首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Urban forests (UF) provide a range of important ecosystem services (ES) for human well-being. Relevant ES delivered by UF include urban temperature regulation, runoff mitigation, noise reduction, recreation, and air purification. In this study the potential of air pollution removal by UF in the city of Florence (Italy) was investigated. Two main air pollutants were considered – particulate matter (PM10) and tropospheric ozone (O3) – with the aim of providing a methodological framework for mapping air pollutant removal by UF and assessing the percent removal of air pollutant.The distribution of UF was mapped by high spatial resolution remote sensing data and classified into seven forest categories. The Leaf Area Index (LAI) was estimated spatially using a regression model between in-field LAI survey and Airborne Laser Scanning data and it was found to be in good linear agreement with estimates from ground-based measurements (R2 = 0.88 and RMSE% = 11%). We applied pollution deposition equations by using pollution concentrations measured at urban monitoring stations and then estimated the pollutant removal potential of the UF: annual O3 and PM10 removal accounted for 77.9 t and 171.3 t, respectively. O3 and PM10 removal rates by evergreen broadleaves (16.1 and 27.3 g/m2), conifers (10.9 and 28.5 g/m2), and mixed evergreen species (15.8 and 31.7 g/m2) were higher than by deciduous broadleaf stands (4.1 and 10 g/m2). However, deciduous forests exhibited the largest total removal due to the high percentage of tree cover within the city. The present study confirms that UF play an important role in air purification in Mediterranean cities as they can remove monthly up to 5% of O3 and 13% of PM10.  相似文献   

2.
Controlling and monitoring air quality in cities requires understanding anthropogenic sources, but also natural sources must be considered. This is because beneficial Biogenic Volatile Organic Compounds (BVOCs) can exacerbate air pollution by reacting with anthropogenic pollutants. Although these compounds help trees survive, they may have negative effect on human life in polluted cities. In this study we measured terpenoid emissions of urban trees early and late in the growing season, using Solid Phase Micro-extraction (SPME) in a branch enclosure system. Results showed that Robinia pseudoacacia and Platanus orientalis emitted significant amounts of isoprene throughout the season. Isoprene emission early in the season was roughly the same for both species. Late in the season, the standardized emission rate increased to 17.8 and 45 μg g−1 dw h−1 for R. pseudoacacia and P. orientalis, respectively. Furthermore, all trees emitted significant amounts of 2-ethylhexanol late in the season (7.3, 7.9, and 9.2 μg g−1 dw h−1 for Fraxinus rotundifolia, R. pseudoacacia, and P. orientalis, respectively). In conclusion, trees that are typically planted in urban Tehran, emit significant amounts of isoprene. Planting more F. rotundifolia and fewer P. orientalis trees would help improve air quality in Tehran and the cities like Tehran.  相似文献   

3.
Promoting the plant diversity of urban green spaces is crucial to increase ecosystem services in urban areas. While introducing ornamental plants can enhance the biodiversity of green spaces it risks environmental impacts such as increasing emissions of biogenic volatile organic compounds (BVOCs) that are harmful to air quality and human health. The present study, taking Qingdao City as a case study, evaluated the plant diversity and BVOC emissions of urban green spaces and tried to find out a solution to increase biodiversity while reducing BVOC emissions. Results showed that: (1) the species diversity and phylogenetic diversity of trees in urban green spaces were 22% and 16% lower than rural forest of this region; (2) urban areas had higher BVOC emission intensity (2.6 g C m−2 yr−1) than their rural surroundings (2.1 g C m−2 yr−1); (3) introducing the selected 11 tree species will increase 15% and 11% of species diversity and phylogenetic diversity, respectively; and (4) the BVOC emissions from green spaces will more than triple by 2050, but a moderate introduction of the selected low-emitting trees species could reduce 34% of these emissions. The scheme of introducing low-emitting ornamental species leads to a win–win situation and also has implications for the sustainable green space management of other cities.  相似文献   

4.
One of the fastest growing cities in India, Bangalore is facing challenges of urban microclimate change and increasing levels of air pollution. This paper assesses the impact of street trees in mitigating these issues. At twenty locations in the city, we compare segments of roads with and without trees, assessing the relationship of environmental differences with the presence or absence of street tree cover. Street segments with trees had on average lower temperature, humidity and pollution, with afternoon ambient air temperatures lower by as much as 5.6 °C, road surface temperatures lower by as much as 27.5 °C, and SO2 levels reduced by as much as 65%. Suspended Particulate Matter (SPM) levels were very high on exposed roads, with 50% of the roads showing levels approaching twice the permissible limits, while 80% of the street segments with trees had SPM levels within prescribed limits. In an era of exacerbated urbanization and climate change, tropical cities such as Bangalore will have to face some of the worst impacts including air pollution and microclimatic alterations. The information generated in this study can help appropriately assess the environmental benefits provided by urban trees, providing useful inputs for urban planners.  相似文献   

5.
The process of urbanisation alters the thermal balance of an area resulting in an urban heat island effect where cities can be several degrees centigrade warmer than the surrounding rural landscape. This increased heat can make cities uncomfortable places and, during heat waves, can pose serious health risks. This study looked at the role that trees and grass can play in reducing regional and local temperatures in urban areas during the summer within the urban landscape of Manchester, UK. In June and July 2009 and 2010, we monitored the surface temperatures of small plots composed of concrete and grass in the presence or absence of tree shading, and measured globe temperatures above each of the surfaces. The same measures were also recorded at mid-day on larger expanses of asphalt and grass in an urban park. Both surface and shade greatly affected surface temperatures. Grass reduced maximum surface temperatures by up to 24 °C, similar to model predictions, while tree shade reduced them by up to 19 °C. In contrast, surface composition had little effect upon globe temperatures, whereas shading reduced them by up to 5–7 °C. These results show that both grass and trees can effectively cool surfaces and so can provide regional cooling, helping reduce the urban heat island in hot weather. In contrast grass has little effect upon local air or globe temperatures, so should have little effect on human comfort, whereas tree shade can provide effective local cooling.  相似文献   

6.
Heritage trees in a city, echoing factors conducive to outstanding performance, deserve special care and conservation. To understand their structural and health conditions in urban Hong Kong, 30 defect-disorder (DD) symptoms (physical and physiological) subsumed under four tree-position groups (soil-root, trunk, branching, and crown-foliage) and tree hazard rating were evaluated. The surveyed 352 trees included 70 species; 14 species with 233 trees were native. More trees had medium height (10–15 m), medium DBH (1–1.5 m) and large crown (>15 m). In ten habitats, public park and garden (PPG) accommodated the most trees, and roadside traffic island (RTI) and public housing estate (PH) had the least. Tree dimensions and tree habitats were significantly associated. The associations between the 2831 DD and tree-position groups, tree habitats and tree hazard rating were analyzed. Fourteen trees from Ficus microcarpa, Ficus virens and Gleditsia fera had high hazard rating, 179 trees from 22 species moderate rating, and 159 trees from 55 species low rating. RTI, roadside tree strip (RTS), roadside tree pit (RTP), roadside planter (RP) and stone wall (SW) had more moderate hazard rating, and PPG, roadside slope (RS) and government, institutional and community land (GIC) more low rating. Redundancy analysis showed that DD were positively correlated with RTS, RTP, RP and SW, but negatively correlated with PPG, RS and GIC (p < 0.05). The DD significantly increased tree hazard rating and failure potential. Future management implications for heritage-tree conservation and enhancement focusing squarely on critical tree defect-disorder in urban Hong Kong were explored, with application to other compact cities.  相似文献   

7.
Paired aerial photographs were interpreted to assess recent changes in tree, impervious and other cover types in 20 U.S. cities as well as urban land within the conterminous United States. National results indicate that tree cover in urban areas of the United States is on the decline at a rate of about 7900 ha/yr or 4.0 million trees per year. Tree cover in 17 of the 20 analyzed cities had statistically significant declines in tree cover, while 16 cities had statistically significant increases in impervious cover. Only one city (Syracuse, NY) had a statistically significant increase in tree cover. City tree cover was reduced, on average, by about 0.27 percent/yr, while impervious surfaces increased at an average rate of about 0.31 percent/yr. As tree cover provides a simple means to assess the magnitude of the overall urban forest resource, monitoring of tree cover changes is important to understand how tree cover and various environmental benefits derived from the trees may be changing. Photo-interpretation of digital aerial images can provide a simple and timely means to assess urban tree cover change to help cities monitor progress in sustaining desired urban tree cover levels.  相似文献   

8.
The implementation of trees in urban environments can mitigate outdoor thermal stress. Growing global urban population and the risk of heatwaves, compounded by development driven urban warmth (the urban heat island), means more people are at risk of heat stress in our cities. Effective planning of urban environments must minimise heat-health risks through a variety of active and passive design measures at an affordable cost. Using the Solar and Longwave Environmental Irradiance Geometry (SOLWEIG) model and working within the bounds of current urban design, this study aimed to quantify changes in mean radiant temperature (Tmrt) from increased tree cover at five different 200 × 200 m urban forms (including compact mid-rise development, residential and open grassy areas) within a suburb of Adelaide, Australia during summer. Following a successful validation of SOLWEIG, street trees were strategically distributed throughout each of the five urban forms and the model run over five warm sunny days (13–17 February 2011). Results showed spatially averaged daytime (7:30–20:00) Tmrt reduced by between 1.7 °C and 5.1 °C at each site, while under peak heating conditions (16 February, 14:00) Tmrt reduced by between 2.0 °C and 7.1 °C. The largest reduction in Tmrt under peak warming conditions was at the residential site, despite having the fewest number of trees added. Directly below clusters of trees, Tmrt could be reduced by between 14.1 °C and 18.7 °C. SOLWEIG also highlighted that more built-up sites showed higher Tmrt under peak warming conditions due to increased radiation loading from 3D urban surfaces, but over the course of the day, open sites were exposed to greater and more uniform Tmrt. This study clearly demonstrates the capacity of street trees to mitigate outdoor thermal stress and provides guidance for urban planners on strategic street tree implementation.  相似文献   

9.
Once renowned as India’s “garden city”, the fast growing southern Indian city of Bangalore is rapidly losing tree cover in public spaces including on roads. This study aims to study the distribution of street trees in Bangalore, to assess differences in tree density, size and species composition across roads of different widths, and to investigate changes in planting practices over time. A spatially stratified approach was used for sampling with 152 transects of 200 m length distributed across wide roads (with a width of 24 m or greater), medium sized roads (12–24 m) and narrow roads (less than 12 m). We find the density of street trees in Bangalore to be lower than many other Asian cities. Species diversity is high, with the most dominant species accounting for less than 10% of the overall population. Narrow roads, usually in congested residential neighborhoods, have fewer trees, smaller sized tree species, and a lower species diversity compared to wide roads. Since wide roads are being felled of trees across the city for road widening, this implies that Bangalore’s street tree population is being selectively denuded of its largest trees. Older trees have a more diverse distribution with several large sized species, while young trees come from a less diverse species set, largely dominated by small statured species with narrow canopies, which have a lower capacity to absorb atmospheric pollutants, mitigate urban heat island effects, stabilize soil, prevent ground water runoff, and sequester carbon. This has serious implications for the city’s environmental and ecological health. These results highlight the need to protect large street trees on wide roads from tree felling, and to select an appropriate and diverse mix of large and small sized tree species for new planting.  相似文献   

10.
We measured air temperature in an urban green area that includes forest and grassland and in the surrounding urban area for a full year in Nagoya, central Japan, to elucidate seasonal variations of the difference in air temperature between urban and green areas. We determined the range of the “cool-island” effect as well as the relationship between vegetation cover and air temperature throughout the year. The temperature difference between urban and green areas was large in summer and small in winter. The maximum air temperature difference was 1.9 °C in July 2007, and the minimum was ?0.3 °C in March 2004. The difference was larger during the day than during the night in summer, whereas in winter the opposite relationship was true. However, winter diurnal variation was not particularly noticeable, a behaviour thought to be related to reduced shading by deciduous trees in the green area. During the night, the cooling effect of the green area reached 200–300  m into the urban area. During the day, the cooling effect between August and October 2006 exceeded 300 m and varied widely, although there was no correlation beyond 500 m. The correlation between air temperature and forest-cover ratio within a radius of 200 m from each measurement site was significant from 16:00 to 19:00. There was also a correlation during the night; this correlation was weakest in the early morning. The effect of the forest-cover ratio on air temperature was most pronounced in August 2006 and June 2007.  相似文献   

11.
Of interest to researchers and urban planners is the effect of urban forests on concentrations of ambient air pollution. Although estimates of the attenuation effect of urban vegetation on levels of air pollution have been put forward, there have been few monitored data on small-scale changes within forests, especially in urban forest patches. This study explores the spatial attenuation of particulate matter air pollution less than 10 μ in diameter (PM10) within the confines of an evergreen broadleaved urban forest patch in Christchurch, New Zealand, a city with high levels of PM10 winter air pollution. The monitoring network consisted of eight monitoring sites at various distances from the edge of the canopy and was operated on 13 winter nights when conditions were conducive for high pollution events. A negative gradient of particulate concentration was found, moving from higher mean PM10 concentrations outside the forest (mean=31.5 μg m?3) to lower concentrations deep within the forest (mean=22.4 μg m?3). A mixed-effects model applied to monitor meteorological, spatial and pollution data indicated temperature and an interaction between wind speed and temperature were also significant (P?0.05) predictors of particulate concentration. These results provide evidence of the potential role that urban forest patches may play in mitigating particulate matter air pollution and should be considered in plans for improving urban air quality.  相似文献   

12.
《Scientia Horticulturae》2003,98(4):347-355
The effect of temperature and bark injuries on the occurrence of crown rot of peach trees caused by P. cactorum and P. citrophthora were examined in field and laboratory. Lesions developed at 35 °C (the complete range of temperatures tested) but maximum development occurred at 20–25 °C. Greatest growth of these fungi on cornmeal agar (CMA) also occurred between 15 and 30 °C. Both pathogens could infect injured trees up to 20 days after wounding, but could not infect uninjured plants or plants wounded 40 and 30 days before inoculation, respectively. This study showed that temperature is a critical factor for the development of Phytophthora crown rot of peach trees. In addition, crown rot developed from recent wounds inoculated with agar plugs of Phytophthora.  相似文献   

13.
Across cities worldwide, people are recognizing the value of greenspace in ameliorating the health and well-being of those living there, and are investing significant resources to improve their greenspace. Although models have been developed to allow the quantification of ecosystem services provided by urban trees, refinement and calibration of these models with more accurate site- and species-specific data can increase confidence in their outcomes. We used data from two street tree surveys in Cambridge, MA, to estimate annual tree mortality for 592 trees and diameter growth rates for 498 trees. Overall tree turnover between 2012 and 2015 was relatively low (annualized 3.6% y−1), and mortality rate varied by species. Tree growth rates also varied by species and size. We used stem diameter (DBH) and species identity to estimate CO2 sequestration rates for each of 463 trees using three different model variations: (1) i-Tree Streets, (2) Urban Tree Database (UTD) species-specific biomass allometries and growth rates, and (3) empirically measured growth rates combined with UTD biomass allometries (Empirical + UTD). For most species, the rate of CO2 sequestration varied significantly with the model used. CO2 sequestration estimates calculated using i-Tree Streets were often higher than estimates calculated with the UTD equations. CO2 sequestration estimates were often the lowest when calculated using empirical tree growth estimates and the UTD equations (Empirical + UTD). The differences among CO2 sequestration estimates were highest for large trees. When scaled up to the entire city, CO2 sequestration estimates for the Empirical + UTD model were 49.2% and 56.5% of the i-Tree Streets and UTD estimates, respectively. We suggest future derivations of ecosystem service provision models allow localities to input their own species-specific growth values. By adding capacity to easy-to-use tools, such as i-Tree Streets, we can increase confidence in the model output.  相似文献   

14.
Accurately measuring the biophysical dimensions of urban trees, such as crown diameter, stem diameter, height, and biomass, is essential for quantifying their collective benefits as an urban forest. However, the cost of directly measuring thousands or millions of individual trees through field surveys can be prohibitive. Supplementing field surveys with remotely sensed data can reduce costs if measurements derived from remotely sensed data are accurate. This study identifies and measures the errors incurred in estimating key tree dimensions from two types of remotely sensed data: high-resolution aerial imagery and LiDAR (Light Detection and Ranging). Using Sacramento, CA, as the study site, we obtained field-measured dimensions of 20 predominant species of street trees, including 30–60 randomly selected trees of each species. For each of the 802 trees crown diameter was estimated from the aerial photo and compared with the field-measured crown diameter. Three curve-fitting equations were tested using field measurements to derive diameter at breast height (DBH) (r2 = 0.883, RMSE = 10.32 cm) from the crown diameter. The accuracy of tree height extracted from the LiDAR-based surface model was compared with the field-measured height (RMSE = 1.64 m). We found that the DBH and tree height extracted from the remotely sensed data were lower than their respective field-measured values without adjustment. The magnitude of differences in these measures tended to be larger for smaller-stature trees than for larger stature species. Using DBH and tree height calculated from remotely sensed data, aboveground biomass (r2 = 0.881, RMSE = 799.2 kg) was calculated for individual tree and compared with results from field-measured DBH and height. We present guidelines for identifying potential errors in each step of data processing. These findings inform the development of procedures for monitoring tree growth with remote sensing and for calculating single tree level carbon storage using DBH from crown diameter and tree height in the urban forest.  相似文献   

15.
Urban greenspaces can provide a significant cooling service, which extends beyond the greenspace boundaries. Consequently, greenspaces are recognised for their ability to locally reduce the urban heat island, a phenomenon that has negative implications for the thermal comfort and health of urban citizens. However, the amount of cooling provided by a greenspace and the distance over which that cooling extends depend on factors such as greenspace size and characteristics. Based on data collected in and around eight London greenspaces, with areas ranging from 0.2 to 12.1 ha, this work models the distance and magnitude of cooling provided by each greenspace and defines the relationships between cooling extent and the size of greenspace or the areas of tree canopy and grass. Such data, illustrating the value of expanding the area of urban greenspaces and explaining how cooling relates to greenspace size/coverage characteristics, will be of use to urban planners and climatologists concerned with finding solutions to the urban heat island. Modelling was statistically valid on calm warm nights (with mean air temperatures ≥10 °C and wind speed ≤3 m s−1). On those nights, cooling distance increased linearly with increasing area of greenspace, tree canopy and grass, but the relationship between those factors and the amount of cooling was non-linear. Cooling distance was most strongly related with tree canopy whereas the amount of cooling was most strongly linked to the grass coverage. Our results suggest that a comprehensive cooling service on calm warm nights within cities with similar climate/characteristics to London may come from greenspaces with 3–5 ha, situated 100–150 m apart.  相似文献   

16.
This study investigates the associations between: (i) urban green spaces (UGSs), children‘s frequency and duration of physical activity (PA), and screen time (TV viewing and computer use) and (ii) children‘s frequency and duration of PA and their general health and overweight. In this study, ‘children’ includes both younger children and adolescents, ages 1–18. Parent-reported data (n = 422) collected though face-to-face personal interviews between April 1 and May 31, 2015 in the city of Aydin, Turkey were used in the study. Multivariate regression analyses were conducted to examine the associations controlling for children’s sex, age, and parents’ monthly income. Stratified analyses were also conducted to determine differences between sex (boys and girls) and age (1–6, 7–12, and 13–18 years old) groups of children. The findings showed that UGS closeness to home was positively associated with higher frequency of children’s PA (b = −.22, p ≤.001) and less screen time (b = .18, p ≤.001). Results also revealed that children‘s frequency of PA positively correlated with children‘s general health (b = .08, p ≤.05), whereas overweight was associated with only age. In stratified analyses, nearest distance to UGSs was positively associated with both boys‘ and girls‘ frequency of PA. On the other hand, longer distance to UGS was associated with longer screen time for only girls. In regard to age groups, nearest distance to UGSs was related to higher frequency of PA for 1–6 and 7–12 years old, while nearest distance to UGS was associated with longer duration of PA and less screen time for only children ages 7–12. In age groups 13–18, no significant differences between variables of UGSs, PA and health were documented. No sex and age groups showed any significant associations with general health and overweight. The findings of this study suggest that distance to UGSs is important for children‘s PA, screen time, and general health. This study implies that UGSs do not seem to be associated with PA and general health in older age groups and needs further investigations.  相似文献   

17.
Knowledge of allometric equations can enable urban forest managers to meet desired economic, social, and ecological goals. However, there remains limited regional data on young tree growth within the urban landscape. The objective of this study is to address this research gap and examine interactions between age, bole size and crown dimensions of young urban trees in New Haven, CT, USA to identify allometric relationships and generate predictive growth equations useful for the region. This study examines the 10 most common species from a census of 1474 community planted trees (ages 4–16). Regressions were applied to relate diameter at breast height (dbh), age (years since transplanting), tree height, crown diameter and crown volume. Across all ten species each allometric relationship was statistically (p < 0.001) significant at an α-level of 0.05. Consistently, shade trees demonstrated stronger relationships than ornamental trees. Crown diameter and dbh displayed the strongest fit with eight of the ten species having an R2 > 0.70. Crown volume exhibited a good fit for each of the shade tree species (R2 > 0.85), while the coefficients of determination for the ornamentals varied (0.38 < R2 < 0.73). In the model predicting height from dbh, ornamentals displayed the lowest R2 (0.33 < R2 < 0.55) while shade trees represented a much better fit (R2 > 0.66). Allometric relationships can be used to develop spacing guidelines for commonly planted urban trees. These correlations will better equip forest managers to predict the growth of urban trees, thereby improving the management and maintenance of New England's urban forests.  相似文献   

18.
《Scientia Horticulturae》2004,101(3):243-253
Experiments to test the effectiveness of prohexadione–Ca as a growth inhibitor in apple trees have been carried out for 3 years in the Middle Ebro Valley (Spain). Also, effects on fruit quality and flower initiation were evaluated. The application of 100–400 mg l−1 of prohexadione–Ca between 12 and 30 days after full bloom (DAFB) to ‘Smoothee Golden Delicious’/M9 apple trees resulted in the inhibition of shoot growth, the effect increasing with concentration, and a greater inhibition was obtained when the trees were first sprayed 12–20 DAFB. A second spray was usually needed to avoid a regrowth of the shoots. The effectiveness of the second application was related to the concentration applied and the date of the first spray. The relative increase in trunk-cross-sectional area was not affected by the growth inhibitor. No negative effects on yield and fruit quality were found except for a reduction of soluble solid content. Flower initiation in the following year was not affected. Concentrations of 100–200 mg l−1 applied shortly after full bloom should be recommended, bearing in mind that a second application might be necessary 6–8 weeks later.  相似文献   

19.
It is well known that trees can reduce the urban heat island and adapt our cities to climate change through evapotranspiration. However, the effects of urbanization and anticipated climate change in the soil–root rhizosphere have not been widely investigated. The current study studied the growth and physiology of the urban tree Pyrus calleryana grown in a factorial experiment with or without urbanization and simulated climate change between April 2010 and December 2012 in the Botanical Grounds of the University of Manchester, UK. The study indicated that urbanization and simulated climate change had small but contrasting effects on tree growth and morphology. Urbanization increased tree growth by 20–30%, but did not affect leaf area index (LAI) and showed reduced peak water loss and hence evapotranspirational cooling. Although soil moisture content in the upper 20 cm was higher in the urbanized plots, urbanization showed reduced sap flux density, reduced chlorophyll a:b and delayed recovery of chlorophyll fluorescence (Fv:Fm) throughout the experimental period. In contrast, simulated climate change had no effect on growth but increased LAI by 10%. Despite being more water stressed, trees grown in simulated climate change plots lost more water both according to porometry and sap flow measurements. Simulated climate change increased peak energy and water loss by around 13%, with trees having an average sap flux density of around 170 g cm?2 d?1, 40% higher than trees grown in control plots. Our study suggested that transpirational cooling benefit might be enhanced with a longer growth season and higher soil temperature in places such as Manchester, UK in future, but potentially at the expense of photosynthesis and carbon gain.  相似文献   

20.
Roads destroy natural habitats. To reduce erosion, support wildlife and decorate surroundings, ornamental trees are planted near the roadside. However, it is inadequately understood how roads influence fruit production of trees and birds that consume their fruits, within urban landscapes. During the autumn and winter of 2012–2013, we studied the extent to which birds used the fruit from rowanberry trees (Sorbus aucuparia), in two cities along a 700 km latitudinal gradient in Finland. In matched pair design (total of 35 pairs), we compared roadside trees (approximately 8 m from main roads) with trees grown away from roads (control trees; approximately >80 m from the roads). During the autumn, each rowanberry tree pair was photographed, and frugivorous birds were surveyed twice per month until all of the rowanberry fruit-crop was consumed. There was no difference in fruit crop size between roadside trees and control trees. A total of eight frugivorous bird species and 960 individuals were observed foraging in roadside trees. The three most abundant species were Bohemian waxwing (Bombycilla garrulus, 56.4%), Pine Grosbeak (Pinicola enucleator, 28.9%) and Fieldfare (Turdus pilaris, 10.5%). Total abundance and species richness of frugivorous birds were lower around roadside trees than control trees during most of the study period. Fruits were consumed later from roadside trees than from control trees, probably due to human-caused disturbance. Therefore, roadside rowanberry trees extended the period when frugivorous birds stayed in urban habitats. Later consumption of fruits in northern areas than in southern areas was related to earlier peak abundance of frugivorous birds in south than in north. Our results indicated that rowanberry is a suitable ornamental tree for urban and roadside landscaping and may additionally benefit birds and other frugivorous wildlife.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号