首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 56‐day feeding trial was conducted to investigate the effects of replacing fish meal with cottonseed protein concentrate (CPC) (free gossypol < 7.9 mg/kg) in the diets on the growth, intestinal microflora, haematological and antioxidant indices of juvenile golden pompano (Trachinotus ovatus). Six diets were designed: fishmeal diets (FM) which contained 340 g/kg fishmeal, as well as five CPC diets, each with differing CPC concentrations (120, 240, 360, 480 and 600 g/kg) to replace the fish meal. The weight gain rate (WGR) and specific growth rate (SGR) showed no significant difference among groups (p > .05) with the dietary CPC level ranged from 0 to 360 g/kg. Serum cholesterol (CHO) of C36 and triglyceride (TG) levels of C36 and C12 were significantly higher than the FM (p < .05). Total protein (TP) levels of C12 were significantly lower than the FM (p < .05). Among the treatments, C36 had higher glutathione peroxidase (GSH‐PX) and total superoxide dismutase (T‐SOD) than FM (p < .05). From the data analysis of 16s sequencing, with increasing CPC concentration, the proportion of harmful microbial taxa (Proteobacteria and Vibrio) increased. The results of this study support that CPC products are acceptable in practical diets for golden pompano. And the optimal dietary CPC replacement of golden pompano was estimated to be 259.3 g/kg.  相似文献   

2.
In order to investigate the dietary vitamin B6 (VB6) requirement for juvenile golden pompano, an experiment of six different diets with six dietary VB6 levels (0, 3.75, 7.47, 10.6, 13.7 and 18.5 mg/kg) was conducted. The results indicated that the content of dietary VB6 significantly increased weight gain rate (WGR), specific growth rate (SGR) and feed conversion ratio (FCR; p < 0.05). Golden pompano fed diet containing 7.47 mg/kg VB6 achieved the maximum ALT, AST, GPx, hepatic VB6 concentrations as well as the minimum MDA, however, the ALT, AST, GPx and hepatic VB6 concentrations decreased while MDA increased with a further increase in dieatry VB6. The highest values of GR and POD occurred at the 10.6 and 13.7 mg/kg dietary VB6 (p < 0.05) respectively. A diet supplemented with 7.47 mg/kg VB6 increased intestinal Na+, K+‐ATPase, Chymotrypsin, γ‐glutamyl transpeptidase, creatine kinase and amylase activities (p < 0.05). The relative abundance of Tenericutes and Bacteroidetes decreased while Proteobacteria and Firmicutes improved with an increase in dietary VB6 levels up to 7.47 mg/kg. Quadratic regression analysis on WGR, hepatic VB6 concentrations, AST and ALT indicated that the optimum dietary VB6 levels for juvenile golden pompano were 8.84–9.28 mg/kg.  相似文献   

3.
This study investigated the effect of dietary synbiotics on the growth, feed utilization and intestinal histology of largemouth bass (Micropterus salmoides). A commercial synbiotic product containing dried powder of yeast, Bacillus subtilis and mannan oligosaccharides was supplemented in basal diet with 0 g/kg (control), 1.0, 2.0, 4.0 and 6.0 g/kg, respectively, and then, the five diets were fed to largemouth bass with body weight of 4.5 ± 0.1 g for 8 weeks. The results showed that the supplementation of 2.0, 4.0 and 6.0 g/kg synbiotics increased weight gain by 20.6%, 17.7% and 11.8% (p < .05) and decreased feed conversion ratio by 0.20, 0.18 and 0.12 (p < .05), respectively, when compared to the control. The protein retention, lipid retention, apparent digestibility coefficient of dry matter and crude protein, and the intestinal villus height and width of 2.0 and 4.0 g/kg synbiotic groups were significantly higher than those of the control (p < .05). The intestinal protease activity and serum lysozyme activity were increased by the addition of 2.0 and 4.0 g/kg synbiotics (p < .05). In conclusion, dietary synbiotics improved the growth, feed utilization and intestinal structure of juvenile largemouth bass, and the recommended inclusion level was 2.0–4.0 g/kg.  相似文献   

4.
A 5 × 3 factorial growth trial was conducted to evaluate optimal dietary protein and lipid levels (dietary protein level, DP; dietary lipid level, DL) for juvenile Sillago sihama (S. sihama) (2.0 ± 0.02 g, initial weight). Fish were fed 15 diets containing 5 DPs (350, 400, 450, 500 and 550 g/kg) and 3 DLs (60, 90 and 120 g/kg) for 8 weeks. The interaction between proteins and lipids significantly influenced the feed conversion ratio, condition factor, body composition, antioxidant indices and lipase activity (p < .05). DP 450 g/kg showed the highest average final body weight. DPs 500 and 550 g/kg significantly decreased the protein efficiency ratio (p < .05). DL 120 g/kg showed the highest percentage weight gain. The low feed conversion ratio was found in diets P45L12, P55L9 and P55L12. Diet P45L12 showed high superoxide dismutase activities. DP 450 g/kg showed the lowest average malondialdehyde content. Lipase activity was increased by increasing DP (p < .05) with a fall at DP 550 g/kg. Under the present experimental conditions, the optimal DP for S. sihama was 450 g/kg under the DL 120 g/kg.  相似文献   

5.
An 8‐week feeding trial was conducted to evaluate the effect of replacement of dietary fishmeal with cottonseed meal (CSM) on the growth performance and health status of juvenile grass carp, Ctenopharyngodon idellus (6.67 g). Six isonitrogenous and isoenergetic diets were formulated with different CSM levels (0, 121, 241, 362, 482 and 603 g/kg diet). The first limiting amino acid was methionine, which decreased with an increase in dietary CSM from 361 to 538 g/kg. When the dietary CSM content was lower than 241 g/kg, the limiting amino acid was histidine. Thermal growth coefficient (TGC) and feed efficiency first increased and then decreased (p < 0.05), which was consistent with the change in the limiting amino acid. The feeding rate increased with a rise in the dietary CSM level (p < 0.05). The activity of digestive enzymes except trypsin decreased significantly (p < 0.05), serum aminotransferase activity and triglycerides increased, serum cholesterol decreased (p < 0.05). When dietary CSM was raised to 362 g/kg, intestinal villi and hepatopancreas tissue were injured. When the dietary CSM was 603 g/kg, alternative complement pathway haemolytic activity was inhibited (p < 0.05). The gossypol level in dorsal muscles from each treatment was below the detection limit. Based on the quadratic regression analysis of the TGC, the optimal dietary CSM level was 175.9 g/kg, and the maximum could be up to 351.8 g/kg and still result in the same TGC as that of control group.  相似文献   

6.
The study was to examine the effects of dietary L. aspera on growth performance, physio-metabolic response and health status of Rita rita fish reared in tanks for 60 days. Six experimental diets were formulated containing 0 g/kg, 3 g/kg, 6 g/kg, 9 g/kg and 12 g/kg L. aspera and designated as D0, D3, D6, D9 and D12 respectively. The inclusion of L. aspera at graded levels resulted in significantly varying effects on growth performance where the weight gain (%), specific growth rate (SGR) and feed conversion efficiency (FCE) were significantly higher (p<0.05) in D6 and D9 groups than others. The protease and amylase activities were elevated in L. aspera supplemented groups than the control group (p<0.05), whereas lactate dehydrogenase, malate dehydrogenase and serum transaminase enzyme activities were significantly reduced with the increasing level of L. aspera and comparatively higher activities of the respective enzymes were found in the control group. The activities of oxidative stress enzymes were significantly higher (p<0.05) in the D9 group and lower in control. The blood glucose level significantly decreased with the increasing level of L. aspera in the experimental diets. The L. aspera supplemented fish had significantly higher liver glycogen, serum protein, albumin and globulin than control group. Red blood cell count was significantly higher (p<0.05) in D6-D12, whereas white blood cell count and haemoglobin content were significantly higher (p<0.05) in D6 and D9 groups. Regression analysis showed that L. aspera at the level of 7.3–7.9 g/kg is optimum for better growth and feed efficiency.  相似文献   

7.
An 8‐week feeding trial was conducted to investigate the effects of dietary carbohydrate to lipid ratio (CHO: L) on growth, feed utilization, body composition and digestive enzyme activities of golden pompano, Trachinotus ovatus. Five iso‐nitrogenous (450 g/kg protein) and iso‐energetic (19 MJ/kg gross energy) diets with varying CHO: L ratios of 0.68, 1.02, 1.62, 2.61 and 4.35, respectively, were fed to triplicate groups of 30 fish (average 13.8 ± 0.1 g). Results showed that dietary CHO: L ratios did not show any significant influence on survival of golden pompano (> .05) but significantly affected its growth performance and feed utilization (< .05). Fish fed diets with CHO: L ratios at 1.62 and 2.61 exhibited the highest final body weight, weight gain ratio, specific growth rate, feed efficiency ratio and protein efficiency ratio. Fish body lipid and liver glycogen contents were also significantly influenced by CHO: L ratio (< .05). Hepatic amylase activity increased firstly and then decreased as the dietary CHO: L ratio increased, while lipases activity decreased with increasing dietary CHO:L level. The regression model analysis showed that the most suitable dietary CHO: L ratio (protein 450 g/kg) to reach the highest weight gain ratio is 2.38.  相似文献   

8.
This study investigated the effects of n‐3 high unsaturated fatty acid (n‐3HUFA) levels on the growth performance, antioxidant enzyme activities and fatty acid profiles of both subadult and adult Litopenaeus vannamei (L. vannamei). Seven iso‐nitrogenous and iso‐lipidic diets were used, containing n‐3HUFA concentrations of 1.6 (control), 4.8, 7.4, 13.9, 23.9, 29.2 and 34.4 g/kg, respectively. Two 8‐week feeding trials were conducted to determine the dietary n‐3HUFA requirements of L. vannamei with an initial body weight of 4.25 ± 0.00 g (subadults) and 8.50 ± 0.01 g (adults). The results showed that the dietary n‐3HUFA level significantly affected the weight gain rate (WGR), specific growth rate, the feed conversion ratio and the hepatosomatic index (HSI) (p < 0.05), but did not significantly affect the survival rate (p > 0.05). At appropriate level, dietary n‐3HUFA improved growth performance and HSI of both subadult and adult L. vannamei. Both subadults and adults showed significant differences in body composition (p < 0.05), except for moisture and crude ash (p > 0.05). Cholesterol and low‐density lipoprotein significantly decreased with increasing dietary n‐3HUFA both in subadults and adults (p < 0.05); however, triglyceride showed no significant change (p > 0.05). High‐density lipoprotein (HDL) in subadults was significantly affected by dietary n‐3HUFA (p < 0.05), but followed no apparent regularity; HDL significantly changed in adults and showed an upward trend followed by a downward trend (p < 0.05). There was no significant effect on aspartate transaminase (AST) activity in subadults, but AST in adults and alanine transaminase (ALT) in subadults and adults were significantly affected (p < 0.05). Dietary n‐3HUFA significantly affected serum polyphend oxidase, malic dehydrogenase, alkaline phosphatase, superoxide dismutase and sodium‐potassium adenosine triphosphatase enzyme activities in gills (p < 0.05). The fatty acid composition of the shrimp tissue was associated with the fatty acid composition of the diet. Dietary n‐3HUFA supplementation significantly improved the contents of tissue ∑HUFA and n‐3HUFA, increased the n‐3/n‐6 ratio in the tail muscle and decreased the contents of tissue polyunsaturated fatty acid and saturated fatty acid (p < 0.05). Based on the WGR, the broken‐line equations indicated that the optimum requirements of dietary n‐3HUFA were determined to be 9.0 and 5.1 g/kg for subadult and adult L. vannamei, respectively.  相似文献   

9.
10.
Sodium butyrate is one of the most popular feed additives in animal husbandry. In recent years, sodium butyrate has been increasingly used as supplement in aquaculture. The present study is to investigate the intestinal mRNA and microRNA response to diet with sodium butyrate in grass carp (Ctenopharyngodon idella), an important aquaculture species in China. mRNA and microRNA profiles of intestine of grass carp fed with diet contained 0, 1.0, 2.5, 5.0, 7.5 and 10.0 g/kg sodium butyrate were obtained by RNA‐seq using Illumina Hiseq 2,500 platform. The feeding trial was performed using 18 individuals of 1‐year‐old grass carp (n = 3 for each group) and lasted for 40 days in tanks in laboratory. A total of 349,860,852 sequence reads were generated from six intestinal libraries. Functional analysis of differentially expressed genes showed that genes participated in immune pathways tend to be activated by sodium butyrate supplementation. A total of 700 microRNAs were obtained, including 275 conserved microRNAs and 425 novel microRNAs which are potentially involved in regulating 14,300 genes. Spearman's correlation analysis identified 18 pairs of microRNA‐mRNA associated with immune pathways (p < .01 and R<?0.5). The potential genes targeted by microRNAs include CXCL12, AKT1S1, Cab39 and MHCII which are important genes associated with intestinal immune pathways. To our knowledge, this is the first integrated profiling of both mRNA and microRNA in intestine with supplementation of sodium butyrate in grass carp. The present results suggest that sodium butyrate affects intestinal immune system by regulating microRNA‐mRNA interaction in fish.  相似文献   

11.
Lactic acid bacteria (LAB) have a crucial role in inorganic selenium metabolism as well as their known desirable effects on fish. In this study, the synergistic effects of dietary sodium selenite and Pediococcus acidilactici on growth performance, intestinal bacterial counts, selenium bioavailability, hepatic antioxidant enzyme thioredoxin reductase activity and hepatic glycolytic enzyme activity that is hexokinase, phosphofructokinase and pyruvate kinase, and non‐specific immune response such as serum lysozyme and complements C3, C4 and ACH50 activity in rainbow trout (Oncorhynchus mykiss) were investigated. Thus, a 3 × 3 factorial design experiment was conducted with nine purified diets including three levels of sodium selenite (0, 1 and 2 mg/kg) and three levels of P. acidilactici (0, 7 and 9 log CFU/g). After 8 weeks of feeding, weight gain and specific growth rate were increased by increasing dietary sodium selenite and P. acidilactici levels compared to control (p < .05), whereas feed conversion ratio and condition factor was decreased by increasing dietary sodium selenite and P. acidilactici amounts in comparison with control (p < .05). Survival rate was not significantly affected among the experimental treatments (p > .05). Total cultivable bacterial populations after 4 and 8 weeks of the feeding trial were not significantly different among the dietary treatments, while LAB levels were higher in P. acidilactici‐fed groups than in control and selenium‐fed groups (p < .05). Selenocysteine, methylselenocysteine and selenomethionine levels in the intestine of rainbow trout were increased by increasing the sodium selenite and P. acidilactici levels (p < .05), and selenocysteine was found the most selenium species in the trout intestine. The quantity of total selenium in the whole body, intestine, blood, liver and muscle of rainbow trout were increased by increasing the amounts of sodium selenite and P. acidilactici compared to control (p < .05). Hepatic thioredoxin reductase and hexokinase activity were increased by increasing dietary selenium and P. acidilactici levels in comparison to control (p < .05), whereas phosphofructokinase and pyruvate kinase activity in the liver of rainbow trout were not significantly different between the dietary treatments. Serum lysozyme, complements C3, C4 and ACH50 activity were enhanced by increasing dietary selenium and P. acidilactici levels compared to control (p < .05). The most synergistic effects of dietary supplements on growth and metabolism of rainbow trout were obtained at 2 mg/kg sodium selenite and 7 log CFU/g P. acidilactici. The findings revealed the synergistic effect of dietary selenium and P. acidilactici on growth and metabolism in rainbow trout (O. mykiss).  相似文献   

12.
Dietary copper requirement of Heteropneustes fossilis (6.74 ± 0.03 g) was determined by feeding purified diets containing same protein (400 g/kg) and gross energy (17.89 kJ/g) but different levels of copper for 12 weeks. Graded amount of CuSO4.5H2O (0, 1.96, 3.93, 5.89, 7.86, 9.82, 11.79 mg/kg) was supplemented to basal diet to attain desired dietary copper levels (0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 mg/kg). Analysed dietary copper concentrations were 4.28, 4.63, 5.28, 5.70, 6.19 and 6.69 mg/kg. Absolute weight gain, feed conversion ratio and protein gain improved with the increasing levels of dietary copper up to 5.28 mg/kg. Further inclusion of copper at a level of 5.70 mg/kg did not improve the above parameters. Significantly higher (p < .05) plasma ceruloplasmin, liver copper‐zinc superoxide dismutase, catalase activities and lower thiobarbituric acid reactive substances were evident in fish receiving diets with 5.28 and 5.70 mg/kg copper compared to other groups. Whole body and liver copper concentrations increased significantly (p < .05) with increasing dietary copper levels. Quadratic regression analysis of absolute weight gain, feed conversion ratio, protein gain and broken‐line regression analysis of plasma ceruloplasmin activity and liver TBARS value against the variable dietary copper levels depicted the dietary copper requirements for fingerling H. fossilis in the range of 5.24–5.68 mg/kg.  相似文献   

13.
To investigate dietary calcium requirement of red swamp crayfish (Procambarus clarkia), six semi‐purified diets were formulated to contain different concentrations of calcium (2.7(control group), 6.1, 11.9, 17.6, 23.5 and 29.1 g/kg calcium). Each diet was hand‐fed to triplicate of 15 crayfish with average initial body weight (6.22 ± 0.87) g for 8 weeks. The results showed that weight gain rate (WGR) significantly increased and feed conversion ratio (FCR) significantly decreased from 11.9 to 23.5 g/kg groups (p < .05). Protease activities in intestine and hepatopancreas and parathyroid hormone concentrations in serum significantly decreased with increasing dietary calcium levels (p < .05), while calcium and phosphorus contents in exoskeleton, calcium content in muscle and calcitonin concentrations in serum significantly increased (p < .05). The activities of lipase and amylase in intestine and hepatopancreas, serum alkaline phosphatase and total vitamin D concentrations in serum had significant increase as dietary calcium content increased up to 11.9–17.6 g/kg (p < .05). The inorganic phosphorus content in 29.1 g/kg group was significantly lower than those in other groups (p < .05). Broken‐line model analysis based on WGR and quadratic curve model analysis based on FCR showed that optimal dietary calcium requirement of red swamp crayfish ranged from 12.7 to 17.1 g/kg.  相似文献   

14.
A 60‐day feeding trial was conducted to illustrate the effect of dietary protein levels on the growth and physio‐metabolic responses of juvenile Litopenaeus vannamei reared in inland saline water (ISW). Six isoenergetic (15 MJ/kg) and isolipidic (60 g/kg) diets with graded level of crude protein viz., 240 (T240), 260 (T260), 280 (T280), 300 (T300), 320 (T320) and 340 (T340) g/kg diet were formulated. Significantly higher (p < .05) weight gain (%), specific growth rate, with lower food conversion ratio were found in T320 and T340 groups. The protein utilizing efficiency and whole‐body protein content were significantly higher (p < .05) in the T320 group. Trypsin activity increased with the increasing dietary CP level but amylase activity decreased with the increasing dietary CP level. Transaminase enzymes, haemolymph protein and haemocyanin were elevated in T320 and T340 groups. The lactate dehydrogenase and malate dehydrogenase activities were significantly higher (p < .05) in the T240 group. Shrimp of T240 group had the lowest (p < .05) glycogen and total haemocyte count with highest (p < .05) haemolymph glucose and antioxidant enzymes activities than the other groups. Based on the results, feeding 320 g CP/kg is found to be optimum for supporting maximum growth and health status of L. vannamei reared in ISW at 8 g/L salinity. The finding of the present study will help in developing a low‐cost feed for L. vannamei reared in ISW.  相似文献   

15.
Efficacy of Thymus vulgaris essential oils was assessed on growth, immune response and disease resistance of rainbow trout (Oncorhynchus mykiss). Fish weighing 10 g were fed with dietary supplemented of the oils at 0.5, 1.0 and 2.0 ml/kg feed for 2 months. Fish fed with the oils at 0.5 ml/kg feed demonstrated a better weight gain and specific growth rate, compared to other treatments (p < .05). Fish fed with 1.0 ml the oils showed the highest up‐regulation of complement component 3 (C3) and (cluster of differentiation 4) (CD4) genes expression (p < .05), while lysozyme gene expression level significantly increased in fish fed with 2.0 ml of the oils. In addition, at the end of the experiment, the expression of C3 and CD4 genes were significantly up‐regulated in fish fed with 1.0 and 2.0 ml of the oils, while IL‐1ß and lysozyme genes expression levels were significantly decreased in fish fed 2.0 ml oils, towards the end of the trial (p < .05). There was a fluctuation in the levels of Alanine aminotransferase, Aspartate aminotransferase and Alkaline phosphatase in all treatments during the experiment. When treated fish were challenged with Aeromonas hydrophila, the highest survival rate was observed in 0.5 ml/kg treatment, followed by 2 and 1 mg/kg treatments. Overall, these findings demonstrated that dietary administration of T. vulgaris oils especially at 0.5 mg/kg feed can be considered as a potential component for enhancing of the growth, immune responses and disease resistance of trout against motile Aeromonas septicemia caused by A. hydrophila.  相似文献   

16.
In this experiment, a feeding trial was performed to determine the effects of fructooligosaccharide (FOS) on growth performance, digestive enzyme activity and immune response of Japanese sea bass, Lateolabrax japonicus juveniles (initial weight 38.3 ± 0.5 g), and the fish were examined following feeding with six levels of FOS (0, 0.5, 1, 2, 4 and 6 g/kg) for 28 days. Significant enhancement of weight gain (WG) and specific growth rate (SGR) was found in fish fed 1 g/kg FOS incorporated diets (p < .05), while the feed conversion ratio (FCR) in the 1, 2 g/kg FOS groups reduced significantly compared with the control (p < .05). Besides, the crude lipid in the 4, 6 g/kg FOS groups increased significantly compared with the control (p < .05). On the other hand, the erepsin and lipase activities significantly elevated in intestine of fish fed 2 g/kg FOS (p < .05) and the lysozyme activity in serum of fish fed 2 g/kg FOS were significantly higher than that in the control (p < .05). Moreover, the alkaline phosphatase activities in serum of fish fed 0.5, 1, 2 g/kg FOS were significantly higher than in control (p < .05). Regression analysis showed that the relationships between dietary FOS levels and either SGR, FCR, erepsin or lysozyme activities were best expressed by regression equations, and the optimal inclusion levels are 1.37, 1.80, 3.06, 3.11, 1.93 and 1.80 g/kg for SGR, FCR, erepsin, lipase, lysozyme and total superoxide dismutase activities, respectively. Overall, this study revealed that FOS incorporated diets could beneficial for L. japonicus culture in terms of increasing the growth, digestion and immune activities. Under the present experimental condition, the optimal supplementary level of FOS in the diet of L. japonicus is 1–3 g/kg.  相似文献   

17.
Mulberry leaf extract (MLE), an active substance extracted from mulberry leaves, is known to have a positive effect on several physiological functions. The current study examined the effects of dietary MLE in feed at concentrations 0, 3.0, 6.0, 9.0, 12.0 and 15.0 g/kg on the growth performance and gastrointestinal and hepatic functions of Andrias davidianus for 12 weeks. Results indicated that the final body weight, weight gain rate (WGR), specific growth rate and feed intake (FI) of A. davidianus increased with the increase in the dietary MLE up to 9.0 g/kg and declined thereafter, while the feed conversion ratio (FCR) exhibited an opposite trend. Meanwhile, A. davidianus with a dietary intake of 9.0 g/kg MLE showed higher levels of crude protein in muscles and lower levels of moisture and crude lipid levels in the liver and muscles when compared with the control. In addition, dietary MLE increased the density and length of the villi and decreased the cavity rate in the foregut, enhancing the activities of carbonic anhydrase, H+‐K+‐ATPase, pepsin, intestinal trypsin, lipase and Na+‐K+‐ATPase (p < .05) in the stomach. Furthermore, dietary MLE increased the intestinal and hepatic superoxide dismutase activities and total antioxidative capacities but decreased their malondialdehyde contents in A. davidianus. Dietary MLE also significantly increased the immune parameters, and the plasma total protein, albumin and immunoglobulin M contents but significantly decreased the aspartate aminotr‐ansferase, alanine aminotransferase and diamine oxidase activities, and the total bilirubin, direct bilirubin, cholesterol, triglyceride and endotoxin contents (p < .05). In conclusion, a quadratic regression analysis of WGR and FCR indicated that the optimum level of MLE for A. davidianus was between 8.21 and 8.30 g/kg of the diet.  相似文献   

18.
This study evaluated effects of fishmeal replacement by cottonseed meal protein hydrolysate (CPH) on growth, antioxidant and immunity of Megalobrama amblycephala and its resistance to Aeromonas hydrophila. Fish (average weight: 38.66 ± 0.08 g) were divided into five groups and fed with five isonitrogenous (320 g/kg crude protein), isolipidic (70 g/kg crude fat) and isocaloric (17.8 MJ/kg gross energy) diets replacing fishmeal with 0%, 1%, 3%, 5% and 7% CPH, respectively. The control diet contained 60 g/kg fishmeal. Final weight and weight gain of fish fed 5% and 7% CPH were significantly lower than that of fish fed control diet (p < 0.05). 3% CPH significantly increased total protein, globulin, acid phosphatase, C3 and C4 contents of plasma and total‐superoxide dismutase and catalase activities of liver (p < 0.05), as well as upregulated the antimicrobial peptides 1 and 2 (Leap‐1 and Leap‐2) expression levels in liver and spleen (p < 0.05). After challenge, the lowest mortality was observed in fish fed 3% CPH, and it was significantly lower than that in fish fed the 7% CPH (p < 0.05). In conclusion, dietary fishmeal replacement by 3% CPH could increase antioxidative capacity, as well as enhance immunity of fish.  相似文献   

19.
A feeding trial was conducted to explore the effect of dietary Houttuynia cordata leaf extract (HCLE) and leaf meal (HCLM) on immunological responses and expression of interferon‐gamma (IFN‐γ) and tumour necrosis factor‐alpha (TNF‐α) gene in Labeo rohita fingerlings. Six isonitrogenous (350 g/kg CP) and isocaloric (17 MJ/kg DE) purified experimental diets were formulated with Houttuynia cordata leaf extract and leaf meal comprising control, C (0 g/kg HCLE and HCLM), E2.5 (2.5 g/kg HCLE), E5 (5 g/kg HCLE), E10 (10 g/kg HCLE), M10 (10 g/kg HCLM) and M20 (20 g/kg HCLM). Labeo rohita fingerlings (3.37 ± 0.23 g) were distributed in six experimental groups in triplicates following the complete random distribution. Fish were fed twice daily with respective experimental diets for a period of 60 days. A significantly (p < .05) lower lactate dehydrogenase, malate dehydrogenase, superoxide dismutase and catalase activities were registered in supplemented groups compared with control group, while respiratory burst and lysozyme activities were significantly (p < .05) higher in E10 group compared with other experimental groups. Haemoglobin, total leucocyte count, total erythrocyte count and haematocrit values were significantly (p < .05) higher in E10 group. The expression of IFN‐γ and TNF‐α in both the kidney and liver was significantly up‐regulated in leaf extract and meal supplemented groups with the highest expression in the fish of E10 group. Overall, these results suggest that the dietary supplementation of ethanolic extract of the Houttuynia cordata leaf at 10 g/kg level can enhance the immune response of L. rohita fingerlings.  相似文献   

20.
The effects of N‐carbamylglutamate (NCG) on growth, intestinal enzyme activities, immunological and antioxidant parameters were evaluated by a 56‐d feeding trial in Pelteobagrus fulvidraco fed diets containing NCG with 0, 250, 500, 1,000 or 2,000 mg/kg, respectively. The results showed that 250 mg/kg of NCG resulted in significantly higher weight gain, intestine fold height, intestine lipase, serum lysozyme, glutathione peroxidase and total antioxidant capacity than control (p < 0.05). However, higher intestine trypsin, arginase, arginine decarboxylase, ornithine decarboxylase, diamine oxidase activities and serum nitric oxide content were observed in 500 mg/kg NCG group compared to control or 2,000 mg/kg (p < 0.05). The survival rate, intestine muscular layer thickness, serum lysozyme and superoxide dismutase activities in 2,000 mg/kg NCG group were significantly lower than those in control and 250 mg/kg group, accompanied by the higher feed conversion ratio in the same group (p < 0.05). Together, dietary NCG level at 250 or 500 mg/kg improved growth, intestinal enzyme activities, immunological and antioxidant abilities, while high NCG level of 2,000 mg/kg had a negative effect. Quadratic regression analysis on weigh growth, diamine oxidase and lysozyme activities indicated that the recommended optimum dietary NCG level was 213.48–314.50 mg/kg of the dry diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号