首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
经分离、培养对不同菌种培养性状的观察,确定了侵染黄瓜、黑籽南瓜造成死秧的镰刀菌主要为尖镰孢菌黄瓜专化型、尖镰孢菌西瓜专化型、串珠镰刀菌和腐皮镰孢菌4种。经致病性测定,4种镰刀菌均能侵染黄瓜,引起发病造成死秧,可分为强致病类型和中强致病类型。经抗病性鉴定,黑籽南瓜种子只有南瓜4号为耐病品种;黄瓜种子也只有津优31号为耐病品种。  相似文献   

2.
在巴拿马进口香蕉上分离获得的尖孢镰刀菌,编号为 NP1800,哈尔滨医科大学和中国科学院微生物所合作进行“串珠镰刀菌和尖孢镰刀菌对玉米苗期侵染的接种试验”,用该菌作试验菌种,在他们试验的9种尖孢镰刀菌中,NP1800是对玉米幼苗致病性最强的菌株。尖孢镰刀菌是广寄主专化型的。我们认为该菌除为害香蕉之外,还有可能为害其他农作物。因此我们进行了尖孢镰刀菌对玉米苗期的侵染试验。获得了以下4方面的数据:(1)不同玉米品种注射接种的发病情况(2)尖孢镰刀菌对不同玉米品种发病回收统计(3)注射接  相似文献   

3.
为明确引起甘肃省兰州百合主产区百合枯萎病的致病镰孢菌种类,对从百合主产区枯萎病罹病植株上分离纯化的4株镰孢菌株进行形态学鉴定、分子生物学鉴定以及致病性测定,同时利用电子显微镜对尖孢镰孢菌Fusarium oxysporum侵入百合鳞片后的细胞超微结构进行观察。结果表明:4株镰孢菌菌株经鉴定分别为尖孢镰孢菌、茄病镰孢菌F. solani、三线镰孢菌F. tricinctum和燕麦镰孢菌F. avenaceum。4株镰孢菌菌株的致病力由强到弱的顺序依次是尖孢镰孢菌、燕麦镰孢菌、茄病镰孢菌、三线镰孢菌;尖孢镰孢菌侵入后,鳞片细胞壁、细胞质膜和细胞核结构被破坏,细胞核附近出现大量线粒体,细胞中淀粉粒数量减少。表明尖孢镰孢菌是兰州百合枯萎病防治的重点防控对象。  相似文献   

4.
常熟地区蚕豆枯萎病病原菌鉴定及其致病力初探   总被引:2,自引:0,他引:2  
2000、2001年在江苏省常熟地区采集了有典型枯萎症状的蚕豆标样各50个,获94个镰刀菌单孢菌株。经鉴定分别属于尖孢镰孢(Fusarium axysporum)、燕麦镰孢(F.avenaceum)、串珠镰孢(F.moniliforme )、木贼镰孢(F.equiseti)、三线镰孢(F.tricinctum)、禾谷镰孢(F.graminearum)和茄镰孢(F.solani),其中尖孢镰孢、燕麦镰孢、串珠镰孢、木贼镰孢为该地区蚕豆镰刀菌枯萎病的主要病原菌。测定了48个镰刀菌菌株对蚕豆的致病力,尖孢镰孢、木贼镰孢、串珠镰孢和燕麦镰孢对蚕豆的致病力都较强。用蚕豆枯萎病菌和棉花枯萎病菌交叉接种棉花和蚕豆,结果表明两者存在着较强的交互侵染能力。  相似文献   

5.
 由尖孢镰孢菌黄瓜专化型引起的黄瓜枯萎病是世界黄瓜生产上的一种毁灭性病害。本研究鉴定了尖孢镰孢菌黄瓜专化型丝绒蛋白的一个同源基因FocVel2,利用基因敲除和互补的方法研究该基因的功能。敲除突变体菌株ΔFocVel2出现明显的表型变化,包括菌落生长速率降低和产孢量降低,并且敲除突变株对黄瓜幼苗毒力明显减弱,回补突变体菌株能够恢复敲除突变体ΔFocVel2的所有缺陷。总之,研究结果发现丝绒蛋白基因FocVel2在菌体无性繁殖以及侵染过程中起到重要作用。  相似文献   

6.
 由尖孢镰孢菌黄瓜专化型引起的黄瓜枯萎病是世界黄瓜生产上的一种毁灭性病害。本研究鉴定了尖孢镰孢菌黄瓜专化型丝绒蛋白的一个同源基因FocVel2,利用基因敲除和互补的方法研究该基因的功能。敲除突变体菌株ΔFocVel2出现明显的表型变化,包括菌落生长速率降低和产孢量降低,并且敲除突变株对黄瓜幼苗毒力明显减弱,回补突变体菌株能够恢复敲除突变体ΔFocVel2的所有缺陷。总之,研究结果发现丝绒蛋白基因FocVel2在菌体无性繁殖以及侵染过程中起到重要作用。  相似文献   

7.
地被菊枯萎病由镰孢菌引起,是一种土传性病害,严重威胁地被菊生产.本试验用2个强致病力镰孢菌菌株,即尖孢镰孢菌(Fusarium oxysporum)、茄镰孢菌(F.solani)接种5个地被菊品种的幼苗,测定了病菌侵染下不同品种的形态、生理和生化响应的差异,以建立抗病品种筛选的生理和生化指标.地被菊品种间抗性水平可根据...  相似文献   

8.
应用非致病菌激发诱导葫芦科植物产生抗病性的研究已有不少报道(Kuc,J.1987)。Ishiha(1981)等报道了用尖孢镰刀菌黄瓜专化型的一弱毒菌系防治黄瓜炭疽病的研究。而用非致病尖孢镰刀菌防治西瓜炭疽病尚未见报道,为此我们进行了探索,现将初步研究结果简报如下:  相似文献   

9.
撑×绿杂交竹3#枯死原因研究初报   总被引:1,自引:0,他引:1  
报道了撑×绿杂交竹3#枯死的发生状况和症状的发展变化过程,经鉴定有6种镰刀菌,即半裸镰孢、雪腐镰孢、茄病镰孢、尖孢镰孢、串珠镰孢和单隔镰刀菌.初步肯定撑×绿杂交竹3#枯死与镰刀菌有关.并提出几点以营林技术措施为基础的防治建议.  相似文献   

10.
尖孢镰刀菌古巴专化型是引起香蕉镰刀菌枯萎病的病原菌,它有4个生理小种,其中4号生理小种出现最晚,但其危害性最大。本文就近年来香蕉镰刀菌枯萎病4号生理小种的分布与危害、生物学特征、致病机理、分子生物学研究、生物学防治等方面国内外的研究进行综述,并提出展望和设想。  相似文献   

11.
ABSTRACT A total of 106 isolates of Fusarium oxysporum obtained from diseased cucumber plants showing typical root and stem rot or Fusarium wilt symptoms were characterized by pathogenicity, vegetative compatibility, and random amplified polymorphic DNA (RAPD). Twelve isolates of other formae speciales and races of F. oxysporum from cucurbit hosts, three avirulent isolates of F. oxysporum, and four isolates of Fusarium spp. obtained from cucumber were included for comparison. Of the 106 isolates of F. oxysporum from cucumber, 68 were identified by pathogenicity as F. oxysporum f. sp. radicis-cucumerinum, 32 as F. oxysporum f. sp. cucumerinum, and 6 were avirulent on cucumber. Isolates of F. oxysporum f. sp. radicis-cucumerinum were vegetatively incompatible with F. oxysporum f. sp. cucumerinum and the other Fusarium isolates tested. A total of 60 isolates of F. oxysporum f. sp. radicis-cucumerinum was assigned to vegetative compatibility group (VCG) 0260 and 5 to VCG 0261, while 3 were vegetatively compatible with isolates in both VCGs 0260 and 0261 (bridging isolates). All 68 isolates of F. oxysporum f. sp. radicis-cucumerinum belonged to a single RAPD group. A total of 32 isolates of F. oxysporum f. sp. cucumerinum was assigned to eight different VCGs and two different RAPD groups, while 2 isolates were vegetatively self-incompatible. Pathogenicity, vegetative compatibility, and RAPD were effective in distinguishing isolates of F. oxysporum f. sp. radicis-cucumerinum from those of F. oxysporum f. sp. cucumerinum. Parsimony and bootstrap analysis of the RAPD data placed each of the two formae speciales into a different phylogenetic branch.  相似文献   

12.
Fusarium oxysporum f. sp. ciceris (Foc), the causal agent of fusarium wilt of chickpea, consists of two pathotypes (yellowing and wilting) and eight races (races 0, 1B/C, 1A and 2–6) of diverse geographical distribution. Six Foc isolates, one each of races 0, 1B/C, 1A, 4, 5 and 6, representing the two pathotypes and the geographical range of the pathogen, showed identical sequences in introns of the genes for translation elongation factor 1α ( EF1 α), β-tubulin, histone 3, actin and calmodulin. Eleven additional Foc isolates representative of all races, pathotypes and geographical range, and three isolates of F. oxysporum (Fo) nonpathogenic to chickpea were further analysed for sequence variation in the EF1 α gene. All isolates pathogenic to chickpeas shared an identical EF1 α gene sequence, which differed from that shared by the three Fo isolates nonpathogenic to chickpea. EF1 α gene sequences from the 17 Foc isolates and the three Fo isolates were compared with 24 EF1 α gene sequences in GenBank from isolates of 11 formae speciales of F. oxysporum by parsimony analysis. Foc isolates formed a grouping distinct from other formae speciales and nonpathogenic isolates. These results indicate that F. oxysporum f. sp. ciceris is monophyletic.  相似文献   

13.
ABSTRACT Fusarium oxysporum f. sp. canariensis causes Fusarium wilt disease on the Canary Island date palm (Phoenix canariensis). To facilitate disease management, a polymerase chain reaction diagnostic method has been developed to rapidly detect the pathogen. A partial genomic library of F. oxysporum f. sp. canariensis isolate 95-913 was used to identify a DNA sequence diagnostic for a lineage containing all tested isolates of F. oxysporum f. sp. canariensis. Two oligonucleotide primers were designed and used to amplify a 567-bp fragment with F. oxysporum f. sp. canariensis DNAs. DNA from 61 outgroup isolates did not amplify using these primers. Once the primers were shown to amplify a 0.567-kb fragment from DNA of all the F. oxysporum f. sp. canariensis isolates tested, a rapid DNA extraction procedure was developed that led to the correct identification of 98% of the tested F. oxysporum f. sp. canariensis isolates.  相似文献   

14.
Karyotype analysis by pulsed-field gel electrophoresis was applied to characterize isolates of Fusarium oxysporum f.sp. dianthi , the causal agent of Fusarium wilt on carnation. Eleven distinct chromosomal DNA patterns were detected among 38 pathogenic isolates, and the total genome size was estimated to range from 23·7 to 36·4 Mb. Except for isolates belonging to pathotypes 2 and 4 , all members of the same pathotype shared overlapping electrophoretic karyotypes. Karyotypes of isolates assigned to pathotypes 1 and 8 showed a high degree of similarity, in accordance with VCG and RFLP analysis. The same electrophoretic karyotype was also shared by members of pathotypes 2 and 5, thus confirming results obtained by both VCG and RFLP grouping, A single representative of pathotype 6, previously confined to the same VCG and RFLP group as pathotypes 2 and 5, had a slightly different chromosomal pattern. Isolates assigned to pathotype 4 showed four related karyotypes which partially differed in both the number and size of chromosomal bands. However, all strains assigned to this pathotype shared a basic profile of nine chromosomal bands, while two low-molecular-weight bands were present or absent. The findings are discussed with regard both to the suitability of race distinction in the case of the special form dianthi of F. oxysporum and to the use of karyotype analysis by PFGE as a tool for the study of the population genetics of this fungus.  相似文献   

15.
The RAPD fingerprinting procedure was used in combination with pathogenicity assays on differential cultivars to characterize a representative collection of 72 Fusarium spp. isolates of different geographic origin collected from diseased carnation. In F. oxysporum f. sp. dianthi, isolates were grouped according to the physiologic race: group 1 included isolates of race 4; group 2 was formed by isolates of race 2 and single representatives of races 5 and 6; group 3 included isolates of races 1 and 8. No correlation was found between RAPD data and geographic origin of the isolates tested: representatives of race 2 isolated in Italy, Israel and Japan had the same amplification profile. Three isolates which showed a low level of pathogenicity on all carnation cultivars tested shared an identical amplification pattern and are probably saprophytic F. oxysporum. Finally, two F. redolens isolates from Japan and seven non-pathogenic isolates of F. proliferatum collected from diseased carnation in Italy, Israel and The Netherlands were clearly distinguishable according to their RAPD fingerprint. The results are discussed in relation to previous studies on the genetic diversity of F. oxysporum f. sp. dianthi and to the development of forma specialis- and pathotype-specific diagnostic tools.  相似文献   

16.
Isolates of Fusarium oxysporum obtained from cucumber worldwide were classified into 3 groups by random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). All isolates of f. sp. radicis-cucumerinum fall into one group. Isolates of races 1 and 2 of f. sp. cucumerinum fall into a second group related to isolates of f. sp. melonis and niveum. Isolates of race 3 fall into a third group, related to f. sp. momordicae. Because f. sp. radicis-cucumerinum has relatively recently been introduced into Greece, where it is actively spreading and very damaging, RAPD-PCR may be valuable in monitoring populations of F. oxysporum.  相似文献   

17.
ABSTRACT Development of Fusarium wilt in upland cotton (Gossypium hirsutum) usually requires infections of plants by both Meloidogyne incognita and Fusarium oxysporum f. sp. vasinfectum. In this study, the soil densities of M. incognita and F. oxysporum f. sp. vasinfectum and the incidence of Fusarium wilt in three field sites were determined in 1982-1984. Multiple regression analysis of percent incidence of Fusarium wilt symptoms on population densities of M. incognita and F. oxysporum f. sp. vasinfectum yielded a significant fit (R (2) = 0.64) only on F. oxysporum f. sp. vasinfectum. Significant t-values for slope were also obtained for the interaction of M. incognita and F. oxysporum f. sp. vasinfectum, but densities of M. incognita and F. oxysporum f. sp. vasinfectum were also related on a log(10) scale. The physiological time of appearance of first foliar symptoms of Fusarium wilt, based on a degree-days threshold of 11.9 degrees C (53.5 degrees F), was used as a basis for determining disease progress curves and the phenology of cotton plant growth and development. Effects of Fusarium wilt on plant height and boll set were determined in three successive years. Increases in both of these plant characteristics decreased or stopped before foliar symptoms were apparent. Seed cotton yields of plant cohorts that developed foliar wilt symptoms early in the season (before 2,000 F degree-days) were variable but not much different in these years. This contrasted with cohorts of plants that first showed foliar symptoms late in the season (after 2,400 F degree-days) and cohorts of plants that showed no foliar symptoms of wilt. Regression analyses for 1982-1984 indicated moderate to weak correlations (r = 0.16-0.74) of the time of appearance of the first foliar symptoms and seed cotton yields.  相似文献   

18.
The feasibility of identifying races of Fusarium oxysporum f.sp. dianthi by tests for vegetative compatibility type was investigated. Nitrate non-utilizing nitl and NitM mutants were generated from 51 isolates of F. oxysporum f.sp. dianthi , 18 isolates of f. oxysporum from Dianthus spp. not belonging to f.sp. dianthi and, for comparison, 11 isolates of F. proliferatum from Dianthus spp. Vegetative compatibility groups (VCGs) among the isolates were identified by pairing all nitl with all NitM mutants.
Vegetative compatibility was found between isolates of F. oxysporum f.sp. dianthi races 1 and 8 (VCG 0022), races 2, 5 and 6 (VCG 0021) and race 4 (VCG 0020), and wilt-causing isolates previously classified as F. redolens from D. caryophyllus (VCG 0023) and D. barbatus (VCG 0024), Three self-compatible wilt-causing isolates were vegetatively incompatible with all other isolates (VCGs 0025,0026 and 0027), Two VCGs were found among isolates of F. oxysporum from D. caryophyllus not belonging to f.sp. dianthi ; six non-pathogenic isolates were self-compatible but vegetatively incompatible with all other isolates. The foot-rot-associated isolates of F. proliferatum from D. caryophyllus constituted a separate VCG.
Virulence analyses revealed at least four new races among VCGs 0023 to 0027, New Isolates could be categorized as races as a result of VCG analysis and VCG classification correctly indicated that the race identities previously ascribed to two old isolates had been incorrect. Vegetative compatibility tests offer the prospect for rapid identification of races, although inoculation tests continue to be necessary to differentiate races that belong to a single VCG.  相似文献   

19.
ABSTRACT Fusarium wilt of lettuce, caused worldwide by Fusarium oxysporum f. sp. lactucae, is an emerging seed-transmitted disease on Lactuca sativa. In order to develop a molecular diagnostic tool for identifying race 1 (VCG0300) of the pathogen on vegetable samples, an effective technique is presented. Inter-retrotransposon amplified polymorphism polymerase chain reaction (PCR), a technique based on the amplification of genomic regions between long terminal repeats, was applied. It was shown to be useful for grouping F. oxysporum f. sp. lactucae race 1 isolates. Inter-retrotransposon sequence-characterized amplified regions (IR-SCAR) was used to develop a specific set of PCR primers to be utilized for differentiating F. oxysporum f. sp. lactucae isolates from other F. oxysporum isolates. The specific primers were able to uniquely amplify fungal genomic DNA from race 1 isolates obtained in Italy, Portugal, the United States, Japan, and Taiwan. The primers also were specific to pathogen DNA obtained from artificially infected lettuce seed and naturally and artificially infected plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号