequency was reduced to 2 days. Feed intake (FI) and assimilation efficiency (AE) of shrimp were also significantly affected by the salinity fluctuation (P<0.05) and matched the growth rate response. The energy expenditures for growth (G), respiration (R), excretion (U) and exuviae (E) to the energy consumed as food (C) were not affected by salinity fluctuation. However, salinity fluctuation significantly affected the percentage of C as faeces (F), with the lowest value occurring at salinity amplitudes of 5–10 g L?1 and frequencies of 4–8 days. Therefore, salinity fluctuations (every 4 days by ±5–10 g L?1) result in higher growth rates than constant salinity conditions (20 g L?1) through greater FI, enhanced feed assimilation and reduced faecal energy loss.  相似文献   

15.
In this study, we evaluated the effects of three factors, total ammonia, temperature and salinity, on the mortality of and viral proliferation in white spot syndrome virus (WSSV)‐infected Chinese shrimp. Shrimp maintained in 30‰ seawater at 25°C with 0.34 mg L?1 total ammonia (control group) were injected with approximately 20 WSSV particles per shrimp and subsequently subjected to the following conditions: 30‰ seawater at 25°C, with 6 mg L?1 (N1 group) or 14 mg L?1 (N2 group) total ammonia; 30‰ seawater at 18°C (T1 group) or 30°C (T2 group), with 0.34 mg L?1 total ammonia and 20‰ (S1 group) or 40‰ (S2 group) seawater at 25°C, with 0.34 mg L?1 total ammonia. An anova analysis revealed that the cumulative mortality of WSSV‐infected Chinese shrimp was significantly lower when reared in the T1 group compared to that of the T2 and control group. Similarly, the mortality of the shrimp in the S1 group was also significantly lower than that of the S2 and control group. No significant differences were detected among the N1, N2 and control groups. Accordingly, the WSSV level in the T1 and S1 groups was significantly lower than those in the control, T2 or S2 groups respectively. No significant differences in viral loads were detected among the control, N1 and N2 groups. The transfer of Chinese shrimp to lower temperature and lower salinity enhanced their resistance to WSSV infection, whereas a change in the concentration of total ammonia had no significant effect on the mortalities and viral loads of WSSV‐infected shrimp.  相似文献   

16.
Growth parameters of whiteleg shrimp Litopenaeus vannamei and red seaweed Gracilaria corticata were measured using integrated culturing method under zero‐water exchange system in a 45‐day period. A 2 × 3 factorial design was used with two levels of shrimp stocking densities and three levels of seaweed weight densities. G. corticata was cultured on a net tied to a round polyethylene frame. Culture tanks were filled with 750‐L filtered seawater. A 40‐W compact fluorescent lamp was hung over each tank to provide adequate and sufficient light for seaweed growth. Growth parameters of shrimp and seaweed such as specific growth rate (SGR), weight gained (WG) and average daily growth (ADG) were computed based on the initial and final weight of shrimp and seaweed. The maximum and minimum SGR of L. vannamei (1.97 and 1.69%/day) were observed in treatment S1A3 (25 shrimp/m2 and 400 g seaweed/m2) and S2A1 (50 shrimp/m2 without seaweed) respectively. The best survival rate (94.67 ± 1.33%), WG (129.9 ± 2.9%) and feed conversion ratio (1.67 ± 0.04) were also observed in treatment S1A3. The SGR of G.corticata in the treatment S1A3 (1.97 ± 0.00%/day) was significantly higher, compared to others. Strong positive correlations were obtained between the density of G. corticata and the growth parameters of L. vannamei. The red seaweed G. corticata could boost the growth parameters, survival rate and total production of L. vannamei under zero‐water exchange system.  相似文献   

17.
In this study, we tested the lower salinity tolerance of juvenile shrimps (Litopenaeus vannamei) at a relatively low temperature (20 °C). In the first of two laboratory experiments, we first abruptly transferred shrimps (6.91 ± 0.05 g wet weight, mean ± SE) from the rearing salinity (35 000 mg L?1) to salinities of 5000, 15 000, 25 000, 35 000 (control) and 40 000 mg L?1 at 20 °C. The survival of L. vannamei juvenile was not affected by salinities from 15 000 to 40 000 mg L?1 during the 96‐h exposure periods. Shrimps exposed to 5000 mg L?1 were significantly affected by salinity, with a survival of 12.5% after 96 h. The 24‐, 48‐ and 96‐h lethal salinity for 50% (LS50) were 7020, 8510 and 9540 mg L?1 respectively. In the second experiment, shrimps (5.47 ± 0.09 g wet weight, mean ± SE) were acclimatized to the different salinity levels (5000, 15 000, 25 000, 35 000 and 40 000 mg L?1) and then maintained for 30 days at 20 °C. Results showed that the survival was significantly lower at 5000 mg L?1 than at other salinity levels, but the final wet weight under 5000 mg L?1 treatment was significantly higher than those under other treatments (P<0.05). Feed intake (FI) of shrimp under 5000 mg L?1 was significantly lower than those of shrimp under 150 00–40 000 mg L?1; food conversion efficiency (FCE), however, showed a contrasting change (P<0.05). Furthermore, salinity significantly influenced the oxygen consumption rates, ammonia‐N excretion rates and the O/N ratio of test shrimps (P<0.05). The results obtained in our work provide evidence that L. vannamei juveniles have limited capacity to tolerate salinities <10 000 mg L?1 at a relatively low temperature (20 °C). Results also show that L. vannamei juvenile can recover from the abrupt salinity change between 15 000 and 40 000 mg L?1 within 24 h.  相似文献   

18.
Blood clotting exhibits various important functions, including the prevention of body fluid loss and invasion of pathogens in shrimp. The effects of pathogenic Vibrio harveyi on plasma of white shrimp (Litopenaeus vannamei) in vitro and in vivo were investigated in this study. The clotting protein (coagulogen) in plasma of white shrimp pre‐incubated with extracellular products (ECP) of V. harveyi was found apparently decreased and fast‐migrated in crossed immunoelectrophoresis (CIE) gels. In addition, the coagulogen had been degraded to many low molecular‐weight protein bands in plasma pre‐incubated with ECP on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS‐PAGE) gels. When pre‐challenged with bacterial cells and ECP of V. harveyi, the white shrimp began to die at about 30 and 16 h respectively. Moreover, plasma coagulogen was decreased more obvious in shrimp challenged with ECP than that with bacterial cells as visualized in CIE gels, and total plasma protein in both group of shrimp were all decreased. Haemolymph withdrawn from moribund shrimp pre‐challenged with V. harveyi or its ECP was observed unclottable. However, the addition of clotting factors (transglutaminase and/or Ca2+) to these unclottable plasma could apparently promote their re‐clotting ability as jelly‐like solid observed in microtubes. The recovery of clotting ability of plasma from moribund shrimp was due to the reformation of coagulogen (200 kDa) after adding the two clotting factors as shown on CIE and SDS‐PAGE gels. The present results suggest that the infection of V. harveyi in white shrimp may not only degrade coagulogen but also influence the presence of transglutaminase and Ca2+ ion.  相似文献   

19.
The performance of the Pacific white shrimp Litopenaeus vannamei (Boone) under various stocking strategies was evaluated in earthen ponds filled with freshwater amended with major ions. Six 0.1‐ha earthen ponds located in Pine Bluff, AR, USA, were filled with freshwater in 2003 and 2004, and potassium magnesium sulphate added to provide 50 mg K+ L?1 and stock salt added to provide 0.5 g L?1 salinity. In 2003, three ponds either were stocked with PL15 shrimp (39 PL m?2) for 125 days of grow out or with PL25 shrimp for 55 days (23 PL m?2) followed by a 65‐day (28 PL m?2) grow‐out period. In 2004, ponds were stocked with 7, 13 or 30 PL15 m?2 for 134 days of grow out. Salinity averaged 0.7 g L?1 during both years, and concentration of SO4?2, K+, Ca2+ and Mg2+ was higher, and Na+ and Cl? was lower in amended pond water than in seawater at 0.7 g L?1 salinity. Potassium concentration in amended water was 52–61% of the target concentration. Shrimp yields ranged from 3449 kg ha?1 in 2003 to 4966 kg ha?1 in 2004 in ponds stocked with 30–39 PL15 m?2 for a 125–134‐day culture period. At harvest, mean individual weight ranged from 17.1 to 19.3 g shrimp?1. In ponds stocked with PL25 shrimp, yields averaged 988 and 2462 kg ha?1 for the 1st and 2nd grow‐out periods respectively. Gross shrimp yield in 2004 increased linearly from 1379–4966 kg ha?1 with increased stocking rate. These experiments demonstrated that L. vannamei can be grown successfully in freshwater supplemented with major ions to a final salinity of 0.7 g L?1.  相似文献   

20.
The aim of this study was to evaluate different ionic adjustment strategies in oligohaline water on the growth of Litopenaeus vannamei and C:N:P stoichiometric ratios of the floc microbial community (MC) in synbiotic nursery system. A 35-day culture (2000 PL's/m3) was carried out in 60 L units in a completely randomized experimental design, with three treatments: T1—seawater diluted to a salinity of 2.5 g/L (control), T2—water with a salinity of 2.5 g/L with potassium (K?) adjusted and T3—water at a salinity of 2.5 g/L with its Ca:Mg:K ratio adjusted to 1:3:1, each treatment in triplicates. The MC of flocs and the dissolved fraction (DF) was separated by filtration, where MC >1.6 µm and DF <1.6 µm. The juveniles reached a final weight of 0.40 ± 0.09–0.49 ± 0.04 g, survival above 80% and an average yield of 0.69 ± 0.18–0.81 ± 0.02 kg/m3, without significant differences among the treatments. A stabilizing trend of C:P, C:N and N:P ratios of MC was observed considering the variations of C:N:P in the DF, indicating a homeostatic behaviour of the floc MC, as occurs in systems with high nutrient availability. Our results indicate that the major ions initial concentrations (Ca2+: 25.07 mg/L, Mg2+: 89.75 mg/L and K?: 25.00 mg/L), total alkalinity 100.00 mg/L and total hardness 433.30 mg/L provide conditions that do not limit shrimp growth in oligohaline water synbiotic nursery system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号