首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
当年肥料深施对生土棉花根-冠-土系统建成的影响   总被引:1,自引:1,他引:0  
为探求当年生土最佳施肥方式,试验连续2年采用根管土柱法,研究不同肥料(N、P、N+P+K、有机肥、不施肥对照)、不同施肥深度(0—20cm,40—60cm,80—100cm土层)对生土棉花(Gossypium hirsutum Linnaeus)根(根重)—冠(地上部生产力)—土(根际土壤脲酶、碱性磷酸酶活性,根际土壤速效氮、速效磷和有机质)系统垂直构成的影响。结果表明:(1)有机肥明显提高生土棉花地上部生产力,但对根重发育没有明显优势;单施P肥明显改善生土棉花根重垂直分布,但明显抑制地上部生产力形成;NPK配施有利于协同生土棉花根—冠建成;(2)有机肥或含P肥,有利于提高生土棉花根际土壤脲酶和碱性磷酸酶活性,提高生土棉花根际土壤速效氮、速效磷及有机质含量;(3)相关分析表明,生土棉花根土系统建成中,在酶促反应下,根系及土壤营养之间彼此互为促进,从而达到生土熟化;(4)因子分析表明,生土棉花根—冠—土系统建成的首要因素是根-冠系统,其次是根-土养分系统,根—土酶系统通过活化土壤养分而促进根—冠—土系统的良好构建;(5)聚类结果得出,当年生土棉花根—冠—土系统协调发展的最佳施肥方式是40—60cm土层单施有机肥或配施NPK肥。由此可知,当年生产见效并改良生土的最佳施肥方式是有机肥或NPK肥深施40—60cm。  相似文献   

2.
连续3年试验研究了黄土母质生土当年施肥对谷类作物生产力与根际土壤营养及生物活性的影响。结果表明:黄土母质生土当年施肥促进了作物根系生长、生产力增加,强大的根土系统又促进了微生物的繁衍、酶活性及土壤营养的提高。黄土母质生土的熟化利用过程需用地养地相结合,重视生物改土。本研究表明,高粱、玉米均可作为生土改良沃化的先锋作物,高粱根系强壮,入土深,生物量大;而玉米虽根重、最大根长、一级节根数低于高粱,但根际土壤微生物数量多,酶活性高。而黍子根系柔弱,根际土壤生物活性较低,与高粱、玉米相比,不宜作为生土改良的先锋谷类作物。黄土母质生土对外源的辅助能(当年施肥)反应十分敏感,施肥的增产效应与土壤培肥都十分显著。黄土母质生土熟化沃化过程既是一个生土培肥改良过程,也是一个物质能量(营养)投入转化过程,并经植物物质生产过程、土壤微生物分解矿化过程及土壤生物化学酶系统促进过程三者互动,共同构成根土苗微生物物质能量转化的生态系统。  相似文献   

3.
蚯蚓粪施用方式及用量对土壤入渗的影响   总被引:2,自引:0,他引:2  
李彦霈  邵明安  王娇 《土壤学报》2019,56(2):331-339
通过室内土柱模拟试验研究蚯蚓粪施用方式及施用量对土壤水分入渗过程的影响,试验设置了3种施用量(50 g·kg~(-1),75 g·kg~(-1),100 g·kg~(-1))和5种施用方式(0~10 cm混施、10~20 cm混施、5~8 cm层施、10~13 cm层施、15~18 cm层施),以裸土为对照,分别测定0~180 min的土壤累积入渗量、湿润锋深度以及入渗30 min后层施条件下不同土层的土壤含水率。结果表明:不同用量蚯蚓粪混施入0~10 cm土层后均可加快湿润锋迁移速率,但在10~20 cm混施方式下,75 g·kg~(-1)和100g·kg~(-1)用量会抑制湿润锋的下移;当蚯蚓粪以层施方式加入土壤时,75 g·kg~(-1)和100 g·kg~(-1)用量处理的湿润锋迁移速率明显减小,且湿润锋深度随施用量的增加而减小;10~20 cm混施蚯蚓粪处理的累积入渗量小于0~10 cm混施处理,而75 g·kg~(-1)和100 g·kg~(-1)蚯蚓粪施用于5~8 cm和10~13 cm深度时也可明显减小累积入渗量,但100 g·kg~(-1)蚯蚓粪层施时则对入渗过程无显著影响;用Kostiakov模型拟合土壤入渗过程得出,施加75 g·kg~(-1)和100 g·kg~(-1)蚯蚓粪均能够增加初始入渗率,10~13 cm和15~18 cm层施蚯蚓粪则对入渗率的减小具有延缓作用;层施50 g·kg~(-1)蚯蚓粪能够提高下层土壤含水量,但层施75 g·kg~(-1)和100 g·kg~(-1)蚯蚓粪则会使下层土壤含水量降低。  相似文献   

4.
对福建三明格氏栲自然保护区40多年生杉木成熟林的采伐残余物进行保留(Residue retained,RR)、清除(Residue removed,R)、火烧(Residue burnt,RB)处理,种植杉木三年后不同土层(0~10 cm和10~20 cm)土壤有机碳组分及相关酶活性进行研究。结果表明,(1)RR处理显著提高土壤有机碳及各组分的含量,在0~10cm土层RR处理土壤有机碳含量(24.74g·kg~(–1))显著高于R(13.43g·kg~(–1))和RB处理(20.14 g·kg~(–1));R处理土壤有机碳的活性指数(土壤有机碳活性组分占土壤总有机碳的比例)(43.5%)显著高于RR(32.6%)和RB(36.1%)处理(P0.05),RR和RB处理土壤有机碳的难降解指数(67.4%和64%)分别为R处理(56.52%)的1.2倍和1.1倍,但RR和RB处理间土壤有机碳难降解指数差异不显著(P0.05)。(2)在10~20 cm土层,RR和RB处理土壤有机碳含量(20.54 g·kg~(–1)和16.84 g·kg~(–1))差异不显著(P0.05),但明显高于R处理(10.8 g·kg~(–1))。RR处理的土壤有机碳活性指数最低,难降解指数最高。同一处理不同土层土壤有机碳的活性指数大小均表现为10~20 cm高于0~10 cm,而10~20 cm土壤有机碳的难降解指数却低于0~10 cm。(3)RR处理土壤中β-葡糖苷酶(βG)、纤维素水解酶(CBH)、过氧化物酶(PER)活性高于RB和R处理。RR处理0~10 cm土层土壤的β-葡糖苷酶和纤维素水解酶活性显著高于10~20 cm土层(P0.05)。RB处理0~10 cm土层仅有纤维素水解酶活性明显高于10~20 cm土层,R处理两土层间3种酶活性差异均不显著(P0.05)。(4)相关性分析表明,β-葡糖苷酶、纤维素水解酶活性分别与土壤活性组分Ⅰ(LP Ⅰ)、活性组分Ⅱ(LP Ⅱ)呈显著正相关,而过氧化物酶活性与难降解组分(RP)显著相关。可见RR处理对提高土壤有机碳的含量和稳定性具有积极影响,同时有利于提高土壤养分有效性和土壤质量。  相似文献   

5.
黄土高原肥水坑施技术下苹果树根系及土壤水分布   总被引:4,自引:2,他引:2  
为了解黄土丘陵区雨养条件下山地老果园布设肥水坑(water-wertilizer pit,WFP)技术对红富士老果树(Malus pumila Mill)根系及土壤水分空间分布特征的影响,以无肥水坑处理为对照(CK),利用管式TDR系统监测0~300 cm土层土壤含水率,利用根钻法获得21a生旱地果园0~300 cm土层的根系干质量密度。结果表明:WFP能够显著增加果园含水率低值区间(≥40~80 cm土层)土壤含水率,WFP60(60 cm坑深)处理土壤平均含水率增量(145.4%)最显著。WFP40(40 cm坑深)根际土壤湿润区主要集中在≥40~100cm土层,WFP60在≥20~140 cm土层,WFP80(80 cm坑深)主要集中在深层土壤≥140 cm土层。在0~200cm试验土层,WFP60处理土壤多次平均含水率值都最高,为11.02%,依次为WFP40(10.67%)和WFP80(9.80%)。总根系质量密度WFP60处理最大(594.76 g/m3),WFP40(579.08 g/m3)和WFP80(491.82 g/m3)次之,CK最小(372.12 g/m3)。根系在0~100、≥100~200和≥200~300 cm土层中的分配比例为:CK(69.88%、13.74%和16.38)、WFP40(66.04%、14.26%和19.70%)、WFP60(70.35%、24.08%和5.58%)和WFP80(46.54%、15.04%和38.42%),其根系分布与水分分布正相关。该研究表明WFP能够显著改变土壤水分在不同土层深度的分布,坑深越大向下湿润的土体范围也越深;从而显著促进果树根系的生长和根系在不同湿润土层的分配比例关系。总体而言,WFP60处理效果显著好于WFP40和WFP80处理。研究结果将对黄土高原旱地果园集雨和灌溉制度的制定和肥水坑技术的推广提供参考。  相似文献   

6.
[目的]探讨施钾方式(一次性施入和钾肥后移)对高产春玉米根系特性的影响,为高产春玉米钾素养分调控提供理论依据。[方法]以金山27玉米为供试品种,2个施钾水平(K2O 150和300kg/hm2)及施钾后移处理下,测定不同生育时期各土层根系干物质重、根系活力及其酶活性,成熟期测定根条数、根幅。[结果]300kg/hm2施钾水平与150kg/hm2施钾水平相比,各土层根系干重增加,尤以吐丝前0—20cm土层为根干重增加幅度最大,20—60cm土层根干重占总干重比例减小,尤以乳熟期为甚;各土层根条数、最大根幅增加,最大根幅下移;各生育时期各土层根系活力、超氧化物歧化酶(SOD)活性和过氧化物酶(POD)活性随施钾量增加而增加,丙二醛(MDA)含量下降。相同施钾水平下,施钾后移各生育时期0—60cm各土层根系干重减小;0—20cm土层根干重占总干重比例增加;最大根幅、根条数及最大根幅深度均减少,且随土层深度增加差异增大;各土层根系活力、SOD酶活性和POD酶活性降低,MAD含量增加。[结论]300kg/hm2施钾量较150kg/hm2施钾量促进玉米根系生长,且延缓根系衰老,尤其可促进深层根系的生长;同一施钾水平下,施钾后移则促进作用不明显,甚至降低了根系的干重。  相似文献   

7.
为了探究NaCl+Na_2SO_4胁迫下甜菜根际环境的变化,选用KWS0143和Beta464 2个品种为材料,在盆栽条件下,将Na Cl和Na_2SO_4以摩尔比2∶1混合,按Na占土壤质量百分比为0、0.2%、0.3%和0.4%(S0、S2、S3和S4)设置4个处理,研究不同程度盐胁迫对甜菜根际土壤微生物数量和土壤酶活性的影响。结果表明,胁迫处理下根际土壤真菌、细菌和放线菌数量差异显著,细菌(18.19×10~5~176.23×10~5CFU·g~(-1))放线菌(7.08×10~5~35.18×10~5CFU·g~(-1))真菌(0.18×10~5~0.98×10~5CFU·g~(-1))。同一取样时期,各处理之间比较,土壤脲酶、磷酸酶、过氧化氢酶活性和微生物总量均是S3最高;2个品种的根际土壤微生物数量和酶活性在取样后期差异均显著,KWS0143高于Beta464。相关分析表明,脲酶活性与细菌数量和微生物总量,过氧化氢酶活性与放线菌数量均呈显著正相关。由此可见,一定量的盐胁迫有利于提高甜菜根际土壤微生物数量及酶活性。本研究为调控盐渍土甜菜生长提供了理论依据。  相似文献   

8.
玉米根系在土壤剖面中的分布研究   总被引:28,自引:2,他引:26  
玉米根系在土壤剖面中的分布是准确量化植被与气候相互作用不可缺少的参数,也是玉米生产科学管理和节水农业发展的重要科学依据.在中国气象科学研究院固城生态环境与农业气象实验站内的大型根系观测系统中,采用地下室玻璃窗观测法和方形整段标本法,观测了"屯玉46号"玉米的根深、根宽、根长和根重,分析了玉米根长、根长密度、根重密度和根系粗度等在土壤剖面中的分布状况.结果表明,玉米根长、根干重均随土壤深度的增加基本呈递减类型.吐丝期0~40 cm土层根长占整层根长51.5%,0~80 cm土层占76.2%,0~120 cm土层占90.5%.乳熟后期其分布趋势与吐丝期相似.玉米根系粗度随着土壤深度增加,在上层呈减少分布型,在下层呈增加分布型.乳熟后期,玉米最大根深可达230 cm,根长总量达8.288 km·m-2,显示出该玉米品种有较发达的根系.通过玻璃窗观测的根深大于远离玻璃窗处的根深.  相似文献   

9.
根际过程和高底物浓度促进黑土有机磷矿化   总被引:1,自引:1,他引:0  
土壤有机磷是植物吸收磷素的重要来源之一。大量研究表明,植物根际过程能够促进土壤有机磷矿化,提高土壤有机磷的生物有效性。以高有机质含量的黑土为研究对象,通过温室根垫培养和大田原位测定相结合的方法,旨在揭示玉米和蚕豆根际过程和土壤有机磷浓度对有机磷矿化的影响。结果表明:温室条件下,不施肥(CK)处理的蚕豆根际pH未变化,玉米根际pH上升了0.09个单位;施氮磷钾肥和有机肥(NPKM)处理的蚕豆根际酸性磷酸酶活性较玉米高93.4%;CK处理的玉米、蚕豆根际土与空白土(相同装置下不种作物的土壤)有机磷含量无差异,NPKM处理有机磷在玉米和蚕豆根际分别耗竭了138和86 mg·kg~(-1)。根际有机磷浓度是驱动有机磷矿化的主要因素。田间玉米的根际pH与非根际相比下降了0.3~0.51个单位,酸性磷酸酶活性提高了10倍以上,施肥处理的根际苹果酸分泌量较不施肥处理高357%;根际过程与有机磷浓度可能共同调控了根际有机磷的矿化过程。因此,构建土壤高有机磷库,选择高效利用有机磷的作物品种,是维持黑土供磷能力、实现减磷增效的措施之一。  相似文献   

10.
玉米秸秆腐解液对苗期根际土壤酶活性及根系活力的影响   总被引:2,自引:0,他引:2  
玉米连作现象在黑龙江省农田生态系统中较为普遍,秸秆焚烧既浪费资源又污染环境,研究玉米秸秆还田后的化感效应尤显重要,但秸秆还田后的效应尚不清楚。本研究以玉米(郑单958)为受体,采用盆栽试验,分析不同腐解时间(0.25、60、120、180d)、不同腐解浓度(0、0.125、0.25、0.5 g·m L-1DW)玉米秸秆腐解液对苗期根际土壤酶活性及根系活力的影响,试图从土壤酶学和根系活力变化的角度初步阐明连作状态下秸秆还田对苗期玉米生长的影响,以期为大田生产中应用秸秆还田技术提供相关科学依据。结果表明:玉米幼苗四叶、五叶、六叶期,土壤蔗糖酶、脲酶活性均在60d腐解天数,0.5 g·m L-1DW浓度处理下达到最高。土壤酸性磷酸酶活性均在120d腐解腐解天数,0.5 g·m L-1DW处理下达到最高。土壤过氧化物酶活性在幼苗四叶、五叶期,腐解60d,0.5 g·m L-1DW浓度处理下达到最高,六叶期酶活与对照相比差异均不显著。玉米幼苗根际土壤蔗糖酶、脲酶、酸性磷酸酶、过氧化物酶的活性随腐解液浓度的增加而增加;随着玉米秸秆腐解天数的增加,呈现先升高后降低的趋势;随叶龄增加,腐解液对根际土壤酶活性的影响逐渐减弱。玉米幼苗根系活力随着秸秆腐解液浓度的增大先升高后降低;低(0.125 g·m L-1DW)、中(0.25 g·m L-1DW)浓度下对根系活力的促进作用也随叶龄增加逐渐减弱。  相似文献   

11.
为阐明河北38°N生态样带土壤有机碳的空间分布特征,2011年9—10月,根据河北38°N带低山丘陵地区、山前平原地区和滨海低平原地区不同土地利用方式选取代表性样点,分层(0~10 cm、10~20 cm、20~40 cm、40~60 cm和60~100 cm)采集土壤样品,测定土壤有机碳含量。结果表明,河北38°N生态样带,低山丘陵地区土壤有机碳密度显著高于山前平原地区和滨海低平原地区,0~40 cm土层土壤有机碳密度分别为9.03 kg?m?2、4.26 kg?m?2和3.51 kg?m?2。低山丘陵地区与山前平原地区和滨海低平原地区土壤有机碳差异的部分原因是低山丘陵区灌丛土壤有机碳含量较高,明显提升了该地区的土壤有机碳水平。另外,低山丘陵地区林地和农田0~40 cm土层土壤有机碳含量也高于山前平原地区和滨海低平原地区;林地0~40 cm土层土壤有机碳含量在低山丘陵地区、山前平原地区和滨海低平原地区分别为19.45 g?kg?1、7.89 g?kg?1和7.55 g?kg?1,农田土壤有机碳含量在3个地区分别为7.70 g?kg?1、7.09 g?kg?1和6.00 g?kg?1。在整个生态样带上,土壤有机碳含量基本随土壤深度增加而不断减少,但各个地区不同土地利用方式减少的程度不同。低山丘陵地区0~40 cm土层内土壤有机碳含量变幅最大,其次为山前平原地区,滨海低平原地区变幅最小。低山丘陵地区灌丛土壤有机碳含量变化幅度最大,其次为林地,农田最小;山前平原地区土壤有机碳含量变化幅度农田略大于林地;滨海低平原地区土壤有机碳含量变化幅度林地最大,其次是荒地,农田最小。鉴于上述情况,从固碳和经济的双重角度考虑,提出以下建议:低山丘陵区大力发展林业产品和旅游业;山前平原区集中粮食生产,保证国家粮食安全;滨海地平原区加大土壤盐渍化改良,推广棉花种植。  相似文献   

12.
以黄土母质性生土为供试土壤,采用盆栽试验,探讨了氮、磷、钾及有机肥对谷子生长发育的影响。结果表明:(1)磷是生土地土壤肥力形成与作物生长发育以及根际土壤酶系统和微生物系统形成的首要原始起动营养元素;(2)含磷的处理组合,谷子幼苗阶段地上下部生长均明显较不施磷的长势强,而单施氮和钾甚至不及不施肥的对照。氮、磷、钾对谷子根苗生长的影响顺序为磷氮钾;(3)进入谷子中后期生长阶段,氮素的作用,特别是氮、磷、钾对谷子株高及地上部干重的综合效果表现明显;(4)产量表现为含磷的处理组合,产量及产量结构均明显提高;(5)单施优质高量的有机肥对生土地根苗生长与产量形成具有当年立竿见影的效果;(6)发达的根系促进了根际微生物群落的迅速繁衍,提高了根际土壤酶的活性,有益于促进根-土系统向着熟化方向发展,使生土地上的谷子当年获得正常产量。  相似文献   

13.
以7年氮肥定位试验地玉米根茬为研究对象,通过把玉米根茬按2%比例与15 cm和45 cm土层深度的土壤混合后田间埋袋的方法,研究长期不同施氮量处理[分别为0 kg(N)?hm?2、120 kg(N)?hm?2和240 kg(N)?hm?2]的玉米根茬(分别用R0、R120、R240表示),在陕西省长武黑垆土中埋藏分解1 a后对土壤碳、氮组分的影响及根茬有机碳的分解特性。与未添加玉米根茬的对照土壤相比,玉米根茬加入能够显著增加各层土壤的微生物量碳、可溶性有机碳和矿质态氮含量,3种施氮量处理间差异不显著。随着分解时间延长,土壤可溶性有机物中结构相对复杂的芳香类化合物比例逐渐增加。分解1 a后,R0、R120和R240根茬的有机碳残留率在15 cm土层中分别为44.4%、35.3%和34.9%,在45 cm土层中分别为53.3%、44.3%和42.5%。R0根茬的碳残留率显著高于R120和R240;玉米根茬在15 cm土层的碳分解率和分解速率常数显著高于45 cm土层。采用一级动力学方程拟合玉米根茬碳残留率变化结果显示,R0、R120和R240根茬有机碳分解95%所需要的时间在45 cm土层比15cm土层分别长3.2 a、2.3 a和1.9 a。氮肥施用量影响玉米根茬在土壤中的分解特性,在评价农田氮肥施用与土壤固碳时,应考虑不同氮肥用量下残茬养分组成及其在土壤中分解的差异。  相似文献   

14.
Improving phosphorus (P) accessibility in subsoils could be a key factor for sustainable crop management. This study aims to explain the quantity of different P fractions in subsoil and its biopore systems, and to test the hypothesis that crops with either fibrous (fescue) or tap‐root systems (lucerne and chicory) leave behind a characteristic P pattern in bulk subsoil, biopore linings and the rhizosphere. The crops were cultivated for up to 3 years in a randomized field experiment on a Haplic Luvisol developed from loess. Aqua regia‐extractable P (referred to as total P) and calcium acetate lactate‐extractable P (PCAL) were assessed at 0–30 (Ap horizon), 30–45 (E/B horizon), 45–75 and 75–105 cm subsoil depths. In addition, sequential P fractionation was performed on different soil compartments between 45 and 75 cm depths. The results showed that total P stocks below the Ap horizon (30–105 cm) amounted to 5.6 t ha?1, which was twice as large as in the Ap, although the Ap contained larger portions of PCAL. Both PCAL and sequential P extractions showed that biopore linings and the rhizosphere at the 45–75 cm depth were enriched, rather than depleted, in P. The content of inorganic P (81–90% of total P) increased in the following order: bulk soil = biopores <2 mm ≤ rhizosphere ≤ biopores >2 mm. Biopores >2 mm and rhizosphere soil were clearly enriched in resin‐ and NaHCO3‐extractable Pi and Po fractions. However, we failed to attribute these P distribution patterns to different crops, suggesting that major properties of biopore P originated from relict biopores, rather than being influenced by recent root systems. The stocks of the sum of these P fractions in the bulk subsoil (182 kg ha?1 at 45–75 cm depth) far exceeded those in the biopores (3.7 kg ha?1 in biopores >2 mm and 0.2 kg ha?1 in biopores <2 mm). Hence, these biopores may form attractive locations for root growth into the subsoil but are unlikely to sustain overall plant nutrition.  相似文献   

15.
Field determination of water withdrawal from soil by plant roots as a function of depth and time . The water flow through roots as a function of depth and time can be determined in homogeneously rooted, level soils with closed plant canopies, provided the total vertical water flow and the capillary water flow are known for the soil profile. Theory, measuring methods and some results on water withdrawal of wheat (fig. 2–4) and sugar-beet (fig. 5) roots on a loess grey-brown podsolic soil profile underlain by gravelly sand (fig. 1) are described. The time averaged rates (2–7 day periods) for water extraction by roots are up till about 12 × 10?3 \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{{{\rm cm}^3 {\rm water}}}{{{\rm cm}^3 {\rm soil} \cdot {\rm day}}} $\end{document} During the growth period variations of the depth of the effective root zone and of the extraction rate in distinct layers were found (fig. 6 + 7). A capillary rise from the subsoil into the effective root zone exists for some time (fig. 3); seepage water within the lower root zone causes a strong increase of extraction rates in these depths (fig. 4). The relative water extraction rate at the depths of 15 and 25 cm decreases with increasing soil water suction in the range between 150 and 104 cm (fig. 8).  相似文献   

16.
Penetration resistance, bulk density, soil water content and root growth of oats were intensively studied in a tilled and an untilled grey brown podzolic loess soil. Bulk density and penetration resistance were higher in the top layer of the untilled soil compared with the tilled soil. In the latter, however, a traffic pan existed in the 25–30 cm soil layer which had higher bulk density and penetration resistance than any layer of the untilled soil. Above the traffic pan, rooting density (cm root length per cm3 of soil) was higher but below the pan it was lower than at the same depth in the untilled soil. Root growth was linearly related to penetration resistance. The limiting penetration resistance for root growth was 3.6 MPa in the tilled Ap-horizon but 4.6-5.1 MPa in the untilled Ap-horizon and in the subsoil of both tillage treatments. This difference in the soil strength-root growth relationship is explained by the build up of a continuous pore system in untilled soil, created by earthworms and the roots from preceding crops. These biopores, which occupy < 1% of the soil volume, can be utilized by roots of subsequent crops as passages of comparatively low soil strength. The channeling of bulk soil may counteract the possible root restricting effect of an increased soil strength which is frequently observed in the zero tillage system.  相似文献   

17.
Summary This work investigated the effectsof amendments of fertilizer N and lime on subsoil acidity and maize rooting depth in an acid soil of the central Amazon basin. A split-plot designed field experiment was conducted on a clayey Oxisol (Typic Acrudox) during a 16-month period. Main plots received 0 or 4 Mt ha-1 of lime. Subplots were four crop sequences: (1) Maize-green manure (Canavalia ensiformes); (2) maize-green manure (Mucuna aterrima); (3) maize-bare fallow, with the maize receiving 300 kg ha-1 of urea-N; and (4) bare fallow, with an application of 300 kg ha-1 of urea-N at the same time as sequence 3. Plots were periodically sampled to 1.2 m. The experimental site received 4265 mm of precipitation during 16 months; approximately 60%–90% of this rain percolated through the profile. Substantial amounts of Ca were leached from the 0–30 cm horizon during the experimental period, but only limited amounts accumulated in the subsoil. Base saturation below 45 cm was less than 50% at the end of the experiment regardless of lime treatment. Roots of maize were concentrated in the 0–30 cm layers in limed plots and the 0–20 cm layers in unlimed plots. In all treatments less than 5% of the roots was found below 50 cm. An acidity balance indicated that considerable acidity was leached below the plow layer and out of the profile.  相似文献   

18.
Denitrification in subsoil(to a depth of 12 m) is an important mechanism to reduce nitrate(NO_3~-) leaching into groundwater.However, regulating mechanisms of subsoil denitrification, especially those in the deep subsoil beneath the crop root zone, have not been well documented. In this study, soil columns of 0–12 m depth were collected from intensively farmed fields in the North China Plain. The fields had received long-term nitrogen(N) fertilizer inputs at 0(N0), 200(N200) and 600(N600) kg N ha~(-1) year~(-1). Main soil properties related to denitrification, i.e., soil water content, NO_3~-, dissolved organic carbon(DOC), soil organic carbon(SOC),pH, denitrifying enzyme activity(DEA), and anaerobic denitrification rate(ADR), were determined. Statistical comparisons among the treatments were performed. The results showed that NO_3~- was more heavily accumulated in the entire soil profile of the N600 treatment, compared to the N0 and N200 treatments. The SOC, DOC, and ADR decreased with increasing soil depth in all treatments,whereas considerable DEA was observed throughout the subsoil. The long-term fertilizer rates affected ADR only in the upper 4 m soil layers. The ADRs in the N200 and N600 treatments were significantly correlated with DOC. Multiple regression analysis indicated that DOC rather than DEA was the key factor regulating denitrification beneath the root zone. Additional research is required to determine if carbon addition into subsoil can be a promising approach to enhance NO_3~- denitrification in the subsoil and consequently to mitigate groundwater NO_3~- contamination in the intensive farmlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号