首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactic acid fermentation of cereal flours resulted in a 100 (rye), 95-100 (wheat), and 39-47% (oat) reduction in phytate content within 24 h. The extent of phytate degradation was shown to be independent from the lactic acid bacteria strain used for fermentation. However, phytate degradation during cereal dough fermentation was positively correlated with endogenous plant phytase activity (rye, 6750 mU g(-1); wheat, 2930 mU g(-1); and oat, 23 mU g(-1)), and heat inactivation of the endogenous cereal phytases prior to lactic acid fermentation resulted in a complete loss of phytate degradation. Phytate degradation was restored after addition of a purified phytase to the liquid dough. Incubation of the cereal flours in buffered solutions resulted in a pH-dependent phytate degradation. The optimum of phytate degradation was shown to be around pH 5.5. Studies on phytase production of 50 lactic acid bacteria strains, previously isolated from sourdoughs, did not result in a significant production of intra- as well as extracellular phytase activity. Therefore, lactic acid bacteria do not participate directly in phytate degradation but provide favorable conditions for the endogenous cereal phytase activity by lowering the pH value.  相似文献   

2.
Whole wheat bread is an important source of minerals but also contains considerable amounts of phytic acid, which is known to impair their absorption. An in vitro trial was performed to assess the effect of a moderate drop of the dough pH (around 5.5) by way of sourdough fermentation or by exogenous organic acid addition on phytate hydrolysis. It was shown that a slight acidification of the dough (pH 5.5) with either sourdough or lactic acid addition allowed a significant phytate breakdown (70% of the initial flour content compared to 40% without any leavening agent or acidification). This result highlights the predominance of wheat phytase activity over sourdough microflora phytase activity during moderate sourdough fermentation and shows that a slight drop of the pH (pH value around 5.5) is sufficient to reduce significantly the phytate content of a wholemeal flour. Mg "bioaccessibility"of whole wheat dough was improved by direct solubilization of the cation and by phytate hydrolysis.  相似文献   

3.
This work was designed to compare the effects of different leavens (yeast, sourdough, and a mixture of both) on phytic acid (PA) degradation and to assess the repercussions of PA breakdown on phosphorus and magnesium solubility during bread-making. Sourdough fermentation was more efficient than yeast fermentation in reducing the phytate content in whole wheat bread (-62 and -38%, respectively). Furthermore, lactic acid bacteria present in sourdough enhanced acidification, leading to increased magnesium and phosphorus solubility. To intensify phytate breakdown, bran was incubated with microorganisms (yeast or sourdough) before bread-making. Using this new method, the percentage of phytate breakdown was near 90%, whereas 40% of phytate remained in traditional French bread. In conclusion, a prolonged fermentation with sourdough still leads to improved Mg and P solubility by decreasing phytate content and through acidification.  相似文献   

4.
Dietary phytic acid is a major causative factor for low Zn bioavailability in many cereal- and legume-based diets. The bioavailability of Zn in seed of low phytic acid (lpa) variants of maize ( Zea mays L.), rice ( Oryza sativa L.), and barley ( Hordeum vulgare L.) was evaluated using a suckling rat pup model. Suckling rat pups (14 days old, n = 6-8/treatment) were fasted for 6 h and intubated with (65)Zn-radiolabeled suspensions prepared using seed produced by either wild-type (normal phytic acid) or lpa genotypes of each cereal. Test solutions were radiolabeled overnight (all genotypes) or immediately prior to intubation (barley genotypes). Pups were killed 6 h postintubation and tissues removed and counted in a gamma counter. Zn absorption was low from wild-type genotypes of maize (21, 33%) and rice (26%), and phytic acid reduction resulted in significantly higher Zn absorption, 47-52 and 35-52%, respectively. Zn absorption from wild-type barley incubated overnight was high (86-91%), and phytate reduction did not improve Zn absorption (84-90%), which is likely due to endogenous phytase activity. When the wild-type barley solutions were prepared immediately before intubation, Zn absorption was significantly lower (63, 78%) than from the lpa cultivars (92, 96%). Variation in seed or flour phenolic acid levels did not affect Zn absorption. Differences in seed Zn levels did not substantially affect Zn absorption. Thus, when phytic acid is abundant in a diet, it has a larger effect on Zn absorption than the level of Zn. Therefore, reducing the phytic acid content of staple cereal grains may contribute to enhancing Zn nutrition of populations consuming these staple foods.  相似文献   

5.
Various methods of processing maize suitable for household use in rural Malawi, Central Africa, were investigated for their ability to reduce its phytate content and phytate/zinc molar ratio. These methods included fermentation, germination, and soaking. Penta- and hexainositol phosphates were measured by HPLC, and zinc was measured by atomic absorption spectrophotometry. Natural lactic fermentation of maize flour slurries resulted in 88% phytate retention compared to unprocessed, unrefined maize flour porridges, whereas lower phytate retention was observed when a starter culture (61%) or germinated flour (71%) was also used. Fermentation of cooked maize flour porridges with germinated flour added resulted in 54-85% retention of phytate compared to controls. Soaking maize flour or pounded maize and decanting excess water resulted in 43 and 49% retention of phytate, respectively. The latter soaking procedures were simple and effective and were suitable for household use in rural Malawian communities.  相似文献   

6.
Wheat phytase was purified to investigate the action of the enzyme toward its pure substrate (phytic acid - myo-inositol hexakisphosphate) and its naturally occurring substrate (phytate globoids). Phytate globoids were purified to homogeneity from wheat bran, and their nutritionally relevant parameters were quantified by ICP-MS. The main components of the globoids were phytic acid (40% w/w), protein (46% w/w), and several minerals, in particular, K > Mg > Ca > Fe (in concentration order). Investigation of enzyme kinetics revealed that K(m) and V(max) decreased by 29 and 37%, respectively, when pure phytic acid was replaced with phytate globoids as substrate. Time course degradation of phytic acid or phytate globoids using purified wheat phytase was followed by HPIC identification of inositol phosphates appearing and disappearing as products. In both cases, enzymatic degradation initiated at both the 3- and 6-positions of phytic acid and end products were inositol and phosphate.  相似文献   

7.
  【目的】  磷是作物生长发育所必需的营养元素。在植物体内,磷多以植酸形式储存在成熟籽粒中。非反刍动物,包括人类,无法消化植酸来获取磷及植酸螯合的有益元素,籽粒中收获的大量磷素进入人及动物排泄物,不仅造成磷资源浪费,也加大了环境风险。因此,培育籽粒低植酸品种是改善作物营养品质、降低磷素环境风险的重要途径。本文综述作物籽粒磷的来源,控制籽粒植酸磷含量的主要生理过程及遗传改良策略等研究进展,为相关领域研究奠定基础。  主要进展  籽粒植酸磷的积累主要由3步组成,木质部或韧皮部向籽粒转运无机磷酸盐,籽粒利用无机磷酸盐合成植酸,植酸被运输至液泡中储存。目前已分离鉴定到负责相关过程的转运蛋白和关键酶及其编码基因,如SULTR3;4、SULTR3;3、PHT1;4蛋白介导无机磷酸盐向籽粒的转运,MIPS、ITPK、IPK1酶参与植酸的合成,以及MRP蛋白介导植酸合成后的转运储藏。对籽粒低植酸突变体的产量、农艺性状表型及改良策略的优缺点进行比较,籽粒低植酸品种可能存在产量下降、种子萌发率低等不足。  展望  未来可以从特异性修饰籽粒中关键基因的时空表达、发掘关键基因的优良等位变异及针对品种的磷营养管理3个方向,深入研发籽粒低植酸含量的高产品种,实现磷资源高效利用。  相似文献   

8.
A novel approach for determination of phytic acid in cereals has been applied in 2 traditional methods. In the first, phytic acid in a sample extract is first separated and concentrated by ion-exchange chromatography. The phytic acid concentrate is then quantitatively determined as phosphorus by inductively coupled plasma atomic emission spectrometry (ICP-AES). In the second method, extracted phytic acid is first precipitated by FeCl3 solution. The complexed iron is converted to ferric hydroxide by adding NaOH, thus releasing phytic acid as soluble sodium phytate. Phytate is then quantitatively determined as phosphorus by ICP-AES. In these methods, both the difficult acid digestion and the spectrometric determination of phosphorus found in traditional methods are eliminated by using ICP-AES. This results in a method that is simpler, faster, and more accurate than earlier procedures.  相似文献   

9.
Phytase and acid phosphatase activities in plant feedstuffs   总被引:8,自引:0,他引:8  
A total of 183 samples representing 24 feedstuffs were analyzed for total phosphorus, phytate phosphorus content, phytase (Phy), and acid phosphatase (AcPh) activities with the objective to predict the capacity to hydrolyze phytic acid and to contribute to formulating environmentally adequate diets for monogastric animals. Of the cereals and cereal byproducts analyzed, only rye (5147 U kg(-)(1); 21 955 U g(-)(1)), wheat (1637 U kg(-)(1); 10 252 U g(-)(1)), rye bran (7339 U kg(-)(1); 56 722 U g(-)(1)), and wheat bran (4624 U kg(-)(1); 14 106 U g(-)(1)) were rich in Phy and AcPh activities. Legume seeds and oilseeds contained negligible Phy activity and a moderate amount of AcPh activity, except for kidney bean (33 433 U g(-)(1)) and full-fat linseed meal (13 263 U g(-)(1)). On the other hand, a significant linear regression between phytate phosphorus (y) and total phosphorus (x) was observed in cereal byproducts (R(2) = 0. 95; y = 0.8458x - 0.0367; P < 0.001) and oil seeds (R(2) = 0.95; y = 0.945x - 0.20; P < 0.001). Phy and AcPh were positively correlated with respect to phytate phosphorus in cereals, cereal byproducts, and other byproducts and negatively correlated in legume seeds and oilseeds. Except for cereals, the highest correlation between enzyme activities and phytate phosphorus was found for phytase. It is not possible to predict Phy and AcPh activities from phytate phosphorus content by linear and quadratic regressions. Finally, only highly significant and positive correlation was found between Phy and AcPh activities for cereals, cereal byproducts, and oilseeds.  相似文献   

10.
Phytic acid would form soluble and insoluble complexes with proteins. Our objective was to determine if phytic acid forms insoluble complexes with major peanut allergens, and if such reaction results in a peanut extract with a lower level of soluble allergens and allergenic property. Extracts from raw and roasted peanuts were treated with and without phytic acid at various pH values and then analyzed by SDS-PAGE and a competitive inhibition ELISA (ciELISA). The ciELISA measured IgE binding using a pooled serum from peanut-allergic individuals. Results showed that phytic acid formed complexes with the major peanut allergens (Ara h 1 and Ara h 2), which were insoluble in acidic and neutral conditions. Succinylation of the allergens inhibited complex formation, indicating that lysine residues were involved. A 6-fold reduction in IgE binding or allergenic potency of the extract was observed after treatment with phytic acid. It was concluded that phytic acid formed insoluble complexes with the major peanut allergens, and resulted in a peanut extract with reduced allergenic potency. Application of phytic acid to a peanut butter slurry presented a similar result, indicating that phytic acid may find use in the development of hypoallergenic peanut-based products.  相似文献   

11.
This study utilized an in vitro digestion/Caco-2 cell model to determine the levels of ascorbic acid (AA) and "meat factor" needed to promote Fe absorption from Fe complexed with phytic acid (PA) or tannic acid (TA). AA reversed the inhibition of Fe absorption by PA beginning at a molar ratio of 1:20:1 (Fe:PA:AA) but essentially had no effect on the Fe complexed with TA. Fish also reversed the inhibition of Fe uptake by PA but not by TA. TA and fish decreased total Fe solubility. Iron in the presence of PA was highly soluble. AA, but not fish, increased the percentage of soluble Fe as Fe2+ in the presence of both inhibitors. The results indicate that monoferric phytate is a form of Fe that can be available for absorption in the presence of uptake promoters. In contrast, a TA-Fe complex is much less soluble and unavailable in the presence of promoters.  相似文献   

12.
Micronutrient deficiency is one of the most common and widespread nutritional issues. Among the factors mitigating the bioavailability of Zn (zinc) and Fe (iron), phytic acid plays a key role; therefore, in order to scrutinize genetic alterations ?related to micronutrient and phytate contents, we examined the concentrations of zinc, iron, and phytic acid, as well as its mole ratio to ?zinc in various wheat species grown in two planting seasons. The concentrations of phytic acid and its mole ratio to zinc were 0.61?1.55 g kg?1 dry weight and 1.88?4.17 for autumn, and 0.97?2.02 g kg?1 dry weight and 2.10?4.05 for spring planting. There was a significant discrepancy among wheat species; tritipyrum had the highest concentration of iron, phytic acid and its mole ratio to zinc, and T. monococcum and T. aestivum recorded reasonable zinc bioavailability. Correlation studies between grain phytic acid concentrations and other measured traits revealed various relationships, denoting an irrefutable impact of planting season and wheat ploidy levels on modification of wheat genotypes. The characters contributing more positively with principal component (PC) 1 were Zn and Fe under spring planting and Fe under autumn planting. Spike number per square meter, biological yield and grain yield in spring cultivation, and grain zinc concentration in autumn cultivation were positively correlated to principal component (PC) 2. Given that the concentration of Fe and Zn in all the studied genotypes is relatively high and due to the existence of other desirable agronomic traits, this study believes that it could possibly enhance the applicability of some of these genotypes for breeding purposes.  相似文献   

13.
In the milling process, efficient separation between the starchy endosperm and the other grain tissues is a key parameter estimated by ash measurement. Because this separation occurs near the aleurone layer interface, better understanding of this tissue fractionation is critical for a better analysis of the wheat milling behavior. Samples from hard and soft common wheat cultivars that had the same protein content were processed on a pilot mill, and whole grain meals or flour streams were analyzed for ash content. The para‐coumaric acid (p‐CA) and phytic acid flour contents were compared with ash measurement and used as markers of the aleurone cell walls or aleurone cell content, respectively. A greater amount of phytic acid in hard wheat flour compared with soft wheat flour was found and reveals a distinct milling behavior between those wheat classes, mainly at the breaking step. Therefore simple ash content measurement is not sufficient to analyze flour purity. At the reduction stage, quantity of phytic acid increases with the other markers and may result from the overall mechanical resistance of the aleurone tissue. As a consequence, wheat hardness not only determines grain milling behavior but also affects flour composition.  相似文献   

14.
Many Mexican women are deficient in folic acid. Fortification of the corn tortilla could be an effective way to help increase the folic acid levels among the Mexican population. Previous studies have shown significant folic acid losses in the masa dough as it is held before baking. This loss in folic acid could be owing to utilization by lactic acid bacteria naturally present in the masa. The objective of this study was to determine the effect of bacteria native to corn masa on the folic acid content in masa. Bacteria in dough samples from six mills in Guadalajara, Mexico, were isolated and identified. Bacterial isolates were inoculated into sterile fortified corn masa flour, which was converted to masa and held at 56°C for 0, 3, and 6 h, replicating the conditions of freshly milled masa as held before baking. All samples, including the control, showed losses of folic acid between 66 and 79% w/w in the first 3 h of incubation. Because folic acid degradation in the sterile control sample was not different than the inoculated sample results, the decline in folic acid was not owing to bacteria (mainly Streptococcus spp.) present in the masa flour but appeared to be a chemical degradation related to time and temperature.  相似文献   

15.
Thirteen low-tannin faba bean genotypes grown at two locations in north central Alberta in 2009 were evaluated to investigate the variation in seed characteristics, phenolic and phytate contents, and phytase and antioxidant activities and to elucidate the relationship of these components as a breeding strategy. Seed characteristics including color were predominantly genotype dependent. The faba bean genotypes with total phenolic content ranging from 5.5 to 41.8 mg of catechin equiv/g of sample was linearly related to tannin content and the best predictor of antioxidant activity. Phytic acid content and phytase activity varied significantly among genotypes and between locations, ranging from 5.9 to 15.1 g/kg and from 1606 to 2154 FTU/kg sample, respectively. Multivariate data analysis performed on 19 components analyzed in this study using principal component analysis (PCA) and cluster analysis demonstrate that differences in seed characteristics, phenolic components, phytic acid, and phytase are major factors in segregating faba bean genotypes. The relatively low phytic acid content and high phytase activity of these low-tannin faba bean genotypes are beneficial/essential traits for their use in human and animal nutrition.  相似文献   

16.
Red wine amino acids and volatile compounds were analyzed before and after malolactic fermentation carried out by four different starter cultures of the species Oenococcus oeni and Lactobacillus plantarum. The purpose of this study was to determine whether differences can be attributed to the lactic acid bacteria strain used in this important step of the wine-making process. The malolactic cultures selected for this study were indigenous wine lactic acid bacteria strains. The data were evaluated using different multivariate analysis techniques. Results showed different malolactic behaviors for O. oeni and L. plantarum and significant metabolic differences between both species. A degree of diversity was found within each lactic acid bacteria group, since wines presented specific characteristics depending on the lactic acid bacteria strain used. In all cases, malolactic fermentation seemed to modify the amino acid and volatile composition of the wine.  相似文献   

17.
Antioxidative ability of lactic acid bacteria   总被引:24,自引:0,他引:24  
Nineteen strains of lactic acid bacteria were investigated for antioxidative activity. These includedLactobacillus acidophilus B, E, N1, 4356, LA-1, and Farr; Lactobacillus bulgaricus 12 278, 448, 449, Lb, 1006, and 11 842; Streptococcus thermophilus 821, MC, 573, 3641, and 19 987; and Bifidobacterium longum B6 and 15 708. Intracellular cell-free extract of all strains demonstrated antioxidative activity with inhibition rates of ascorbate autoxidation in the range of 7-12%. Antioxidative mechanisms including metal ion chelating ability, scavenge of reactive oxygen species, enzyme inhibition, and reducing activity of intracellular cell-free extract of lactic acid bacteria were studied. S. thermophilus 821 had the highest metal ion chelating ability for Fe(2+), and B. longum 15 708 showed the highest Cu(2+) chelating ability among the 19 strains tested. All strains demonstrated reactive oxygen species scavenging ability. L. acidophilus E showed the highest hydroxyl radical scavenging ability, and B. longum B6 had the best hydrogen peroxide scavenging ability. Reducing activity was also found in all strains. Most of the strains tested demonstrated excellent reducing activity. B. longum B6 showed the highest reducing activity among the 19 strains tested. In enzyme inhibition, superoxide dismutase activity was not found in these 19 strains, and the activity of superoxide dismutase was not induced when metal ion Mn(2+), Fe(2+), or Cu(2+)Zn(2+) was present.  相似文献   

18.
The impact of heat treating wheat flour (for 2 or 5 h at 80 or 100°C) on its functional properties was studied with solvent retention capacity (SRC) tests and related to changes in individual groups of flour constituents. Heat treatments increased the overall water retention capacity (from 55.6% for control flour to 62.4% for flour heated 5 h at 100°C) as well as sucrose SRC (from 85.0 to 113.5%), although no changes were observed in sodium carbonate SRC. The decrease in lactic acid SRC values (from 113.1 to 97.4%) indicated that heat treatment restricted swelling of the protein network. As deduced from a decrease in both the level of proteins extractable in sodium dodecyl sulfate–containing medium and the level of free sulfhydryl groups, the restricted swelling was related to protein cross‐linking within the flour particles. Such upfront polymerization prevented proper hydration and gluten network formation during mixing. Starch (swelling) properties were also affected by heat treatment. Finally, the impact of heat treatment on flour SRC profiles was comparable to that noted when chlorinating wheat flour.  相似文献   

19.
One hundred and sixty-three wines from La Rioja, Utiel-Requena, and Tarragona were analyzed to determine if there were any differences in the concentrations of six biogenic amines that are found in these three regions. The influence of grape variety, type of vinification, wine pH, malolactic fermentation, and storage in bottle on biogenic amine concentrations was studied. Results show important differences in putrescine and histamine concentrations among regions, varieties of grape, and type of wine; differences were less appreciable for the remaining biogenic amines studied. Low pH prevented biogenic amine formation. Malolactic fermentation and short storage periods in bottle (3-6 months) showed increases in histamine concentration, whereas longer periods of storage led to a general decrease in histamine. Several strains of lactic acid bacteria were isolated in this work, and their ability to form biogenic amines was assayed in synthetic media, grape must, and wine. Grape varieties, different types of winemaking, pH, and lactic acid bacteria may be responsible for the differences observed in the biogenic amine concentrations of the wines analyzed.  相似文献   

20.
The nutritional value of breadmaking cereal spelt (Triticum aestivum ssp. spelta) is said to be higher than that of common wheat (Triticum aestivum ssp. vulgare), but this traditional view is not substantiated by scientific evidence. In an attempt to clarify this issue, wholemeal and milling fractions (sieved flour, fine bran, and coarse bran) from nine dehulled spelt and five soft winter wheat samples were compared with regard to their lipid, fatty acid, and mineral contents. In addition, tocopherol (a biochemical marker of germ) was measured in all wholemeals, whereas phytic acid and phosphorus levels were determined in fine bran and coarse bran samples after 1 month of storage. Results showed that, on average, spelt wholemeals and milling fractions were higher in lipids and unsaturated fatty acids as compared to wheat, whereas tocopherol content was lower in spelt, suggesting that the higher lipid content of spelt may not be related to a higher germ proportion. Although milling fractionation produced similar proportions of flour and brans in spelt and wheat, it was found that ash, copper, iron, zinc, magnesium, and phosphorus contents were higher in spelt samples, especially in aleurone-rich fine bran and in coarse bran. Even though phosphorus content was higher in spelt than in wheat brans, phytic acid content showed the opposite trend and was 40% lower in spelt versus wheat fine bran, which may suggest that spelt has either a higher endogenous phytase activity or a lower phytic acid content than wheat. The results of this study give important indications on the real nutritional value of spelt compared to wheat. Moreover, they show that the Ca/Fe ratio, combined with that of oleate/palmitate, provides a highly discriminating tool to authenticate spelt from wheat flours and to face the growing issue of spelt flour adulteration. Finally, they suggest that aleurone differences, the nature of which still needs to be investigated, may account for the differential nutrient composition of spelt and wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号