首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scattered trees and small patches of vegetation among farmland are typical of rural landscapes throughout the world, often comprising a significant proportion of remaining habitats for native fauna. Insectivorous bats can use such isolated resources owing to the high mobility of most species, but little is known of the relationship between bats and tree density, or of the impact of incremental loss of trees in the landscape. Bats were surveyed at 30 sites in south-eastern Australia, in five habitat categories representing a range of tree densities from remnant woodland blocks (>35 trees/ha) to sparsely scattered trees (<1 tree/ha), and open paddocks devoid of trees. Sampling was undertaken by using harp traps and ultrasonic bat detectors. The abundance of potential arthropod prey was assessed by using light traps. Eleven species of insectivorous bats were recorded and bats were widespread in all habitat categories; all species were recorded around scattered trees. Overall activity, as revealed by detectors, did not differ significantly between the four treed categories, but in open paddocks there was a lower level of activity and a different community composition. However, a regression model revealed a significant quadratic relationship between activity of bats and tree density, with highest activity at 20-30 trees/ha. All species were recorded in open paddocks, but for eight of the ten species this represented <7% of their total activity recorded across all habitat categories. For six species, significant positive correlations were found between activity levels and the abundance of potential arthropod prey. In contrast to bat detectors, trapping results showed a significant difference in overall abundance of bats between wooded habitats, with decreased abundance as tree density declined. This study highlights the value of scattered trees as foraging habitat for bats, and emphasizes that, in rural land mosaics, such small and isolated habitat components have value for the conservation of biodiversity, and require greater recognition and protection.  相似文献   

2.
While urban areas are increasingly recognized as having potential value for biodiversity conservation, the relationship between biodiversity and the structure and configuration of the urban landscape is poorly understood. In this study we surveyed birds in 39 remnant patches of native vegetation of various sizes (range 1-107 ha) embedded in the suburban matrix in Melbourne, Australia. The total richness of species within remnants was strongly associated with the size of remnants. Remnant-reliant species displayed a much stronger response to remnant area than matrix-tolerant species indicating the importance of large remnants in maintaining representative bird assemblages. Large remnants are important for other ecological groups of species including migratory species, ground foraging birds and canopy foraging birds. Other landscape (e.g. amount of riparian vegetation) and structural components (e.g. shrub cover) of remnants have a lesser role in determining the richness of individual remnants. This research provides conservation managers and planners with a hierarchical process to reserve design and management in order to conserve the highest richness of native species within urban areas. First of all, conservation efforts should preferentially focus on the retention of larger remnants of native vegetation. Second, where possible, riparian vegetation should be included within reserves or, where it is already present, should be carefully managed to ensure its integrity. Third, efforts should be focused at maintaining appropriate habitat and vegetation structure and complexity.  相似文献   

3.
Landscape restoration through revegetation is being increasingly used in the conservation management of degraded landscapes. To effectively plan restoration programs information is required on how the landscape context of revegetation influences biodiversity gains. Here, we investigate the relative influence of patch area and connectivity on bird species richness and abundance within urban revegetation patches in Brisbane, Australia. We carried out bird surveys at 20 revegetation sites, and used hierarchical partitioning and model selection to test the relative importance of patch area (the area of revegetation including all directly connected remnant vegetation) and landscape connectivity (the vegetated area connected by less than 10 m, 20 m, 30 m, 40 m and 50 m cleared gaps). We controlled for a number of possible confounding variables within the hierarchical partitioning procedure. Both the hierarchical partitioning and model selection procedures indicated that connectivity had an important influence on bird species richness. Patch area in combination with connectivity were important influencing factors on overall bird abundance. We also carried out the hierarchical partitioning procedure for bird abundance data within a range of feeding guilds, yielding results specific to species groups. Overall our data suggest that greater connectivity enhances the habitat area that colonists can arrive from (resulting in greater species richness), whereas increased patch area allows for increased abundance by expanding the habitat available to species already present in a patch. A combined approach where connectivity and overall habitat area is enhanced across the landscape is likely to be necessary to meet long-term conservation objectives.  相似文献   

4.
Large-scale vegetation clearing accompanying agricultural development has been a major driver of biodiversity loss. Efforts to reverse this problem have often included revegetation, but the value of revegetated areas for biodiversity is poorly known. We addressed aspects of this knowledge gap using a case study in south-eastern Australia. We quantified relationships between bird species richness and the probability of detection for eight individual bird species and: (i) the context of a planting, i.e. the types of the vegetation cover in the neighborhood of a planting, (ii) the configuration of a planting, i.e. the location and geometry of a planting, and, (iii) the content of planting, i.e. the vegetation features of a planting.The presence and nature of the effects of these explanatory variables varied with each of our response variables. A combination of context, configuration and content variables were needed to explain the variability in species richness and the presence of individual species. Context effects were highly significant, particularly the amount of planted and remnant native vegetation surrounding plantings. We speculate that when the area surrounding a planting was potentially suitable, recognition of planting “patch” boundaries disappeared and, correspondingly, configuration effects such as planting size were limited. Our results suggest that maximizing the value of planted areas for bird biota requires consideration not only of the features of the vegetation within a planting, but also where a planting is placed.  相似文献   

5.
Tall-grass prairies are a critically endangered ecosystem in North America. Our objectives were to evaluate potential roles of prairie patch structure (defined in terms of prairie patch area, matrix type, and edge effects) in explaining changes in number, size, and quality of northern tall-grass prairies over time. In 2006, we evaluated changes in remnant tall-grass prairies at the most northern extent of the tall-grass prairie range, by resurveying plant communities in 65 remnant patches in Manitoba, Canada, that were previously surveyed in 1987 or 1988. In 2007 and 2008 we conducted more detailed surveys of vegetation structure and composition at 580, 0.2 × 0.5 m quadrats distributed within 24 remnant patches of northern tall-grass prairie. Our findings suggest remnant northern tall-grass prairies continue to suffer from serious threats: 37% of the patches surveyed in 1987 or 1988 had changed to other habitat types by 2006; patches smaller than 21 ha tended to decrease in size, while larger patches increased in size; and most patches, particularly smaller ones, declined in quality. Both native and alien species responded more strongly to distance to edge than to patch size or matrix type. Edge effects may explain why prairie quality is lower and more likely to decline in smaller remnants. Richness of native plants was negatively correlated with cover and richness of alien species, suggesting that alien species may displace native species. Few existing northern tall-grass prairies are likely to be self-sustaining, and immediate active management is required to prevent further loss of remnant northern tall-grass prairies.  相似文献   

6.
The species richness and frequency of occurrence of bryophytes within taxonomic and functional groups was examined in relation to the size of 20 old-growth patches (size range: 0.6-63.6 ha) remaining after logging in temperate rainforests of coastal British Columbia. At the centre of each remnant patch, bryophytes were sampled in sixty-three 10 cm × 30 cm microplots on three substrate-types (forest floor, downed logs and tree bases). Generalized linear models demonstrated that the species richness and frequencies of some bryophyte functional groups were related to patch size. In particular, some dispersal-limited groups (perennial stayers) and microclimate-sensitive groups (closed canopy species, epixylic (log-dwelling) species, and liverworts) showed significant declines in either richness or frequency as patch size decreased. In contrast, colonists and open canopy species showed little association with patch size. Many, but not all, of the significant patch size relationships disappeared when the three smallest patches (0.6-1.8 ha) were eliminated from the analysis. These results suggest that patches sized 3.5 ha or larger may provide habitat capable of sustaining a diverse array of bryophyte functional groups in temperate rainforest landscapes.  相似文献   

7.
Broadscale land use changes are occurring rapidly in rural landscapes worldwide, within which revegetation with native plant species to increase the area of suitable habitat is a key activity. Current models for planning revegetation are based solely on the spatial arrangement of new and remnant vegetation. Making wise decisions about revegetation requires projective models of ecological responses to revegetation, but there are few appropriate data. Substantial time lags are expected in the availability of many habitat resources because different resources are realised at different stages of vegetation maturation. Here we present results of surveys of 72 revegetation sites established over a range from 5 to more than 130 yr from the slopes and plains of central Victoria, Australia. We surveyed vegetation provision of habitat resources essential for many birds and arboreal and scansorial mammals (e.g. canopy, large boughs, tree hollows and fallen timber). Predictive models were developed for habitat resource provision as functions of time since planting, planting density and other covariates. Different habitat resources developed at different rates. While dense canopy and various forms of bark resources developed in about 10 yr, large boughs, tree hollows and fallen timber loads required at least 100 yr to develop. The development of these key habitat resources was delayed in revegetated sites with high stem densities. Habitat resources that are essential for many birds and arboreal and scansorial mammals have long time lags that models for planning offsets or landscape reconstruction should account for. Management has substantial effects: planting at high densities greatly reduces tree girth growth rates and delays the occurrence of large boughs, tree hollows and fallen timber by decades.  相似文献   

8.
Restoration of managed landscapes is critical for the conservation of biodiversity and function at a landscape scale. We tested effects of revegetation of grazing land formerly vegetated by eucalyptus woodland on trophic groups of epigaeic beetles, considering a restoration chronosequence (space-for-time substitution). We used paddocks (i.e. grazed pastures) as the start point, sites in two age classes (5-8 and 12-17 since years since replanting) and fenced woodland remnants to represent the desired end point. Phytophages were most common in young revegetated sites, which had reduced grazing pressure and low canopy cover. Assemblage composition of both saprophages and predators converged on those of remnants over “time”. Paddock sites had the lowest species evenness of saprophages, with two species being particularly common. Saprophage assemblages in paddocks were also more homogeneous than those in other site types i.e. between site variation in assemblage composition was low. Predators were smaller but more species-rich in sites with less coarse woody debris, canopy cover and litter, possibly responding to higher abundances of small prey. Beetle biomass did not differ across habitats. For saprophages, a greater abundance in paddocks was counterbalanced by reduced body size. Remnants did not support a significantly greater proportion of habitat-specific species. However, more species than expected were specific to treed sites. Our study supports previous findings that habitat structure is a key driver of beetle community restoration. It also suggests that epigaeic assemblages respond relatively rapidly to revegetation, probably because they do not require resources that develop over long periods of time. The similarities in biomass for all trophic groups across sites suggest that beetle-performed functions may operate similarly in different stages, reflecting high functional resilience of epigaeic beetle assemblages in this landscape.  相似文献   

9.
Habitat fragmentation causes drastic changes in the biota and it is crucial to understand these modifications to mitigate its consequences. While studies on Neotropical bats have mainly targeted phyllostomid bats, impacts of fragmentation on the equally important aerial insectivores remain largely unexplored. We studied species richness, composition, count abundance and feeding activity of aerial insectivorous bats in a system of land-bridge islands in Panama with acoustic sampling. We predicted negative effects of fragmentation on forest species while bats foraging in open space should remain essentially unaffected. Rarefaction analyses indicated higher species richness for islands than mainland sites. For forest species, multivariate analyses suggested compositional differences between sites due to effects of isolation, area and vegetation structure. Contrary to our expectations, count abundance of forest species was similar across site categories. Feeding activity, however, was curtailed on far islands compared to near islands. As expected, bats hunting in open space did not reveal negative responses to fragmentation. Interestingly, they even displayed higher abundance counts on far and small islands. On the species level, two forest bats responded negatively to size reduction or site isolation, respectively, while a forest bat and a bat hunting in open space were more abundant on islands, irrespectively of island isolation or size. Our findings suggest that small forest remnants are of considerable conservation value as many aerial insectivores intensively use them. Hence high conservation priority should be given to retain or re-establish a high degree of forest integrity and low levels of isolation.  相似文献   

10.
Secondary vegetation, associated with changes in land use, presents a conservation issue in the preservation of biological diversity in agricultural landscapes. We examine the interactive effect of eucalypt regrowth and rock habitat on reptile species richness and assemblage structure in fragmented agricultural landscapes in south-eastern Australia. Zoogeographic and geomorphic factors influenced species richness and community composition. Saxicolous and arboreal species were less abundant in grassy woodland regrowth, whereas Bassian and fossorial species responded positively to forest regrowth (and tree plantings). Regrowth with rock habitat had higher reptile richness, and more old growth-associated taxa, than regrowth without rock habitat. Thus, the presence of saxicolous habitat can reduce the time required for regrowth to attain a climax community structure and elements of old growth fauna. However, in the absence of vegetation management, secondary vegetation can reduce habitat suitability for a broad range of reptiles. In agricultural landscapes historically supporting savannah-like vegetation, habitat manipulation may be necessary to maintain reptile diversity. Furthermore, tree plantings in temperate agricultural landscapes should aim to restore historical vegetation composition and structure, thereby reflecting the habitat requirements of extant species and facilitating evolutionary processes. In grassy woodland ecosystems, this may involve heterogeneous plantings which emulate natural levels of canopy cover and solar penetration. Maintaining biodiversity in agricultural landscapes will therefore involve managing trade-offs to preserve areas of dense regeneration for regrowth-dependant fauna, while at the same time, creating open-canopy environments to enhance habitat for ectothermic organisms.  相似文献   

11.
Pollination has received attention recently due to reported sharp declines of Apis mellifera in several locations, and it has been proposed that diverse native bee communities may be key for continued pollination of economically important crops. However, there is some inconsistency in the literature as to how these communities should best be managed. To address this issue, we collected bees from an intensively managed agricultural region in eastern Australia using blue vane traps. Both linear remnants of vegetation, which form part of a larger corridor network, and adjacent fields of native and exotic pastures, wheat, canola, and lucerne were sampled. A total of 3249 individual bees, representing four families and 36 species were collected. Highly modified environments of nectar-bearing crop supported the most species-rich bee assemblages, and the highest abundance of individual bee species. Distance from the remnants did not limit the body size of species occupying fields (up to 400 m). However, richness of bee assemblages also responded positively to the presence of conservation land in nearby areas, or the number of remnant native trees surrounding traps. Linear remnants of native vegetation contributed to assemblage heterogeneity by adding unique species to the regional pool. Our findings indicate that agricultural industries that currently rely on pollination by A. mellifera should ensure that intensive land use is complemented by untilled areas in the form of conservation land, or farm dams and scattered trees in fields, to support wild pollinators that may act as insurance against further future losses of managed hives.  相似文献   

12.
Phyllostomid bat diversity in a variegated coffee landscape   总被引:1,自引:0,他引:1  
We examined bat diversity at two different spatial scales: habitat and matrix, in the Quindío coffee region in Colombia. Habitats were: forest, shaded coffee and associated coffee; and matrices were: associated coffee (M1) and shaded coffee (M2). Three sampling sites from each type of habitat were located at each matrix. The forest areas of the Quindío region are severely fragmented and less structurally complex than coffee patches. The shaded coffee habitat had patches that were larger and more complex. In spite of limited patch size and lower complexity, the forest remnants were those with greatest species richness and demonstrated clear similarities even between the two matrices. This was not observed in coffee plantations, neither in associated coffee nor shaded coffee. On the landscape scale, M2 showed lower β diversity and greater edge density (ED) than M1. This fact explains that greater connectivity between different habitats exists in M2 than in M1. Our results suggest that production and conservation are compatible, as maintenance of forest remnants in a mosaic structure by landowners of the vegetation is sufficient to conserve phyllostomid bats at landscape level.  相似文献   

13.
In order to document the responses of bats to destruction and fragmentation of their natural habitat and the value of different types of man-made vegetation for bat conservation in the Neotropics, bats were sampled with mist nets to compare species richness and species composition in a tract of continuous forest, forest fragments and a habitat-island consisting of a mosaic of forest and arboreal crops in Los Tuxtlas, southern Mexico. We captured 3835 bats representing 39 species: 76% were captured in continuous forest, 74% in the mosaic habitat and 87% in forest fragments. In the mosaic habitat we captured 43% of the total number of bats, 33% in the forest fragments and 24% in continuous forest. On average the habitats studied had 64% species in common. Evidence of continuous breeding activity was determined for a high number of species at the three habitats (> 70% lactating and 65% with embryos). A few bat species (Carollia brevicauda, Pteronotus parnelli, Sturnira lilium, Artibeus jamaicensis, Dermanura phaeotis, Vampyrodes caraccioli, Glossophaga soricina, Dermanuta toltecus, Cheoroniscus godmani, Platyrrhinus helleri) dominated the sample, but their relative dominance varied among habitats. Recapture of bats provided evidence for inter-habitat movement. The co-occurrence of the three habitats helps conserve a diverse assemblage of bat species in the local landscape.  相似文献   

14.
Forest fragmentation is a common disturbance affecting biological diversity, yet the impacts of fragmentation on many forest processes remain poorly understood. Forest restoration is likely to be more successful when it proceeds with an understanding of how native and exotic vertebrates utilize forest patches of different size. We used a system of forest fragments isolated by volcanic activity 153 years ago in Hawaii to examine how long-term fragmentation, as well as fragment size and structural features affect the richness of native and exotic bird species. The total number of bird species increased rapidly with forest fragment size, with most of the native species pool found in patches <3 ha. Smaller fragments were dominated by native bird species with several exotic bird species found only in the largest fragments, suggesting that exotic bird species in this landscape show greater area-sensitivity than native species. We used airborne scanning light detection and ranging (LiDAR) to assess whether fragment area was correlated with estimates of fragment vegetation volume as well as measures of tree height. Fragment area was highly correlated with vegetation volume, maximum tree height, and canopy height heterogeneity, and these variables were strong predictors of bird richness, demonstrating that remote sensing can provide key insights into the relationship between fragment structural attributes and biodiversity indicators. Overall, this work demonstrates the value of conserving small remnant mid-elevation forest patches for native birds in Hawaii. This work also provides insight into how newly created forest patches might be used by native and exotic bird species in Hawaii.  相似文献   

15.
Saproxylic Coleoptera are diverse insects that depend on dead wood in some or all of their life stages. In even-aged boreal forest management, remnant habitats left as strips and patches contain most of the dead wood available in managed landscapes and are expected to act as refuges for mature forest species during the regeneration phase. However, use of remnant habitats by the saproxylic fauna has rarely been investigated. Our objective was to characterize the saproxylic beetle assemblages using clearcuts and forest remnants in western Québec, Canada, and to explore the effects of forest remnant stand characteristics on saproxylic beetle assemblages. We sampled both beetle adults and larvae, using Lindgren funnels and snag dissection, in five habitat locations (clearcuts, forest interiors of large patches, edges of large patches, small patches and cut-block separators) from three distinct landscapes. Adult saproxylic beetles (all feeding guilds combined) had significantly higher species richness and catch rates in small patches compared to forest interiors of large patches; the phloeophagous/xylophagous group had significantly higher species richness only. Small patches, cut-block separators and edges of large patches also had the highest snag density and basal area, increasing habitat for many saproxylic beetles. No significant differences in density of saproxylic larvae were found between habitat patches, but snag dissection nevertheless suggests that snags in forest remnants are used by comparable densities of insects. Saproxylic beetles appear to readily use habitat remnants in even-aged managed landscapes suggesting that forest remnants can insure the local persistence of these species, at least in the timeframe investigated in our study.  相似文献   

16.
The effects of grazing on the richness of understorey plant communities are predicted to vary along gradients of resources and tree cover. In temperate Australia livestock management has involved phosphorus addition and tree removal but little research has examined how the effects of grazing on plant species richness may vary with these management regimes. Patterns of understorey plant species richness were examined in 519, 0.09 ha quadrats in grazed pastures and remnant grassy forests and woodlands in southern Australia. Sheep grazing was the primary land use and sites varied widely in grazing frequency and density, tree cover and phosphorus fertiliser history. Using an information theoretic approach the available data provides strong evidence that the effect of grazing on total species richness varies according to available phosphorus and tree cover. Intermittent grazing and no grazing were associated with high total and native plant richness, but only at low phosphorus concentrations. Phosphorus was strongly negatively correlated with richness, particularly at low grazing frequency. Total species richness was positively correlated with tree cover except under frequent grazing at high stocking rates, suggesting that heavy grazing eliminates spatial and temporal heterogeneity imposed by trees. Native plant species richness was negatively correlated with a history of cultivation, positively correlated with tree cover and varied according to landscape position and geological substrate. Frequent high density grazing, particularly when associated with clearing, cultivation and fertiliser addition, was associated with the persistence of very few native plant species. In contrast, the richness of exotic plant species was relatively invariant and performance of the best model was low. While several studies have highlighted the importance of the grazed and cleared matrix for the conservation of native plant species, this benefit may be limited in landscapes where intensive grazing management systems dominate. Strong evidence for interactions between grazing, phosphorus and tree cover suggest that failure to consider other land use practices associated with grazing management systems could lead to erroneous conclusions regarding vegetation responses to livestock grazing.  相似文献   

17.
Forested landscapes in Southeast Asia are becoming increasingly fragmented, making this region a conservation and research priority. Despite its importance, few empirical studies of effects of fragmentation on biodiversity have been undertaken in the region, limiting our ability to inform land-use regimes at a time of increased pressure on forests. We estimated the biodiversity value of forest fragments in peninsular Malaysia by studying fragmentation impacts on insectivorous bat species that vary in dependence of forest. We sampled bats at seven continuous forest sites and 27 forest fragments, and tested the influence of fragment isolation and area on the abundance, species richness, diversity, composition and nestedness of assemblages, and the abundance of the ten most common species. Overall, isolation was a poor predictor of these variables. Conversely, forest area was positively related with abundance and species richness of cavity/foliage-roosting bats, but not for that of cave-roosting or edge/open space foraging species. The smallest of fragments (<150 ha) were more variable in species composition than larger fragments or continuous forest, and larger fragments retained substantial bat diversity, comparable to continuous forest. Some fragments exhibited higher bat abundance and species richness than continuous forest, though declines might occur in the future because of time lags in the manifestation of fragmentation effects. Our findings suggest that fragments >300 ha contribute substantially to landscape-level bat diversity, and that small fragments also have some value. However, large tracts are needed to support rare, forest specialist species and should be the conservation priority in landscape-level planning. Species that roost in tree cavities or foliage may be more vulnerable to habitat fragmentation than those that roost in caves.  相似文献   

18.
Differences in alpha and beta bat diversity among montane rainforest and five shaded coffee plantations under different management regimes, as well as some environmental factors and vegetation parameters influencing bat richness, were evaluated for the first time in southeastern Chiapas, Mexico. In each site, bats were captured every 2 months from March 2004 to July 2005, with six mist-nets, during two nights, using the capture-recapture method. We captured 2970 individuals of 43 bat species. Montane rainforest had the greatest alpha diversity (H′ = 2.681; n = 37), whereas alpha diversity was similar among coffee plantations (H′ = 2.229-2.364; n = 23-26). The number of frugivorous and nectarivorous species was similar among the sites; the greatest exchange in species composition (beta diversity) occurred for insectivorous bats, which reduce their number in coffee plantations as pesticides are incorporated. Bat richness species was significantly related to the number of vegetation strata, height, and cover of trees. We suggest that coffee plantations could act as corridors, facilitating connection among different elements of the landscape in the Sierra Madre de Chiapas for some frugivorous and nectarivorous bats.  相似文献   

19.
Chinese village fengshui forests (VFF) are small remnant forest patches that coexist with natural villages. The indigenous residents protect the forest patches under traditional Chinese geomancy beliefs (namely fengshui). However, the VFF community features and conservation values and relationships with the indigenous people remain poorly understood. In this study, we evaluated tree species diversity conservation of regional VFF patches by sampling a 1200 m2 transect within each patch. We also tested our hypothesis that patch size did not significantly impact interior forest community features of well-protected VFF patches. Thirty-two well-protected VFF patches in the Pearl River Delta, China were investigated. The average coefficient of similarity between transects (CS) was employed to evaluate community heterogeneity. Five forest community parameters (tree species richness per 1200 m2, tree stem density, tree basal area density, Shannon–Wiener diversity index (SWI), and Simpson diversity index (SI)) were measured and compared with regional well-developed evergreen broadleaved, coniferous and coniferous-broadleaved mixed forests. The relationships between the five parameters versus patch size and elevation were analyzed. A total of 266 tree species comprised of 57 families were recorded in 32 transects, of which 258 (97%) species were indigenous and eight (3%) were exotic. Ten tree species were endangered, rare or nationally protected by the Chinese government, and 57 species were endemic to China. The average CS was 0.38; and the average five forest community parameter values were as follows: 46.8 for tree species richness; 3403 plants/ha for stem density, 49.1 m2/ha for basal area, 4.04 for SWI and 0.90 for SI. These values were consistent with well-developed evergreen broadleaved forests and greater than coniferous and coniferous-broadleaved forests. No significant correlation was detected between the five community parameters and patch area or elevation. We conclude that VFF patches preserve abundant tree species and heterogeneous habitats, which are important for maintaining regional biodiversity. The interior community features of VFF patches were not significantly affected by patch size. We recommend protection of both large and small VFF patches, which can be substantially enhanced by the preservation of associated traditional relic village cultures.  相似文献   

20.
Marginal habitats such as hedgerows or roadsides become especially important for the conservation of biodiversity in highly modified landscapes. With concerns of a global pollination crisis, there is a need for improving pollinator habitat. Roadsides restored to native prairie vegetation may provide valuable habitat to bees, the most important group of pollinators. Such roadsides support a variety of pollen and nectar sources and unlike agricultural fields, are unplowed, and therefore can provide potential nesting sites for ground-nesting bees. To examine potential effects of roadside restoration, bee communities were sampled via aerial netting and pan trapping along roadside prairie restorations as well as roadsides dominated by non-native plants. Management of roadside vegetation via the planting of native species profoundly affected bee communities. Restored roadsides supported significantly greater bee abundances as well as higher species richness compared to weedy roadsides. Floral species richness, floral abundance, and percentage of bare ground were the factors that led to greater bee abundance and bee species richness along restored roadsides. Traffic and width of roadside did not significantly influence bees, suggesting that even relatively narrow verges near heavy traffic could provide valuable habitat to bees. Restored and weedy roadside bee communities were similar to the prairie remnant, but the prairie remnant was more similar in bee richness and abundance to restored roadsides. Restoring additional roadsides to native vegetation could benefit pollinator conservation efforts by improving habitat on the millions of acres of land devoted to roadsides worldwide, land that is already set aside from further development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号