首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 453 毫秒
1.
基施磷肥对石灰性土壤上番茄产量的影响   总被引:4,自引:0,他引:4  
A lysimeter experiment with undisturbed soil profiles was carried out to study nitrogen cycling and losses in a paddy soll with applications of coated urea and urea under a rice-wheat rotation system in the Taihu Lake region from 2001 to 2003. Treatments for rice and wheat included urea at conventional, 300 (rice) and 250 (wheat) kg N ha^-1, and reduced levels, 150 (rice) and 125 (wheat) kg N ha^-1, coated urea at two levels, 100 (rice) and 75 (wheat) kg N ha^-1, and 150 (rice) and 125 (wheat) kg N ha^-1, and a control with no nitrogen arranged in a completely randomized design. The results under two rice-wheat rotations showed that N losses through both NH3 volatilization and runoff in the coated urea treatments were much lower than those in the urea treatments. In the urea treatments N runoff losses were significantly (P 〈 0.001) positively correlated (r = 0.851) with applied N. N concentration in surface water increased rapidly to maximum two days after urea application and then decreased quickly. However, if there was no heavy rain within five days of fertilizer application, the likelihood of N loss by runoff was not high. As the treatments showed little difference in N loss via percolation, nitrate N in the groundwater of the paddy fields was not directly related to N leaching. The total yield of the two rice-wheat rotations in the treatment of coated urea at 50% conventional level was higher than that in the treatment of urea at the conventional level. Thus, coated urea was more favorable to rice production and environmental protection than urea.  相似文献   

2.
氮肥用量对太湖水稻田间氨挥发和氮素利用率的影响   总被引:28,自引:0,他引:28  
Ammonia volatilization losses, nitrogen utilization efficiency, and rice yields in response to urea application to a rice field were investigated in Wangzhuang Town, Changshu City, Jiangsu Province, China. The N fertilizer treatments, applied in triplicate, were 0 (control), 100, 200, 300, or 350 kg N ha^-1. After urea was applied to the surface water, a continuous airflow enclosure method was used to measure ammonia volatilization in the paddy field. Total N losses through ammonia volatilization generally increased with the N application rate, and the two higher N application rates (300 and 350 kg N ha^-1) showed a higher ratio of N lost through ammonia volatilization to applied N. Total ammonia loss by ammonia volatilization during the entire rice growth stage ranged from 9.0% to 16.7% of the applied N. Increasing the application rate generally decreased the ratio of N in the seed to N in the plant. For all N treatments, the nitrogen fertilizer utilization efficiency ranged from 30.9% to 45.9%. Surplus N with the highest N rate resulted in lodging of rice plants, a decreased rate of nitrogen fertilizer utilization, and reduced rice yields. Calculated from this experiment, the most economical N fertilizer application rate was 227 kg ha^-1 for the type of paddy soil in the Taihu Lake region. However, recommending an appropriate N fertilizer application rate such that the plant growth is enhanced and ammonia loss is reduced could improve the N utilization efficiency of rice.  相似文献   

3.
The creation of controlled-release urea (CRU) is a potent substitute for conventional fertilizers in order to preserve the availability of nitrogen (N) in soil, prevent environmental pollution, and move toward green agriculture. The main objectives of this study were to assess the impacts of CRU''s full application on maize production and to clarify the connection between the nutrient release pattern of CRU and maize nutrient uptake. In order to learn more about the effects of CRU application on maize yields, N uptake, mineral N (Nmin) dynamics, N balance in soil-crop systems, and economic returns, a series of field experiments were carried out in 2018–2020 in Dalian City, Liaoning Province, China. There were 4 different treatments in the experiments: no N fertilizer input (control, CK); application of common urea at 210 kg ha-1 (U), the ideal fertilization management level for the study site; application of polyurethane-coated urea at the same N input rate as U (PCU); and application of PCU at a 20% reduction in N input rate (0.8PCU). Our findings showed that using CRU (i.e., PCU and 0.8PCU) may considerably increase maize N absorption, maintain maize yields, and increase N use efficiency (NUE) compared to U. The grain yield showed considerable positive correlations with total N uptake in leaf in U and 0.8PCU, but negative correlations with that in PCU, indicating that PCU caused excessive maize absorption while 0.8PCU could achieve a better yield response to N supply. Besides, PCU was able to maintain N fertilizer in the soil profile 0–20 cm away from the fertilization point, and higher Nmin content was observed in the 0–20 cm soil layer at various growth stages, particularly at the middle and late growing stages, optimizing the temporal and spatial distributions of Nmin. Additionally, compared to that in U, the apparent N loss rate in PCU was reduced by 36.2%, and applying CRU (PCU and 0.8PCU) increased net profit by 8.5% to 15.2% with less labor and fertilization frequency. It was concluded that using CRU could be an effective N fertilizer management strategy to sustain maize production, improve NUE, and increase economic returns while minimizing environmental risks.  相似文献   

4.
Maize(Zea mays L.), a staple crop in the North China Plain, contributing substantially to agricultural nitrous oxide(N_2O)emissions in this region. Many studies have focused on various agricultural management measures to reduce N_2O emissions. However, few have investigated soil N_2O emissions in intercropping systems. In the current study, we investigate whether maize-soybean intercropping treatments could reduce N_2O emission rates. Two differently configured maize-soybean intercropping treatments, 2:2 intercropping(two rows of maize and two rows of soybean, 2M2S) and 2:1 intercropping(two rows of maize and one row of soybean,2M1S), and monocultured maize(M) and soybean(S) treatments were performed using a static chamber method. The results showed no distinct yield advantage for the intercropping systems. The total N_2O production from the various treatments was 0.15 ± 0.04–113.85 ± 12.75 μg m~(-2) min~(-1). The cumulative N_2O emission from the M treatment was 16.9 ± 2.3 kg ha~(-1) over the entire growing season(three and a half months), which was significantly higher(P 0.05) than that of the 2M2S and 2M1S treatments by 36.6% and 32.2%, respectively. Two applications of nitrogen(N) fertilizer(as urea) at 240 kg N ha~(-1) each induced considerable soil N_2O fluxes. Short-term N_2O emissions(within one week after each of the two N applications) accounted for 74.4%–83.3% of the total emissions. Soil moisture, temperature, and inorganic N were significantly correlated with soil N_2O emissions(R~2= 0.246–0.365, n =192, P 0.001). Soil nitrate(NO_3~-) and moisture decreased in the intercropping treatments during the growing season. These results indicate that maize-soybean intercropping can reduce soil N_2O emissions relative to monocultured maize.  相似文献   

5.
不同氮水平下粳稻的氮素累积和转运特征   总被引:4,自引:0,他引:4  
Developing high-yielding rice (Oryza sativa L.) cultivars depends on having a better understanding of nitrogen (N) accumulation and translocation to the ear during the reproductive stage. Field experiments were carried out to evaluate the genetic variation for N accumulation and translocation in different Japonica rice cultivars at different N rates and to identify any relationship to grain yield in southeast China. Four Japonica cultivars with similar agronomic characteristics were grown at two experimental sites in 2004 with three N rates of 0, 60, and 180 kg N ha^-1. Dry weights and N contents of rice plants were measured at tillering, initiation, anthesis, and maturity. Grain yields exhibited significant differences (P 〈 0.05) among the cultivars and N application rates. Increasing N rates improved N uptake at anthesis and maturity in all four cultivars (P 〈 0.05). N translocation from vegetative organs to the grains increased with enhanced N rates (P 〈 0.05). N translocation to the grains ranged from 9 to 64 kg N ha^-1 and N-translocation efficiency from 33% to 68%. Grain yield was linear to N uptake at anthesis (r^2 = 0.78^**) and N translocation (r^2 = 0.67^**). Thus, cultivars with a high N uptake at anthesis, low residual N in the straw at maturity, and appropriate low N fertilizer supply in southeast China should efficiently increase N-recovery rate while maintaining grain yield and soil fertility.  相似文献   

6.
Yield and N uptake of tomato(Lycopersicum esculentum Mill.)and pepper(Capsicum annuum L.)crops in five successive rotations receiving two compound fertilizers (12-12-17 and 21-8-1l N-P2O5-K2O)were studied to determine 1) crop responses,2)dynamics of NO3-N and NH4-N in different soillayers,3)N balance and 4)system-level N efficiencies.Five treatments (2fertilizers,2 fertilizer rates and a control),each with three replicates,were arranged in the study.The higher N fertilizer rate,300 kg N ha^-1(versus 150 kg N ha^1),returned higher vegetable fruit yields and total aboveground N uptake with the largest crop responses occurring for the low-N fertilizer(12-12-17)applied at 300 kg N ha^-1 rather than with the high-N fertilizer(21-8-11).Ammonium-N in the top 90 cm of the soil profile declined during the experiment,while nitrate-N remained at a similar level throughout the experiment with the lower rate of fertilizer N.At the higher rate of N fertilizer there was a continuous NO3-N accumulation of over 800 kg N ha^-1.About 200 kg N ha^-1 Was applied with irrigation to each crop using NO3-contaminated groundwater.In general,about 50% of the total N input was recovered from all treatments.Pepper、relative to tomato,used N more efficiently with smaller N losses,but the crops utilized less than 29%of the fertilizer N over the two and a half-year period.Local agricultural practices maintained high residual soil nutrient status.Thus,optimization of irrigation is required to minimize nitrate leaching and maximize crop N recovery.  相似文献   

7.
Denitrification in subsoil(to a depth of 12 m) is an important mechanism to reduce nitrate(NO_3~-) leaching into groundwater.However, regulating mechanisms of subsoil denitrification, especially those in the deep subsoil beneath the crop root zone, have not been well documented. In this study, soil columns of 0–12 m depth were collected from intensively farmed fields in the North China Plain. The fields had received long-term nitrogen(N) fertilizer inputs at 0(N0), 200(N200) and 600(N600) kg N ha~(-1) year~(-1). Main soil properties related to denitrification, i.e., soil water content, NO_3~-, dissolved organic carbon(DOC), soil organic carbon(SOC),pH, denitrifying enzyme activity(DEA), and anaerobic denitrification rate(ADR), were determined. Statistical comparisons among the treatments were performed. The results showed that NO_3~- was more heavily accumulated in the entire soil profile of the N600 treatment, compared to the N0 and N200 treatments. The SOC, DOC, and ADR decreased with increasing soil depth in all treatments,whereas considerable DEA was observed throughout the subsoil. The long-term fertilizer rates affected ADR only in the upper 4 m soil layers. The ADRs in the N200 and N600 treatments were significantly correlated with DOC. Multiple regression analysis indicated that DOC rather than DEA was the key factor regulating denitrification beneath the root zone. Additional research is required to determine if carbon addition into subsoil can be a promising approach to enhance NO_3~- denitrification in the subsoil and consequently to mitigate groundwater NO_3~- contamination in the intensive farmlands.  相似文献   

8.
Controlled-release N fertilizers can affect the availability of heavy metals in the contaminated paddy soil.A soil incubation experiment was conducted to investigate the effects of prilled urea(PU),S-coated urea(SCU),and polymer-coated urea(PCU)on the solubility and availability of heavy metals Cd,Pb,Cu,and Zn in a multimetal-contaminated soil.The results showed that the application of different coated urea significantly affected the solubility and availability of heavy metals.At 5 d of incubation,the application of PU,SCU,and PCU had significantly decreased the concentrations of water-soluble and available Cd,Pb,Cu,and Zn,when compared with the control.At 60 d of incubation,the depletory effects of PU on water-soluble and available heavy metals had reduced,and the initial decrease in the concentrations of water-soluble Cd,Pb,Cu,and Zn caused by SCU had changed to an increase.The concentrations of water-soluble Pb,Cu,and Zn in the SCU-treated soil were higher than those in the control.Application with PCU led to a higher water-soluble Cu than that in the control,while the available Cd,Pb,and Zn were lower than those in the control.The effect of different coated urea was much stronger on the water solubility of the heavy metals than on their availability.The effects of controlled-release urea on the transformation of heavy metals resulted in changes in the concentrations of NH4^+,water-soluble SO4^2-,and soil p H.The results further suggested that PCU could be used in dry farming operations in multimetal-contaminated acid soils.  相似文献   

9.
施用氮钾肥对设施蔬菜产量和品质影响的研究   总被引:5,自引:0,他引:5  
The application of large amounts of fertilizers, a conventional practice in northern China for the production of vegetable crops, generally leads to substantial accumulation of soil nutrients within a relatively short period of time. A fixed field experiment was designed to study the effects of nitrogen (N) and potassium (K) fertilizers applied to optimize the yield and quality of typical vegetable crops. Application of N and K fertilizers significantly increased the yields of kidney bean. The largest yields were obtained in the first and second years after application of 1 500 kg N and 300 kg K20 ha^-1. In the third year, however, there was a general decline in yields. Maximum yields occurred when intermediate rates of N and K (750 kg N and 300 kg K20 ha 1) were applied. However, no significant differences were observed in the concentrations of vitamin C (VC) in kidney bean among different years and various rates of fertilizer treatments. Yields of tomato grown in rotation after kidney bean showed significant responses to the application of N and K in the first year. In the second year, the yields of tomato were much lower. This suggested that the application of N fertilizer did not have any effect upon tomato yield, whereas application of K fertilizer did increase the yield. Application of K fertilizer was often associated with increased sugar concentrations.  相似文献   

10.
无机包膜肥料在提高小麦氮素利用率和产量效应的研究   总被引:13,自引:2,他引:13  
A field experiment with winter wheat (Triticum aestivurn L.) was conducted on a silt loam calcaric endorusti-ustic Cambosols derived from the Yellow River alluvial deposits in Henan, China, from 2001 to 2002 to evaluate N recovery and agronomic performance of different mineral coated fertilizers (MiCFs) compared to normal urea used in wheat cropping systems under field conditions. Five treatments, including CK (check, no N fertilizer), urea and three different MiCFs at an equivalent N application rate were established in a randomized complete block design. N release from MiCFs in soil was more synchronous with the N requirement of wheat throughout the growth stages than that from urea, with grain yield of the MiCF treatments significantly higher (P 〈 0.05) than that of the treatment urea. Correspondingly, the N recovery rate was greater for all MiCFs compared to urea, increasing from 32.8% up to 50.1%. Due to its high recovery and low cost, use of the mineral coated N fertilizers was recommended instead of the polymer coated N fertilizers.  相似文献   

11.
Nitrous oxide, nitric oxide and denitrification losses from an irrigated soil amended with organic fertilizers with different soluble organic carbon fractions and ammonium contents were studied in a field study covering the growing season of potato (Solanum tuberosum). Untreated pig slurry (IPS) with and without the nitrification inhibitor dicyandiamide (DCD), digested thin fraction of pig slurry (DTP), composted solid fraction of pig slurry (CP) and composted municipal solid waste (MSW) mixed with urea were applied at a rate of 175 kg available N ha−1, and emissions were compared with those from urea (U) and a control treatment without any added N fertilizer (Control). The cumulative denitrification losses correlated significantly with the soluble carbohydrates, dissolved N and total C added. Added dissolved organic C (DOC) and dissolved N affected the N2O/N2 ratio, and a lower ratio was observed for organic fertilizers than from urea or unfertilized controls. The proportion of N2O produced from nitrification was higher from urea than from organic fertilizers. Accumulated N2O losses during the crop season ranged from 3.69 to 7.31 kg N2O-N ha−1 for control and urea, respectively, whereas NO losses ranged from 0.005 to 0.24 kg NO-N ha−1, respectively. Digested thin fraction of pig slurry compared to IPS mitigated the total N2O emission by 48% and the denitrification rate by 33%, but did not influence NO emissions. Composted pig slurry compared to untreated pig slurry increased the N2O emission by 40% and NO emission by 55%, but reduced the denitrification losses (34%). DCD partially inhibited nitrification rates and reduced N2O and NO emissions from pig slurry by at least 83% and 77%, respectively. MSW+U, with a C:N ratio higher than that of the composted pig slurry, produced the largest denitrification losses (33.3 kg N ha−1), although N2O and NO emissions were lower than for the U and CP treatments.This work has shown that for an irrigated clay loam soil additions of treated organic fertilizers can mitigate the emissions of the atmospheric pollutants NO and N2O in comparison with urea.  相似文献   

12.
Agricultural soil is a major source of nitrous oxide (N2O), and the application of nitrogen and soil drainage are important factors affecting N2O emissions. This study tested the use of polymer-coated urea (PCU) and polymer-coated urea with the nitrification inhibitor dicyandiamide (PCUD) as potential mitigation options for N2O emissions in an imperfectly drained, upland converted paddy field. Fluxes of N2O and methane (CH4), ammonia oxidation potential, and ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) abundances were monitored after the application of PCU, PCUD, and urea to upland soil. The results showed that urea application increased the ammonia oxidation potential and AOB and AOA abundances; however, the increase rate of AOB (4.6 times) was much greater than that of AOA (1.8 times). These results suggested that both AOB and AOA contributed to ammonia oxidation after fertilizer application, but the response of AOB was greater than AOA. Although PCU and PCUD had lower ammonia oxidation potential compared to urea treatment, they were not effective in reducing N2O emissions. Large episodic N2O emissions (up to 1.59 kg N ha?1 day?1) were observed following heavy rainfall 2 months after basal fertilizer application. The episodic N2O emissions accounted for 55–80 % of total N2O emissions over the entire monitoring period. The episodic N2O emissions following heavy rainfall would be a major source of N2O in poorly drained agricultural fields. Cumulative CH4 emissions ranged from ?0.017 to ?0.07 kg CH4 ha?1, and fertilizer and nitrification inhibitor application did not affect CH4 oxidation.  相似文献   

13.
南京郊区番茄地中氮肥的气态氮损失   总被引:13,自引:0,他引:13       下载免费PDF全文
采用田间试验研究了番茄地施用化学氮肥后的氨挥发、反硝化损失和N2O排放及其影响因素。氨挥发采用通气密闭室法测定,反硝化损失(N2+N2O)采用乙炔抑制-土柱培养法测定,不加乙炔测定N2O排放。结果表明,番茄生长期间全部处理均未检测到氨挥发,其原因是土表氨分压低于检测灵敏度,较低的氨分压是由于表层土壤的铵态氮浓度和pH都不高所致。在番茄生长期间,对照区即来自有机肥和土壤本身的反硝化损失和N2O℃排放量相当高,反硝化损失总量高达N29.6kghm^-2,N2O排放量为N7.76kghm^-2。施用化学氮肥显著增加了反硝化损失和N2O排放,3个施用化学氮肥处理的反硝化损失变化在N40.8~46.1kghm^-2之间,占施入化肥氮量的5.50%~6.01%;N2O排放量为N13.6~17.6kghm^-2,占施入化肥氮量的2.62%~4.92%;与尿素相比,包衣尿素未能显著减低反硝化损失和N2O排放。施用尿素的处理在每次追肥后,耕层土壤均会出现NO3^--N高峰,继之的反硝化和N2O排放高峰。反硝化速率与土壤含水量呈极显著正相关。总的看来,番茄生长期间没有氨挥发,而硝化反硝化是氮素损失的重要途径之一。  相似文献   

14.
A field experiment was conducted to evaluate the combined or individual effects of biochar and nitrapyrin (a nitrification inhibitor) on N2O and NO emissions from a sandy loam soil cropped to maize. The study included nine treatments: addition of urea alone or combined with nitrapyrin to soils that had been amended with biochar at 0, 3, 6, and 12 t ha?1 in the preceding year, and a control without the addition of N fertilizer. Peaks in N2O and NO flux occurred simultaneously following fertilizer application and intense rainfall events, and the peak of NO flux was much higher than that of N2O following application of basal fertilizer. Mean emission ratios of NO/N2O ranged from 1.11 to 1.72, suggesting that N2O was primarily derived from nitrification. Cumulative N2O and NO emissions were 1.00 kg N2O-N ha?1 and 1.39 kg NO-N ha?1 in the N treatment, respectively, decreasing to 0.81–0.85 kg N2O-N ha?1 and 1.31–1.35 kg NO-N ha?1 in the biochar amended soils, respectively, while there was no significant difference among the treatments. NO emissions were significantly lower in the nitrapyrin treatments than in the N fertilization-alone treatments (P?<?0.05), but there was no effect on N2O emissions. Neither biochar nor nitrapyrin amendment affected maize yield or N uptake. Overall, our results showed that biochar amendment in the preceding year had little effect on N2O and NO emissions in the following year, while the nitrapyrin decreased NO, but not N2O emissions, probably due to suppression of denitrification caused by the low soil moisture content.  相似文献   

15.
Addressing concerns about mitigating greenhouse gas (GHG) emissions while maintaining high grain yield requires improved management practices that achieve sustainable intensification of cereal production systems. In the North China Plain, a field experiment was conducted to measure nitrous oxide (N2O) and methane (CH4) fluxes during the maize (Zea mays L.) season under various agricultural management regimes including conventional treatment (CONT) with high N fertilizer application at a rate of 300 kg N ha-1 and overuse of groundwater by flood irrigation, optimal fertilization 1 treatment (OPTIT), optimal fertilization 2 treatment (OPT2T), and controlled-release urea treatment (CRUT) with reduced N fertilizer application and irrigation, and a control (CK) with no N fertilizer. In contrast to CONT, balanced N fertilization treatments (OPT1T, OPT2T, and CRUT) and CK demonstrated a significant drop in cumulative N20 emission (1.70 v.s. 0.43-1.07 kg N ha-l), indicating that balanced N fertilization substantially reduced N20 emission. The vMues of the N20 emission factor were 0.42%, 0.29%, 0.32%, and 0.27% for CONT, OPTIT, OPT2T, and CRUT, respectively. Global warming potentials, which were predominantly determined by N20 emission, were estimated to be 188 kg CO2-eq ha-1 for CK and 419-765 kg CO2-eq ha-1 for the N fertilization treatments. Global warming potential intensity calculated by considering maize yield was significantly lower for OPT1T, OPT2T, CRUT, and CK than for CONT. Therefore, OPTIT, OPT2T, and CRUT were recommended as promising management practices for sustaining maize yield and reducing GHG emissions in the North China Plain.  相似文献   

16.
Most published studies related to crop effects on denitrification are not continuous and are based on the growing period. The objective of this work was to evaluate the effect of different amounts of soybean stubble, under different soil moisture contents, on gaseous nitrogen (N) losses by denitrification from an agricultural soil. The following soil moisture treatments were reached by adding distilled water to soil cores of a typic Hapludoll: 50 and 100% of water‐filled porosity space (WFPS). Residue treatments included no application of residues, amendment with 2600 kg ha?1 of soybean residues, and amendment with 5200 kg ha?1 of soybean residues. Cumulative nitrous oxide + dinitrogen (N2O + N2) emissions displayed great variability, ranging between 0 and 581.91 µg N kg?1, which represented 0 to 3.93% of the N residue applied. Under 50% WFPS moisture conditions, statistical differences in cumulative N2O + N2 emissions between residue treatments were not detected (p = 0.21), whereas at saturation conditions, cumulative N2O + N2 emissions decreased with the application of increasing amounts of soybean residues (p = 0.017). Daily and cumulative N2O + N2 emissions significantly increased as soil moisture increased, except at soils amended with 5200 kg ha?1 of soybean residues; this lack of statistical difference was probably due to the immobilization of native mineral N. Under 50% WFPS soil moisture contents, aeration seemed to be the main factor controlling redox conditions, limiting the denitrification process, and preventing differences in N emissions between residue treatments. The application of soybean residues to saturated soils notably decreased N2O + N2 emissions by denitrification through a strong mineral N immobilization into organic and nondenitrifiable forms.  相似文献   

17.
 Nitrous oxide (N2O) emissions were measured from an irrigated sandy-clay loam cropped to maize and wheat, each receiving urea at 100 kg N ha–1. During the maize season (24 August–26 October), N2O emissions ranged between –0.94 and 1.53 g N ha–1 h–1 with peaks during different irrigation cycles (four) ranging between 0.08 and 1.53 g N ha–1 h–1. N2O sink activity during the maize season was recorded on 10 of the 29 sampling occasions and ranged between 0.18 and 0.94 g N ha–1 h–1. N2O emissions during the wheat season (22 November–20 April) varied between –0.85 and 3.27 g N ha–1 h–1, whereas peaks during different irrigation cycles (six) were in the range of 0.05–3.27 g N ha–1 h–1. N2O sink activity was recorded on 14 of the 41 samplings during the wheat season and ranged between 0.01 and 0.87 g N ha–1 h–1. Total N2O emissions were 0.16 and 0.49 kg N ha–1, whereas the total N2O sink activity was 0.04 and 0.06 kg N ha–1 during the maize and wheat seasons, respectively. N2O emissions under maize were significantly correlated with denitrification rate and soil NO3 -N but not with soil NH4 +-N or soil temperature. Under wheat, however, N2O emissions showed a strong correlation with soil NH4 +-N, soil NO3 -N and soil temperature but not with the denitrification rate. Under either crop, N2O emissions did not show a significant relationship with water-filled pore space or soil respiration. Received: 11 June 1997  相似文献   

18.
This work evaluates the effect of different slow-release fertilizers and nitrification inhibitors (NI) on N-use efficiency, grain yield and N2 fixation in rice fields of Valencia (Spain) during three consecutive crop seasons (1998–2000). Eight N sources [ammonium sulphate, urea, polymer-coated urea (PCU 32% and 40% N), sulphur coated urea, isobutylidene diurea (IBDU), ammonium sulphate nitrate (ASN) plus dicyandiamide and ASN plus dimethyl pyrazole phosphate, were applied at 120 kg N ha–1 and at 2 or 15 days before flooding (DBF) during 1998. Another experiment was based on the use of urea blended with PCU (40% N) at four ratios (1:0, 3:1, 1:1, 1:3) and applied at 15 DBF and at four rates (70, 95, 120 and 145 kg N ha-1) during 1999 and at only one rate (120 kg N ha–1) during 2000. Both experiments also included a control (no N). The results showed that, when applied shortly before flooding, PCU (32% and 40% N) and IBDU application improved biological N2 fixation compared to the conventional fertilizer application, with or without NI, reaching similar values to those observed in the absence of N fertilizer. Slow release fertilizers, particularly PCU 40% N applied basally before flooding, were the best N source for grain yield and improved recovery efficiency. Differences among N sources were only significant when the flooding was delayed for 15 days after fertilizer application.  相似文献   

19.
Relative control of soil moisture [30, 60, and 80 percent water-holding capacity (WHC)] on nitrous oxide (N2O) emissions from Fargo-Ryan soil, treated with urea at 0, 150, and 250 kg N ha?1 with and without nitrapyrin [2-chloro-(6-trichloromethyl) pyridine] (NP), was measured under laboratory condition for 140 days. Soil N2O emissions significantly increased with increasing nitrogen (N) rates and WHC levels. Urea applied at 250 kg N ha?1 produced the greatest cumulative N2O emissions and averaged 560, 3919, and 15894 µg kg?1 at 30, 60, and 80 percent WHC, respectively. At WHC ≤ 60 percent, addition of NP to urea significantly reduced N2O losses by 2.6- to 4.8-fold. Additions of NP to urea reduced N2O emission at rates similar to the control (0 N) until 48 days for 30 percent WHC and 35 days for 60 and 80 percent WHC. These results can help devise urea-N fertilizer management strategies in reducing N2O emissions from silty-clay soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号