首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Urea (U), sodium hypochlorite (H) and sodium chloride (S) alone or combined were applied upon high‐fibre forages (HFF) in three experiments. Experiment (Exp) I: tall wheatgrass (TW), weeping lovegrass (WL), deferred sorghum (DS) and barley straw (BS) as substrates were untreated (U0) or treated with 4 g 100 g?1 DM (U4), and stored for 45 days. Within each forage, CP and IVDMD were increased by U4 (p < 0.01). Exp II: TW was treated with U and H: U (as in Exp I) and H (at 0, 0.25, 0.50, 0.75 and 1 g active Cl 100 g?1 DM), alone or combined. The interaction U*H was significant for ADF, ADL and CP. For U4+H0.25 ADF and ADL decreased (p < 0.01). For U0, ADL was reduced from H.025 through H1.00 (p < 0.05). U4 increased IVDMD and CP (p < 0.01). Exp III: oat straw (O) was treated with U0 and U4, H0 and H1, S0 and S4 (4 g S 100 g?1 DM), including all combinations at 3 storage times (T = 10, 20 and 30 days). Interactions U*S*H*T for ADL, U*H*T for NDF and CP and S*H*T for IVDMD (p < 0.05) were found. ADF was reduced by U4, H1 and S1 (p < 0.01). The greatest decrease (4.5%) was with U4. Principal components analysis showed U4S4H1 highly related to IVDMD for all T. All treatments had little or no impact on NDF, ADF and ADL content. Lower quality forages had greatest improvements in digestibility and N‐retention.  相似文献   

2.
The objectives of this study were to (1) investigate the relationship between physicochemical characteristics (mean/median particle sizes, physical hull content) and hydrolyzed hydroxycinnamic acid profile (ferulic acid (FA), para-coumaric acid (pCA), and their ratio) of barley varieties and in situ rumen degradability in dairy cattle; and (2) investigate rumen degradation kinetics of FA and pCA of CDC barley varieties grown in western Canada. Barley variety had a significant effect (P < 0.05) on rumen undegradable fraction of DM, FA, pCA, neutral (NDF) and acid detergent fiber (ADF) at 12 and/or 24 h of rumen incubation. FA in barley grain was more degradable than the pCA (P < 0.05). There were no differences (P > 0.05) in effective degradability of DM (EDDM) and EDFA, but significant differences in EDpCA (P < 0.05). Barley hull was strongly correlated to NDF, ADF, ADL, hemicellulose and cellulose (R > 0.78, P < 0.001) and correlated to FA (R = 0.57, P < 0.05) but not to pCA (R = 0.42, P > 0.05) in original samples. FA and pCA were highly and positively correlated to NDF, ADF, ADL, hemicellulose, cellulose, mean/median particle sizes, and rumen indigestible DM, NDF and ADF at either 12 or 24 h (P < 0.05). Mean/median particle size of barley grain positively influenced the rumen indigestible DM, but not others (FA, pCA). The results implied that reduction of barley hull, FA and pCA contents could increase the degradability of barley grain in rumen. Multi-regression with best model variable selection analysis revealed that FA was the factor most inhibiting to DM degradability of barley in rumen, and was the most effective factor to predict DM degradability, while hull was the most effective factor to determine NDF degradability in rumen. Both hull and FA affected ADF degradability in the rumen. The results indicate that breeding or identifying barley varieties with lower hull and FA contents would result in higher degradability, higher energy density and higher quality barley and improve nutrient availability of barley.  相似文献   

3.
Nitrogen (N) fertilizer represents a significant cost for the grower and may also have environmental impacts through nitrate leaching and N2O (a greenhouse gas) emissions associated with denitrification. The objectives of this study were to analyze the genetic variability in N-use efficiency (grain dry matter (DM) yield per unit N available from soil and fertilizer; NUE) in winter wheat and identify traits for improved NUE for application in breeding. Fourteen UK and French cultivars and two French advanced breeding lines were tested in a 2 year/four site network comprising different locations in France and in the UK. Detailed growth analysis was conducted at anthesis and harvest in experiments including DM and N partitioning. Senescence of either the flag leaf or the whole leaf canopy was assessed from a visual score every 3-4 days from anthesis to complete canopy senescence. The senescence score was fitted against thermal time using a five parameters monomolecular-logistic equation allowing the estimation of the timing of the onset and the rate of post-anthesis senescence. In each experiment, grain yield was reduced under low N (LN), with an average reduction of 2.2 t ha−1 (29%). Significant N × genotype level interaction was observed for NUE. Crop N uptake at harvest on average was reduced from 227 kg N ha−1 under high N (HN) to 109 kg N ha−1 under LN conditions while N-utilization efficiency (grain DM yield per unit crop N uptake at harvest; NUtE) increased from 34.0 to 52.1 kg DM kg−1 N. Overall genetic variability in NUE under LN related mainly to differences in NUtE rather than N-uptake efficiency (crop N uptake at harvest per unit N available from soil and fertilizer; NUpE). However, at one site there was also a positive correlation between NUpE and NUE at LN in both years. Moreover, across the 2 year/four site network, the N × genotype effect for NUpE partly explained the N × genotype effect for grain yield and NUE. Averaging across the 16 genotypes, the timing of onset of senescence explained 86% of the variation in NUtE amongst site-season-N treatment combinations. The linear regression of onset of senescence on NutE amongst genoytpes was not significant under HN, but at three of the four sites was significant under LN explaining 32-70% of the phenotypic variation amongst genotypes in NutE. Onset of senescence amongst genotypes was negatively correlated with the efficiency with which above-ground N at anthesis was remobilized to the grain under LN. It is concluded that delaying the onset of post-anthesis senescence may be an important trait for increasing grain yield of wheat grown under low N supply.  相似文献   

4.
Increased plant population density in irrigated and fertilized maize crops enhances plant-to-plant variability since early vegetative stages, because the most suppressed individuals of the stand intercept less radiation per unit leaf area than the dominant ones (i.e. a size-asymmetric competition for light). Contrarily, a size-symmetric competition has been proposed for the acquisition of soil resources in a plant community (e.g. N capture per unit root length is similar among plants of different size). Hence, N fertilization effect on the variability of maize plants would depend on the initial plant-to-plant variability or on that promoted by a high plant population density. Two maize hybrids with contrasting tolerance to crowding (tolerant AX820 and intolerant AX877) were cultivated under different combinations of stand densities (6, 9 and 12 plants m−2) and N supplies (0 and 200 kg N ha−1) without water restrictions. Variability in plant growth rate among plants was computed along the cycle, especially after fertilizer was applied (i.e. the early reproductive period; PGRER) and during the critical period around silking (PGRCP). Plant-to-plant variability in biomass partitioning to the ear (partition index; PI), ear growth rate during the critical period (EGRCP) and kernel number per plant (KNP) was also established. Reduced N supply increased the coefficient of variation (CV) of PGRER, PGRCP, EGRCP and KNP (0.05 < P < 0.10). The CVs of PGRCP, PI, EGRCP and KNP augmented (0.001 < P < 0.10) at the highest stand density. The CVs of PGRER, PGRCP, PI and KNP were larger for hybrid AX877 than for hybrid AX820 (0.001 < P < 0.10). N fertilization smoothed the initial plant-to-plant variability, but the extent of this benefit in a maize crop is genotype dependent; it was much larger in the hybrid tolerant to crowding stress than in the intolerant one. For the latter, the variability held during the critical period around silking and produced a high CV of KNP.  相似文献   

5.
In maize, the effects of nitrogen (N) deficiencies on the determination of kernel number per plant (KNP) have been described only by changes in plant growth rate during the critical period for kernel set (PGRcp). We hypothesize that N availability affects KNP also through variations in biomass allocation to the ear, which determines a stable N concentration in this organ. Six maize hybrids of different breeding origin were evaluated in field experiments at two N levels (0 and 400 kg N ha−1 applied). Traits included were KNP and per apical ear (KNE1), and the allometric estimation of PGRcp, ear growth rate during the critical period (EGRcp), and N content and N concentration in different plant organs. We demonstrated that (i) N availability promoted differences among genotypes (G) in the response of EGRcp and KNP to PGRcp, (ii) variations in KNE1 were explained by EGRcp (r2 = 0.64) and by ear N content at silking + 12 d (r2 = 0.64), and (iii) ear N concentration was a highly conservative trait (range between 10.47 and 15.98 mg N g biomass−1) as compared to N concentration in vegetative tissues (range between 4.94 and 18.04 mg N g biomass−1). Three response patterns were detected among hybrids, one for which the relationship between EGRcp and PGRcp did not vary between N levels and experiments, a second one for which N availability affected this relationship, and a third one for which the response was affected by the year (Y) effect. These results, together with the high correlation between EGRcp and ear N content (r2 = 0.88), evidenced the importance of both photo-assimilate and N availability on EGRcp and KNP determination. Values of 1.5–2.3 g ear−1 d−1 during the critical period and 0.49–0.70 g of N ear−1 at silking + 12 d were determined as thresholds for maximizing KNE1, and both could be easily estimated by means of allometric models.  相似文献   

6.
Because CO2 is needed for plant photosynthesis, the increase in atmospheric CO2 concentration ([CO2]) has the potential to enhance the growth and yield of rice (Oryza sativa L.), but little is known regarding the impact of elevated [CO2] on grain quality of rice, especially under different N availability. In order to investigate the interactive effects of [CO2] and N supply on rice quality, we conducted a free-air CO2 enrichment (FACE) experiment at Wuxi, Jiangsu, China, in 2001–2003. A long-duration rice japonica with large panicle (cv. Wuxiangging 14) was grown at ambient or elevated (ca. 200 μmol mol−1 above ambient) [CO2] under three levels of N: low (LN, 15 g N m2), medium (MN, 25 g N m2) and high N (HN, 35 g N m2 (2002, 2003)). The MN level was similar to that recommended to local farmers. FACE significant increased rough (+12.8%), brown (+13.2%) and milled rice yield (+10.7%), while markedly reducing head rice yield (−13.3%); FACE caused serious deterioration of processing suitability (milled rice percentage −2.0%; head rice percentage −23.5%) and appearance quality (chalky grain percentage +16.9%; chalkiness degree +28.3%) drastically; the nutritive value of grains was also negatively influenced by FACE due to a reduction in protein (−6.0%) and Cu content (−20.0%) in milled rice. By contrast, FACE resulted in better eating/cooking quality (amylose content −3.8%; peak viscosity +4.5%, breakdown +2.9%, setback −27.5%). These changes in grain quality revealed that hardness of grain decreased with elevated [CO2] while cohesiveness and resilience increased when cooked. Overall, N supply had significant influence on rice yield with maximum value occurring at MN, whereas grain quality was less responsive to the N supply, showing trends of better appearance and eating/cooking quality for LN or MN-crops as compared with HN-crops. For most cases, no [CO2] × N interaction was detected for yield and quality parameters. These data suggested that the current recommended rates of N fertilization for rice production should not be modified under projected future [CO2] levels, at least for the similar conditions of this experiment.  相似文献   

7.
Widening the range of organic nutrient resources, especially N sources, is a major challenge for improving crop productivity of smallholder farms in southern Africa. A study was conducted over three seasons to evaluate different species of indigenous legumes for their biomass productivity, N2-fixation and residual effects on subsequent maize crops on nutrient-depleted fields belonging to smallholder farmers under contrasting rainfall zones in Zimbabwe. Under high rainfall (>800 mm yr−1), 1-year indigenous legume fallows (indifallows), comprising mostly species of the genera Crotalaria, Indigofera and Tephrosia, yielded 8.6 t ha−1 of biomass within 6 months, out-performing sunnhemp (Crotalaria juncea L.) green manure and grass (natural) fallows by 41% and 74%, respectively. A similar trend was observed under medium (650–750 mm yr−1) rainfall in Chinyika, where the indifallow attained a biomass yield of 6.6 t ha−1 compared with 2.2 t ha−1 for natural fallows. Cumulatively, over two growing seasons, the indifallow treatment under high rainfall at Domboshawa produced biomass as high as 28 t ha−1 compared with ∼7 t ha−1 under natural fallow. The mean total N2 fixed under indifallows ranged from 125 kg ha−1 under soils exhibiting severe nutrient depletion in Chikwaka, to 205 kg ha−1 at Domboshawa. Indifallow biomass accumulated up to 210 kg N ha−1, eleven-fold higher than the N contained in corresponding natural fallow biomass at time of incorporation. Application of P to indifallows significantly increased both biomass productivity and N2-fixation, translating into positive yield responses by subsequent maize. Differences in maize biomass productivity between indifallow and natural fallow treatments were already apparent at 2 weeks after maize emergence, with the former yielding significantly (P < 0.05) more maize biomass than the latter. The first maize crop following termination of 1-year indifallows yielded grain averaging 2.3 t ha−1, significantly out-yielding 1-year natural fallows by >1 t ha−1. In the second season, maize yields were consistently better under indifallows compared with natural fallows in terms of both grain and total biomass. The first maize crop following 2-year indifallows yielded ∼3 t ha−1 of grain, significantly higher than the second maize crop after 1-year indifallows and natural fallows. The study demonstrated that indigenous legumes can generate N-rich biomass in sufficient quantities to make a significant influence on maize productivity for more than a single season. Maize yield gains under indifallow systems on low fertility sandy soils exceeded the yields attained with either mineral fertilizer alone or traditional green manure crop of sunnhemp.  相似文献   

8.
The effect of nitrogen (N) fertilization on the dry‐matter (DM) yield and nutritional value of sorghum (Sorghum sp., cv. Jumbo) and black oat (Avena strigosa cv., IPR 61) was investigated in the context of forage and livestock production in southern Brazil. Sorghum was cultivated with 0, 37·5, 75, 150, 225, 300 and 375 kg N ha?1 during the summer crop seasons of 2010/11 and 2011/12. Black oat received 0, 40, 80, 120, 160, 200 and 240 kg N ha?1 in the winter of 2011. According to the adjusted polynomial regression, sorghum DM yield increased in response to N up to 288 (12·9 t ha?1) and 264 kg ha?1 (5·6 t ha?1) in 2010/11 and 2011/12 respectively. Crude protein (CP) content of sorghum was highest at 349 and 328 kg N ha?1, but in vitro dry‐matter digestibility (IVDMD) was highest at 212–207 kg N ha?1 in 2010/11 and 2011/12 respectively. Sorghum neutral detergent fibre (NDF) and acid detergent fibre (ADF) were not affected by N fertilization. In black oat, the maximum DM yield (6·0 t ha?1) was obtained with 187 kg N ha?1; the IVDMD, NDF and ADF were not affected by N fertilization, but the CP content increased up to 220 kg N ha?1. It is concluded that these forage species can improve the year‐to‐year amount and quality of forage produced but high rates of N fertilizer are required to achieve high yields. Fertilizer N rates of 210–280 kg N ha?1 in sorghum and 180 kg N ha?1 in black oat in the crop rotation provide the greatest responses in DM yield consistent with good nutritional quality for livestock production.  相似文献   

9.
Simple plant-based diagnostic tools can be used to determine crop P status. Our objectives were to establish the relationships between P and N concentrations of the uppermost collared leaf (PL and NL) of spring wheat (Triticum aestivum L.) and maize (Zea mays L.) during the growing season and, in particular, to determine the critical leaf P concentrations required to diagnose P deficiencies. Various N applications were evaluated over six site-years for wheat and eight site-years for maize (2004-2006) with adequate soil P for growth. Phosphorus and N concentrations of the uppermost collared leaf were determined weekly and the relationships between leaf N and P concentrations were established using only the sampling dates from the stem elongation stage for wheat and from the V8 stage of development for maize. Leaf P concentration generally decreased with decreasing N fertilization. Relationships between PL and NL concentrations (mg g−1 DM) using all site-years and sampling dates were described by significant linear-plateau functions in both maize (PL = 0.82 + 0.089 NL if NL ≤ 32.1 and PL = 3.7 if NL > 32.1; R2 = 0.41; P < 0.001) and wheat (PL = 0.02 + 0.106 NL if NL ≤ 33.2 and PL = 3.5 if NL > 33.2; R2 = 0.42; P < 0.001). Variation among sampling dates in the relationships were noted. By restricting the sampling dates [413-496 growing degree days (5 °C basis) in wheat (i.e., stem elongation) and 1494-1579 crop heat units in maize (i.e., silking), relationships for wheat (PL = 0.29 + 0.073 NL, R2 = 0.66; P < 0.001) and maize (PL = 1.04 + 0.084 NL, R2 = 0.66; P < 0.001) were improved. In maize, expressing P and N concentrations on a leaf area basis (PLA and NLA) at silking further improved the relationship (PLA = 0.002 + 0.101 NLA, R2 = 0.80; P < 0.001). Predictive models of critical P concentration as a function of N concentration in the uppermost collared leaf of wheat and maize were established which could be used for diagnostic purposes.  相似文献   

10.
Quantifying the exploitable gap between average farmer yields and yield potential (YP) is essential to prioritize research and formulate policies for food security at national and international levels. While irrigated maize accounts for 58% of total annual maize production in the Western U.S. Corn Belt, current yield gap in these systems has not been quantified. Our objectives were to quantify YP, yield gaps, and the impact of agronomic practices on both parameters in irrigated maize systems of central Nebraska. The analysis was based on a 3-y database with field-specific values for yield, applied irrigation, and N fertilizer rate (n = 777). YP was estimated using a maize simulation model in combination with actual and interpolated weather records and detailed data on crop management collected from a subset of fields (n = 123). Yield gaps were estimated as the difference between actual yields and simulated YP for each field-year observation. Long-term simulation analysis was performed to evaluate the sensitivity of YP to changes in selected management practices. Results showed that current irrigated maize systems are operating near the YP ceiling. Average actual yield ranged from 12.5 to 13.6 Mg ha−1 across years. Mean N fertilizer efficiency (kg grain per kg applied N) was 23% greater than average efficiency in the USA. Rotation, tillage system, sowing date, and plant population density were the most sensitive factors affecting actual yields. Average yield gap was 11% of simulated YP (14.9 Mg ha−1). Time trends in average farm yields from 1970 to 2008 show that yields have not increased during the past 8 years. Average yield during this period represented ∼80% of YP ceiling estimated for this region based on current crop management practices. Simulation analysis showed that YP can be increased by higher plant population densities and by hybrids with longer maturity. Adoption of these practices, however, may be constrained by other factors such as difficulty in planting and harvest operations due to wet weather and snow, additional seed and grain drying costs, and greater risk of frost and lodging. Two key points can be made: (i) irrigated maize producers in this region are operating close to the YP ceiling and achieve high levels of N use efficiency and (ii) small increases in yield (<13%) can be achieved through fine tuning current management practices that require increased production costs and higher risk.  相似文献   

11.
刈割高度对多花黑麦草新品种产量和品质的影响   总被引:1,自引:0,他引:1  
为探讨不同刈割高度对多花黑麦草新品种饲草产量和品质的影响,以2个多花黑麦草新品种为对象,采用5个刈割高度分别测定2个品种的鲜、干草产量、粗蛋白、可溶性碳水化合物(WSC)、中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)和干物质体外可消化率(IVDMD)。结果表明:在65 cm时刈割,所获得的鲜、干草产量最高;随着刈割高度的增加,2个黑麦草品种的粗蛋白和可溶性碳水化合物含量呈抛物线趋势变化,在刈割高度为55 cm时达到最高值;中性和酸性洗涤纤维含量则随着刈割高度的增大逐渐增加;干物质体外消化率亦呈现抛物线的趋势,在刈割高度为65 cm时达到最高。2个品种的表现规律一致。  相似文献   

12.
The aim of the work was to study changes in the yield and nutritional characteristics of whole crop semi-leafless field pea over two growing seasons in the Po plain, Italy. Samples of two cultivars (Baccara and Sidney) were collected from flowering to grain maturity. The developmental stage, yield, dry matter (DM) content, crude protein (CP), neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL), starch, water soluble carbohydrates (WSC), gross energy (GE), organic matter digestibility (OMD) and the net energy for lactation (NEL) were determined at each harvest. The forage characteristics were regressed on the growing degree days (GDD) with 4.4 °C as the base temperature. The DM yield increased with advancing maturity from 0.5 to 8.91 Mg ha−1, while the CP decreased from 261 to 159 g kg−1 DM. During the whole growth cycle the GE, OMD, NEL and milk forage units (milk FU) were almost steady. No differences were observed between the cultivars for any of the measured parameters. At grain maturity, the crop produced over 4.0 Mg ha−1 DM of grain. The CP, starch and WSC of the grain did not show any differences between the cultivars or years. The data showed that the nutritive quality of the forage of the semi-leafless grain pea harvested as a whole crop for ensiling purposes did not diminish with maturity and could help improve the self-sufficiency of dairy farms, in terms of home-grown protein forages.  相似文献   

13.
两种供氮水平下玉米穗部性状的QTL定位   总被引:4,自引:0,他引:4  
以优良杂交种豫玉22两亲本Z3和87-1为基础构建一套F8家系的重组自交系群体为研究材料,在正常供氮和低氮两种氮水平下进行田间试验,利用复合区间作图法对玉米穗长、穗行数、行粒数、百粒重和单穗粒数进行QTL定位分析。两种氮水平下共定位到24个玉米穗部性状的QTL位点,其中正常供氮条件下定位到13个QTL,低氮水平下定位到11个QTL,集中分布在第1(8个QTL)、第5(6个QTL)和第8(5个QTL)染色体上。两种氮水平下共位或紧密连锁的QTL位点较少,表明玉米穗部性状在低氮水平下的遗传机制发生很大改变。研究发现,第1染色体umc1122/bnlg1556位点是一个控制低氮水平下玉米单穗粒数的主效QTL,单个QTL可解释19.7%的表型变异,该位点还同时影响低氮水平下玉米穗长、穗行数和百粒重的表型。与前人定位结果比较发现,该位点所在的染色体区域是一个产量及氮效率相关性状的QTL富集区,对此位点附近进行相关分子标记辅助选择,可能会在玉米氮高效分子育种上有所突破。  相似文献   

14.
Efficiency of fertilizer N is becoming increasingly important in modern agricultural production owing to increasing food requirement and growing concern about environments. However, there is almost no study regarding its long-term efficiency in wheat and maize cropping systems. Long-term (15 years) experiments involving wheat (Triticum aestivum L.) and maize (Zea mays L.) rotations at five field sites with various soil and climate characteristics in China were used to determine the nitrogen (N) efficiency, including the physiological efficiency, recovery efficiency and N mass balance of soil–plant systems in response to different fertilization treatments. The present study consisted of nine treatments: unfertilized, N, phosphorus, potassium, straw and manure or their combinations. The contribution of N fertilizers to wheat yield was higher than to maize and suggested that wheat could be given priority over maize when determining N application rates. Uptake of 1 kg N produced 35.6 kg of wheat grain and 39.5 kg of maize grain. The deficit of N in soils without applied N ranged from 40 to 103 kg N ha−1 year−1, while N surpluses in soils with applied N fertilizers ranged from 35 to 350 kg N ha−1 year−1. The apparent accumulated N recovery efficiency (NREac) varied widely from 4% to 90%: unbalanced fertilization and other soil limiting factors (such as aluminium toxicity) were associated with low NREac. In the treatments of combination of N, phosphorus and potassium with normal application rates, the average of NREac in four out of five sites reached 80%, which suggested that best management of N fertilizers could recover most of N fertilizers applied to soils. The results will be helpful to understand the long-term fate of N fertilizers and to optimize the N fertilization for agricultural practices and environment protection.  相似文献   

15.
Variability of light interception and its derivatives are poorly understood at the field-scale in maize (Zea mays L.) and soybean [Glyine max (L.) Merr.]. Quantifying variability can provide reliable estimates of field-scale processes and reliable methodology. A field study was conducted during the 2005 growing season in a 31 ha maize and 23 ha soybean field rotated annually near Ames, IA to measure variability of cumulatively intercepted photosynthetically active radiation (CI-PAR) and radiation use efficiency (RUE) by deploying eight line quantum sensors in each field. Cumulative mean PAR interception for soybean was 575 MJ m−2 ending on day of the year (DOY) 249 compared with 687 MJ m−2 in maize ending on DOY 244. Soybean standard error (sX) for a single sensor was 4.48% and with six sensors was 1.83% of the final CI-PAR. Maize sX for a single sensor was 5.29% and with eight sensors was 1.87% of the final CI-PAR. Crop biomass was quantified weekly by collecting four 1 m2 samples. Soybean RUE using all sensors was 1.44 ± 0.06 g MJ PAR−1. The highest CI-PAR from a single sensor had RUE of 1.32 and the lowest was 1.55 g MJ PAR−1. Maize RUE using all sensors was 3.35 ± 0.09. The highest CI-PAR from a single sensor had RUE of 2.87 and the lowest was 3.70 g MJ PAR−1. Reliable transmitted PAR and RUE estimates are obtainable at the field-scale in maize and soybean with four and three sensors, respectively, assuming that crop biomass is accurately measured.  相似文献   

16.
An active crop canopy reflectance sensor could be used to increase N-use efficiency in maize (Zea mays L.), if temporal and spatial variability in soil N availability and plant demand are adequately accounted for with an in-season N application. Our objective was to evaluate the success of using an active canopy sensor for developing maize N recommendations. This study was conducted in 21 farmers’ fields from 2007 to 2009, representing the maize production regions of east central and southeastern Pennsylvania, USA. Four blocks at each site included seven sidedress N rates (0–280 kg N ha−1) and one at-planting N rate of 280 kg N ha−1. Canopy reflectance in the 590 nm and 880 nm wavelengths, soil samples, chlorophyll meter (SPAD) measurements and above-ground biomass were collected at the 6th–7th-leaf growth stage (V6–V7). Relative amber normalized difference vegetative index (ANDVIrelative) and relative SPAD (SPADrelative) were determined based on the relative measurements from the zero sidedress treatment to the 280 kg N ha−1 at-planting treatment. Observations from the current study were compared to relationships between economic optimum N rate (EONR) and ANDVIrelative, presidedress NO3 test (PSNT), or SPADrelative that were developed from a previous study. These comparisons were based on an absolute mean difference (AMD) between observed EONR and the previously determined predicted relationships. The AMD for the relationship between EONR and ANDVIrelative in the current study was 46 kg N ha−1. Neither the PSNT (AMD = 66 kg N ha−1) nor the SPADrelative (AMD = 72 kg N ha−1) provided as good an indicator of EONR. When using all the observations from the two studies for the relationships between EONR and the various measurements, ANDVIrelative (R2 = 0.65) provided a better estimate of EONR than PSNT (R2 = 0.49) or SPADrelative (not significant). Crop reflectance captured similar information as the PSNT and SPADrelative, as reflected in strong relationships (R2 > 0.60) among these variables. Crop canopy reflectance using an active sensor (i.e. ANDVIrelative) provided as good or better an indicator of EONR than PSNT or SPADrelative, and provides an opportunity to easily adjust in-season N applications spatially.  相似文献   

17.
Phosphorus (P) deficiency is a major constraint for maize production in many low-input agroecosystems. This study was conducted to evaluate genotypic variation in both root (root architecture and morphology, including root hairs) and plant growth traits associated with the adaptation of maize landraces to a P-deficient Andisol in two locations in the Central Mexican highlands. Two hundred and forty-two accessions from the Purhepecha Plateau, Michoacan were grown in Ponzomaran with low (23 kg P2O5 ha−1) and high (97 kg P2O5 ha−1) P fertilization under rain-fed field conditions, and subsequently a subset of 50 contrasting accessions were planted in the succeeding crop cycle in Bonilla. Accessions differed greatly in plant growth, root morphology and P efficiency defined as growth with suboptimal P availability. The accessions were divided into 3 categories of P efficiency using principal component and cluster analyses, and 4 categories according to the retained principal component and their relative weight for each genotype in combination with growth or yield potential. The distribution of accessions among three phosphorus efficiency classes was stable across locations. Phosphorus-efficient accessions had greater biomass, root to shoot ratio, nodal rooting, nodal root laterals, and nodal root hair density and length of nodal root main axis, and first-order laterals under P deficiency. Biomass allocation to roots, as quantified by the allometric partitioning coefficient (K) was not altered by P availability in the efficient accessions, but inefficient accessions had a lower K under low P conditions. Accessions with enhanced nodal rooting and laterals had greater growth under low P. Dense root hairs on nodal root main axes and first-order laterals conferred a marked benefit under low P, as evidenced by increased plant biomass. Late maturity improved growth and yield under low P. These results indicate that landraces of the Central Mexican highlands exhibit variation for several root traits that may be useful for genetic improvement of P efficiency in maize.  相似文献   

18.
The nutritive value of pasture is an important determinant of the performance of grazing livestock. Proximal sensing of in situ pasture is a potential technique for rapid prediction of nutritive value. In this study, multispectral radiometry was used to obtain pasture spectral reflectance during different seasons (autumn, spring and summer) in 2009–2010 from commercial farms throughout New Zealand. The analytical data set (n = 420) was analysed to develop season‐specific and combined models for predicting pasture nutritive‐value parameters. The predicted parameters included crude protein (CP), acid detergent fibre (ADF), neutral detergent fibre (NDF), ash, lignin, lipid, metabolizable energy (ME) and organic matter digestibility (OMD) using a partial least squares regression analysis. The calibration models were tested by internal and external validation. The results suggested that the global models can predict the pasture nutritive value parameters (CP, ADF, NDF, lignin, ME and OMD) with moderate accuracy (0·64 ≤ r2 ≤ 0·70) while ash and lipid are poorly predicted (0·33 ≤ r2 ≤ 0·40). However, the season‐specific models improved the prediction accuracy, in autumn (0·73 ≤ r2 ≤ 0·83) for CP, ADF, NDF and lignin; in spring (0·61 ≤ r2 ≤ 0·78) for CP and ash; in summer (0·77 ≤ r2 ≤ 0·80) for CP and ash, indicating a seasonal impact on spectral response.  相似文献   

19.
The chopped sweet sorghum stalk was thin-layer-dried for long-term storage and ethanol production. The drying kinetics and the effects of drying temperature on the qualities of sweet sorghum stalk were investigated in this work. The results showed that the drying process could be simulated well by Wang and Singh's model. The diffusivity constant (D0) and active energy (Ea) were estimated as 4.4 × 10−5 m2/s and 21.4 kJ/(mol K) for drying the chopped fresh stalk. According to the sugar composition, browning degree, and fermentability of the dried stalk obtained at various temperatures, the approximate drying temperature could be suggested as 50-60 °C for application. In this range, the moisture of the chopped fresh stalk could drop below the safe moisture for storage in 7-5.5 h with 12.1-9.7% total sugar loss during the drying process.  相似文献   

20.
A three year (2003-2005) field study compared the susceptibility to the Cry1Ab toxin, expressed in Bt maize, of Mediterranean corn borer (MCB) Sesamia nonagrioides populations collected from areas with different adoption rates of Bt maize in Spain with Bt-free areas in Greece. Spain is the only European country where the cultivar Compa CB derived from the event Bt176 was commercially grown, from 1998 to 2005. The large decrease of the titer of the toxin in this cultivar at later growth stages represented the worst-case scenario for resistance development of MCB, since larvae of the second and third generations were exposed to sublethal concentrations of Cry1Ab toxin. Our data revealed that the variation in susceptibility to Cry1Ab for the MCB Spanish field populations analyzed in the three years was very low, with LC50 values fluctuating between 12 and 30 ng Cry1Ab/cm2, regardless of the region of origin, the type of maize (Bt or non-Bt) and the year. Furthermore, no significant differences were found when comparisons were made with a laboratory population (LC50 values: 18-26 ng Cry1Ab/cm2) or with field populations from Greece (Bt-free areas), which displayed LC50 values ranging between 22 and 27 ng Cry1Ab/cm2. Standardizing bioassay protocols proved to be essential for obtaining comparable results. These findings suggest that resistant MCB populations did not evolve in those Spanish maize areas where Compa CB was largely cultivated for eight years, contradicting the expected rapid development of resistance under these unfavourable conditions. Additionally, our results can be used as baseline indices in post-market resistance monitoring programs if Bt maize is introduced in Greece. Further studies should continue, since the insights gained from a resistance monitoring program may help to enhance the durability of Bt maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号