首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured air temperature in an urban green area that includes forest and grassland and in the surrounding urban area for a full year in Nagoya, central Japan, to elucidate seasonal variations of the difference in air temperature between urban and green areas. We determined the range of the “cool-island” effect as well as the relationship between vegetation cover and air temperature throughout the year. The temperature difference between urban and green areas was large in summer and small in winter. The maximum air temperature difference was 1.9 °C in July 2007, and the minimum was ?0.3 °C in March 2004. The difference was larger during the day than during the night in summer, whereas in winter the opposite relationship was true. However, winter diurnal variation was not particularly noticeable, a behaviour thought to be related to reduced shading by deciduous trees in the green area. During the night, the cooling effect of the green area reached 200–300  m into the urban area. During the day, the cooling effect between August and October 2006 exceeded 300 m and varied widely, although there was no correlation beyond 500 m. The correlation between air temperature and forest-cover ratio within a radius of 200 m from each measurement site was significant from 16:00 to 19:00. There was also a correlation during the night; this correlation was weakest in the early morning. The effect of the forest-cover ratio on air temperature was most pronounced in August 2006 and June 2007.  相似文献   

2.
The process of urbanisation alters the thermal balance of an area resulting in an urban heat island effect where cities can be several degrees centigrade warmer than the surrounding rural landscape. This increased heat can make cities uncomfortable places and, during heat waves, can pose serious health risks. This study looked at the role that trees and grass can play in reducing regional and local temperatures in urban areas during the summer within the urban landscape of Manchester, UK. In June and July 2009 and 2010, we monitored the surface temperatures of small plots composed of concrete and grass in the presence or absence of tree shading, and measured globe temperatures above each of the surfaces. The same measures were also recorded at mid-day on larger expanses of asphalt and grass in an urban park. Both surface and shade greatly affected surface temperatures. Grass reduced maximum surface temperatures by up to 24 °C, similar to model predictions, while tree shade reduced them by up to 19 °C. In contrast, surface composition had little effect upon globe temperatures, whereas shading reduced them by up to 5–7 °C. These results show that both grass and trees can effectively cool surfaces and so can provide regional cooling, helping reduce the urban heat island in hot weather. In contrast grass has little effect upon local air or globe temperatures, so should have little effect on human comfort, whereas tree shade can provide effective local cooling.  相似文献   

3.
The implementation of trees in urban environments can mitigate outdoor thermal stress. Growing global urban population and the risk of heatwaves, compounded by development driven urban warmth (the urban heat island), means more people are at risk of heat stress in our cities. Effective planning of urban environments must minimise heat-health risks through a variety of active and passive design measures at an affordable cost. Using the Solar and Longwave Environmental Irradiance Geometry (SOLWEIG) model and working within the bounds of current urban design, this study aimed to quantify changes in mean radiant temperature (Tmrt) from increased tree cover at five different 200 × 200 m urban forms (including compact mid-rise development, residential and open grassy areas) within a suburb of Adelaide, Australia during summer. Following a successful validation of SOLWEIG, street trees were strategically distributed throughout each of the five urban forms and the model run over five warm sunny days (13–17 February 2011). Results showed spatially averaged daytime (7:30–20:00) Tmrt reduced by between 1.7 °C and 5.1 °C at each site, while under peak heating conditions (16 February, 14:00) Tmrt reduced by between 2.0 °C and 7.1 °C. The largest reduction in Tmrt under peak warming conditions was at the residential site, despite having the fewest number of trees added. Directly below clusters of trees, Tmrt could be reduced by between 14.1 °C and 18.7 °C. SOLWEIG also highlighted that more built-up sites showed higher Tmrt under peak warming conditions due to increased radiation loading from 3D urban surfaces, but over the course of the day, open sites were exposed to greater and more uniform Tmrt. This study clearly demonstrates the capacity of street trees to mitigate outdoor thermal stress and provides guidance for urban planners on strategic street tree implementation.  相似文献   

4.
This study investigated the weather effect on thermal performance of a retrofitted extensive green roof on a railway station in humid-subtropical Hong Kong. Absolute and relative (reduction magnitude) ambient and surface temperatures recorded for two years were compared amongst antecedent bare roof, green roof, and control bare roof. The impacts of solar radiation, relative humidity, soil moisture and wind speed were explored. The holistic green-roof effect reduced daily maximum tile surface temperature by 5.2 °C and air temperature at 10 cm height by 0.7 °C, with no significant effect at 160 cm. Green-roof passive cooling was enhanced by high solar radiation and low relative humidity typical of sunny summer days. High soil moisture supplemented by irrigation lowered air and vegetation surface temperature, and dampened diurnal temperature fluctuations. High wind speed increased evapotranspiration cooling of green roof, but concurrently cooled bare roof. Heat flux through green roof was also weather-dependent, with less heat gain and more heat loss on sunny days, but notable decline in both attributes on cloudy days. On rainy days, green roof assumed the energy conservation role with slight increase instead of reduction in cooling load. Daily cooling load was 0.9 kWh m?2 and 0.57 kWh m?2, respectively for sunny and cloudy summer days, with negligible effect on rainy days. The 484 m2 green roof brought potential air-conditioning energy saving of 2.80 × 104 kWh each summer, equivalent to electricity tariff saving of HK$2.56 × 104 and upstream avoidance of CO2 emission of 27.02 t at the power plant. The long-term environmental and energy benefits could justify the cost of green roof installation on public buildings.  相似文献   

5.
Urban trees perform a number of ecosystem services including air pollution removal, carbon sequestration, cooling air temperatures and providing aesthetic beauty to the urban landscape. Trees remove air pollution by intercepting particulate matter on plant surfaces and absorbing gaseous pollutants through the leaf stomata. Computer simulations with local environmental data reveal that trees in 86 Canadian cities removed 16,500 tonnes (t) of air pollution in 2010 (range: 7500–21,100 t), with human health effects valued at 227.2 million Canadian dollars (range: $52.5–402.6 million). Annual pollution removal varied among cities and ranged up to 1740 t in Vancouver, British Columbia. Overall health impacts included the avoidance of 30 incidences of human mortality (range: 7–54) and 22,000 incidences of acute respiratory symptoms (range: 7900–31,100) across these cities.  相似文献   

6.
Of interest to researchers and urban planners is the effect of urban forests on concentrations of ambient air pollution. Although estimates of the attenuation effect of urban vegetation on levels of air pollution have been put forward, there have been few monitored data on small-scale changes within forests, especially in urban forest patches. This study explores the spatial attenuation of particulate matter air pollution less than 10 μ in diameter (PM10) within the confines of an evergreen broadleaved urban forest patch in Christchurch, New Zealand, a city with high levels of PM10 winter air pollution. The monitoring network consisted of eight monitoring sites at various distances from the edge of the canopy and was operated on 13 winter nights when conditions were conducive for high pollution events. A negative gradient of particulate concentration was found, moving from higher mean PM10 concentrations outside the forest (mean=31.5 μg m?3) to lower concentrations deep within the forest (mean=22.4 μg m?3). A mixed-effects model applied to monitor meteorological, spatial and pollution data indicated temperature and an interaction between wind speed and temperature were also significant (P?0.05) predictors of particulate concentration. These results provide evidence of the potential role that urban forest patches may play in mitigating particulate matter air pollution and should be considered in plans for improving urban air quality.  相似文献   

7.
Leaf area of urban vegetation is an important ecological characteristic, influencing urban climate through shading and transpiration cooling and air quality through air pollutant deposition. Accurate estimates of leaf area over large areas are fundamental to model such processes. The aim of this study was to explore if an aerial LiDAR dataset acquired to create a high resolution digital terrain model could be used to map effective leaf area index (Le) and to assess the Le variation in a high latitude urban area, here represented by the city of Gothenburg, Sweden. Le was estimated from LiDAR data using a Beer-Lambert law based approach and compared to ground-based measurements with hemispherical photography and the Plant Canopy Analyser LAI-2200. Even though the LiDAR dataset was not optimized for Le mapping, the comparison with hemispherical photography showed good agreement (r2 = 0.72, RMSE = 0.97) for urban parks and woodlands. Leaf area density of single trees, estimated from LiDAR and LAI-2200, did not show as good agreement (r2 = 0.53, RMSE = 0.49). Le in 10 m resolution covering most of Gothenburg municipality ranged from 0 to 14 (0.3% of the values >7) with an average Le of 3.5 in deciduous forests and 1.2 in urban built-up areas. When Le was averaged over larger scales there was a high correlation with canopy cover (r2 = 0.97 in 1 × 1 km2 scale) implying that at this scale Le is rather homogenous. However, when Le was averaged only over the vegetated parts, differences in Le became clear. Detailed study of Le in seven urban green areas with different amount and type of greenery showed a large variation in Le, ranging from average Le of 0.9 in a residential area to 4.1 in an urban woodland. The use of LiDAR data has the potential to considerably increase information of forest structure in the urban environment.  相似文献   

8.
Urban greenspaces can provide a significant cooling service, which extends beyond the greenspace boundaries. Consequently, greenspaces are recognised for their ability to locally reduce the urban heat island, a phenomenon that has negative implications for the thermal comfort and health of urban citizens. However, the amount of cooling provided by a greenspace and the distance over which that cooling extends depend on factors such as greenspace size and characteristics. Based on data collected in and around eight London greenspaces, with areas ranging from 0.2 to 12.1 ha, this work models the distance and magnitude of cooling provided by each greenspace and defines the relationships between cooling extent and the size of greenspace or the areas of tree canopy and grass. Such data, illustrating the value of expanding the area of urban greenspaces and explaining how cooling relates to greenspace size/coverage characteristics, will be of use to urban planners and climatologists concerned with finding solutions to the urban heat island. Modelling was statistically valid on calm warm nights (with mean air temperatures ≥10 °C and wind speed ≤3 m s−1). On those nights, cooling distance increased linearly with increasing area of greenspace, tree canopy and grass, but the relationship between those factors and the amount of cooling was non-linear. Cooling distance was most strongly related with tree canopy whereas the amount of cooling was most strongly linked to the grass coverage. Our results suggest that a comprehensive cooling service on calm warm nights within cities with similar climate/characteristics to London may come from greenspaces with 3–5 ha, situated 100–150 m apart.  相似文献   

9.
The purpose of this study was to determine the types and structures of small green spaces (SGs) that effectively reduce air temperature in urban blocks. Six highly developed blocks in Seoul, South Korea served as the research sites for this study. Air temperature was measured at the street level with mobile loggers on clear summer days from August to September in 2012. The measurements were repeated three times a day for three days. By analyzing the spatial characteristics, SGs within the six blocks were categorized into the four major types: polygonal, linear, single, and mixed. The result revealed that the polygonal and mixed types of SGs showed simple linear regression at a significant level (p < 0.01). It indicated that the blocks’ urban heat island (UHI) mitigation (ΔTRmn) increased in a linear fashion when the area and volume of these two types of green spaces increased. The area and volume of a polygonal SG with mixed vegetation, over 300 m2 and 2300 m3, respectively, lowered the ΔTRmn by 1 °C; SG with an area and volume of larger than 650 m2 and 5000 m3, respectively, lowered the ΔTRmn by 2 °C. The results of this study will be useful to urban planners and designers for determine the types and structures of urban green spaces to optimize the cooling effect, as well as how such green spaces should be designed and distributed.  相似文献   

10.
Inter-annual canopy growth is one of the key indicators for assessing forest conditions, but the measurements require laborious field surveys. Up-to-date LiDAR remote sensing provides sufficient three-dimensional morphological information of the ground to monitor canopy heights on a broad scale. Thus, we attempted to use multi-temporal airborne LiDAR datasets in the estimation of vertical canopy growth, across various types of broad-leaved trees in a large urban park.The growth of broad-leaved canopies in the EXPO '70 urban forest in Osaka, Japan was assessed with 19 plots at the stand level and 39 selected trees at the individual-tree level. Airborne LiDAR campaigns repeatedly observed the park in the summers of 2004, 2008, and 2010. We acquired canopy height models (CHMs) for each year from the height values of the uppermost laser returns at every 0.5 m grid. The annual canopy growth was calculated by the differences in CHMs and validated with the annual changes in field-measured basal areas and tree heights.LiDAR estimations revealed that the average annual canopy growth from 2004 to 2010 was 0.26 ± 0.11 m m−2 yr−1 at the plot level and 0.26 ± 0.10 m m−2 yr−1 at the individual-tree level. This result showed that growing trends were consistent at different scales through 2004 to 2010 despite uncertainty in estimating short-term growth for small crown areas at the individual-tree level. This LiDAR-estimated canopy growth shows a moderate relation to field-measured increase of basal areas and average heights. The estimation uncertainties seem to result from the complex canopy structure and irregular crown shape of broad-leaved trees. Challenges still remain on how to incorporate the growth of understory trees, growth in the lateral direction, and gap dynamics inside the canopy, particularly in applying multi-temporal LiDAR datasets to the large-scale growth assessment.  相似文献   

11.
One of the fastest growing cities in India, Bangalore is facing challenges of urban microclimate change and increasing levels of air pollution. This paper assesses the impact of street trees in mitigating these issues. At twenty locations in the city, we compare segments of roads with and without trees, assessing the relationship of environmental differences with the presence or absence of street tree cover. Street segments with trees had on average lower temperature, humidity and pollution, with afternoon ambient air temperatures lower by as much as 5.6 °C, road surface temperatures lower by as much as 27.5 °C, and SO2 levels reduced by as much as 65%. Suspended Particulate Matter (SPM) levels were very high on exposed roads, with 50% of the roads showing levels approaching twice the permissible limits, while 80% of the street segments with trees had SPM levels within prescribed limits. In an era of exacerbated urbanization and climate change, tropical cities such as Bangalore will have to face some of the worst impacts including air pollution and microclimatic alterations. The information generated in this study can help appropriately assess the environmental benefits provided by urban trees, providing useful inputs for urban planners.  相似文献   

12.
Urban forests (UF) provide a range of important ecosystem services (ES) for human well-being. Relevant ES delivered by UF include urban temperature regulation, runoff mitigation, noise reduction, recreation, and air purification. In this study the potential of air pollution removal by UF in the city of Florence (Italy) was investigated. Two main air pollutants were considered – particulate matter (PM10) and tropospheric ozone (O3) – with the aim of providing a methodological framework for mapping air pollutant removal by UF and assessing the percent removal of air pollutant.The distribution of UF was mapped by high spatial resolution remote sensing data and classified into seven forest categories. The Leaf Area Index (LAI) was estimated spatially using a regression model between in-field LAI survey and Airborne Laser Scanning data and it was found to be in good linear agreement with estimates from ground-based measurements (R2 = 0.88 and RMSE% = 11%). We applied pollution deposition equations by using pollution concentrations measured at urban monitoring stations and then estimated the pollutant removal potential of the UF: annual O3 and PM10 removal accounted for 77.9 t and 171.3 t, respectively. O3 and PM10 removal rates by evergreen broadleaves (16.1 and 27.3 g/m2), conifers (10.9 and 28.5 g/m2), and mixed evergreen species (15.8 and 31.7 g/m2) were higher than by deciduous broadleaf stands (4.1 and 10 g/m2). However, deciduous forests exhibited the largest total removal due to the high percentage of tree cover within the city. The present study confirms that UF play an important role in air purification in Mediterranean cities as they can remove monthly up to 5% of O3 and 13% of PM10.  相似文献   

13.
Given increased atmospheric loads in cities, quantification of stemflow chemistry is necessary for a holistic understanding of elemental cycling in urban ecosystems. Accordingly, the stemflow volume and associated solute fluxes (K+, Ca2+, Na+, Mg2+) were measured for eleven deciduous trees in a manicured park setting in Kamloops, British Columbia, Canada. Over nine rainfall events from late June to early September 2013, larger trees [diameter at breast height (DBH) > 30 cm] were found to generally produce higher event stemflow volumes but lower funneling ratios than the smaller trees (DBH < 30 cm). The median flux-based enrichment ratio, which compares the solute input of stemflow to that of rainfall on a per unit trunk basal area, also tended to be greater for smaller trees than larger ones. Under all-tree and single-leader tree conditions, significant negative non-linear relationships between tree DBH and mean flux-based enrichment ratios were found for Ca2+, Na+, and Mg2+, but not for K+. These preliminary results indicate that urban trees can considerably enrich rainfall that is partitioned into stemflow, and that ion concentrations and enrichment ratios exhibit notably high interspecific variability. In this study, tree size and presence of single versus multiple leaders explained some of this heterogeneity; however, further study into those physical tree characteristics that affect stemflow volume and stemflow chemistry must be carried out if the impact and challenges of urban greening, nutrient cycling, and stormwater management initiatives are to be more fully understood.  相似文献   

14.
Controlling and monitoring air quality in cities requires understanding anthropogenic sources, but also natural sources must be considered. This is because beneficial Biogenic Volatile Organic Compounds (BVOCs) can exacerbate air pollution by reacting with anthropogenic pollutants. Although these compounds help trees survive, they may have negative effect on human life in polluted cities. In this study we measured terpenoid emissions of urban trees early and late in the growing season, using Solid Phase Micro-extraction (SPME) in a branch enclosure system. Results showed that Robinia pseudoacacia and Platanus orientalis emitted significant amounts of isoprene throughout the season. Isoprene emission early in the season was roughly the same for both species. Late in the season, the standardized emission rate increased to 17.8 and 45 μg g−1 dw h−1 for R. pseudoacacia and P. orientalis, respectively. Furthermore, all trees emitted significant amounts of 2-ethylhexanol late in the season (7.3, 7.9, and 9.2 μg g−1 dw h−1 for Fraxinus rotundifolia, R. pseudoacacia, and P. orientalis, respectively). In conclusion, trees that are typically planted in urban Tehran, emit significant amounts of isoprene. Planting more F. rotundifolia and fewer P. orientalis trees would help improve air quality in Tehran and the cities like Tehran.  相似文献   

15.
Knowledge of allometric equations can enable urban forest managers to meet desired economic, social, and ecological goals. However, there remains limited regional data on young tree growth within the urban landscape. The objective of this study is to address this research gap and examine interactions between age, bole size and crown dimensions of young urban trees in New Haven, CT, USA to identify allometric relationships and generate predictive growth equations useful for the region. This study examines the 10 most common species from a census of 1474 community planted trees (ages 4–16). Regressions were applied to relate diameter at breast height (dbh), age (years since transplanting), tree height, crown diameter and crown volume. Across all ten species each allometric relationship was statistically (p < 0.001) significant at an α-level of 0.05. Consistently, shade trees demonstrated stronger relationships than ornamental trees. Crown diameter and dbh displayed the strongest fit with eight of the ten species having an R2 > 0.70. Crown volume exhibited a good fit for each of the shade tree species (R2 > 0.85), while the coefficients of determination for the ornamentals varied (0.38 < R2 < 0.73). In the model predicting height from dbh, ornamentals displayed the lowest R2 (0.33 < R2 < 0.55) while shade trees represented a much better fit (R2 > 0.66). Allometric relationships can be used to develop spacing guidelines for commonly planted urban trees. These correlations will better equip forest managers to predict the growth of urban trees, thereby improving the management and maintenance of New England's urban forests.  相似文献   

16.
Understanding users’ spatial distribution in forest park is crucial for providing visitors with quality recreation experiences and for park planning and management. Utilizing users’ spatial distribution data, this study aims at investigating associations between trail use level and trail spatial attributes, through examining two large urban forest parks (Gongqing forest park and Paotaiwan forest park) in Shanghai, China. Users’ spatial distribution was measured utilizing GPS trackers with the interval of 10 seconds. This study conceptualizes trail spatial attributes as trail metric attributes and trail configurational attributes. Trail metric attributes include trail mean distance to gates, length, width and level of enclosure, which are calculated based on park map and on-site observation. We computed trail configurational attributes utilizing space syntax theory, which comprise measures of global integration, control, and connectivity. Trail connection with features/facilities, visual connection with water and shading are included as covariate variables. In total, we obtained 134 valid samples in Gongqing forest park and 210 valid samples in Paotaiwan forest park for analysis. Multivariate regression analyses indicate that when involving covariate variables, consistently in both parks, a greater trail usage is significantly related to trail shorter mean distance to park gate, trail width wider than 3 meters, higher global integration and higher control values. Collectively, these four trail spatial attributes explained 31.7 % (p < 0.001) and 27.3 % (p < 0.001) of the variances in trail use level in Gongqing forest park and Paotaiwan forest park. These findings provide direct implications to park designers and managers for providing visitors with different desirable social conditions, and ultimately improve users’ experiences and satisfactions.  相似文献   

17.
It is well known that trees can reduce the urban heat island and adapt our cities to climate change through evapotranspiration. However, the effects of urbanization and anticipated climate change in the soil–root rhizosphere have not been widely investigated. The current study studied the growth and physiology of the urban tree Pyrus calleryana grown in a factorial experiment with or without urbanization and simulated climate change between April 2010 and December 2012 in the Botanical Grounds of the University of Manchester, UK. The study indicated that urbanization and simulated climate change had small but contrasting effects on tree growth and morphology. Urbanization increased tree growth by 20–30%, but did not affect leaf area index (LAI) and showed reduced peak water loss and hence evapotranspirational cooling. Although soil moisture content in the upper 20 cm was higher in the urbanized plots, urbanization showed reduced sap flux density, reduced chlorophyll a:b and delayed recovery of chlorophyll fluorescence (Fv:Fm) throughout the experimental period. In contrast, simulated climate change had no effect on growth but increased LAI by 10%. Despite being more water stressed, trees grown in simulated climate change plots lost more water both according to porometry and sap flow measurements. Simulated climate change increased peak energy and water loss by around 13%, with trees having an average sap flux density of around 170 g cm?2 d?1, 40% higher than trees grown in control plots. Our study suggested that transpirational cooling benefit might be enhanced with a longer growth season and higher soil temperature in places such as Manchester, UK in future, but potentially at the expense of photosynthesis and carbon gain.  相似文献   

18.
Promoting the plant diversity of urban green spaces is crucial to increase ecosystem services in urban areas. While introducing ornamental plants can enhance the biodiversity of green spaces it risks environmental impacts such as increasing emissions of biogenic volatile organic compounds (BVOCs) that are harmful to air quality and human health. The present study, taking Qingdao City as a case study, evaluated the plant diversity and BVOC emissions of urban green spaces and tried to find out a solution to increase biodiversity while reducing BVOC emissions. Results showed that: (1) the species diversity and phylogenetic diversity of trees in urban green spaces were 22% and 16% lower than rural forest of this region; (2) urban areas had higher BVOC emission intensity (2.6 g C m−2 yr−1) than their rural surroundings (2.1 g C m−2 yr−1); (3) introducing the selected 11 tree species will increase 15% and 11% of species diversity and phylogenetic diversity, respectively; and (4) the BVOC emissions from green spaces will more than triple by 2050, but a moderate introduction of the selected low-emitting trees species could reduce 34% of these emissions. The scheme of introducing low-emitting ornamental species leads to a win–win situation and also has implications for the sustainable green space management of other cities.  相似文献   

19.
Urbanisation is increasing tremendously in some parts of the world. Consequently, many rural forests may become depleted, although many opportunities exist for urban forests to increase. However, few studies have quantified the carbon (C) sequestration capacities of urban and rural forests in specific climatic zones. The present study compared carbon sequestration in two temperate deciduous forests located in Nagoya and Toyota, central Japan. The Nagoya University forest represented an urban forest, and a site in Toyota represented a rural forest. The urban forest at Nagoya University had comparatively smaller areas of green space and larger areas of buildings and roads. Land uses for building and road, which are typical of urban areas, result in smaller diurnal temperature ranges but higher air temperature, vapour pressure deficit, and atmospheric carbon dioxide (CO2) concentration. The urban forest in this study exhibited higher gross ecosystem exchange (GEE), especially in the active growing season from May to September, suggesting the possible effect of CO2 fertilisation. However, higher air temperatures caused comparatively smaller net ecosystem exchange (NEE) because of higher ecosystem respiration (RE). Although both forests functioned as CO2 sinks at annual time scales, the rural Toyota forest site (5.43 t C ha–1 yr–1) had 36% higher net ecosystem production (NEP=–NEE; the negative sign indicates uptake by the forest ecosystem from the atmosphere) than that at the urban forest. The higher normalised respiration (i.e., RE/GPP ratio; GPP=–GEE where GPP represents gross primary production) at the Nagoya University forest might be attributable to factors associated with the degree of urbanisation. Thus, in temperate forests, factors associated with urbanisation may reduce the atmospheric carbon sink function by accelerating respiration. This is an issue of global interest, as many countries are experiencing rapid urbanisation.  相似文献   

20.
Heritage trees in a city, echoing factors conducive to outstanding performance, deserve special care and conservation. To understand their structural and health conditions in urban Hong Kong, 30 defect-disorder (DD) symptoms (physical and physiological) subsumed under four tree-position groups (soil-root, trunk, branching, and crown-foliage) and tree hazard rating were evaluated. The surveyed 352 trees included 70 species; 14 species with 233 trees were native. More trees had medium height (10–15 m), medium DBH (1–1.5 m) and large crown (>15 m). In ten habitats, public park and garden (PPG) accommodated the most trees, and roadside traffic island (RTI) and public housing estate (PH) had the least. Tree dimensions and tree habitats were significantly associated. The associations between the 2831 DD and tree-position groups, tree habitats and tree hazard rating were analyzed. Fourteen trees from Ficus microcarpa, Ficus virens and Gleditsia fera had high hazard rating, 179 trees from 22 species moderate rating, and 159 trees from 55 species low rating. RTI, roadside tree strip (RTS), roadside tree pit (RTP), roadside planter (RP) and stone wall (SW) had more moderate hazard rating, and PPG, roadside slope (RS) and government, institutional and community land (GIC) more low rating. Redundancy analysis showed that DD were positively correlated with RTS, RTP, RP and SW, but negatively correlated with PPG, RS and GIC (p < 0.05). The DD significantly increased tree hazard rating and failure potential. Future management implications for heritage-tree conservation and enhancement focusing squarely on critical tree defect-disorder in urban Hong Kong were explored, with application to other compact cities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号