首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Abstract

A tillage system, ‘slit‐till’, has been developed that modifies plowpans and permits root penetration and proliferation into subsoil horizons. Slit‐till also provides a means of placing nutrients into subsoil zones where roots are concentrated. Greenhouse studies determined the effects of calcium nitrate, calcium phosphate, ammonium phosphate, ammonium nitrate, and dolomitic limestone on grain sorghum [Sorghum bicolor (L.) Moench] shoot and root development in a compacted layer of acid subsoil (pH 4.3), subject to a slit‐till treatment, and on chemical properties of soil adjacent to the injection site. Cylinders were prepared by layering A and B horizons of a Marvyn loamy sand (fine‐loamy, siliceous, thermic, Typic Hapludult) to form 56 cm of subsoil and 10 cm of topsoil in polyvinylchloride (PVC) tubing (20 × 66 cm). A 6‐cm‐thick hardpan (bulk density 1760 Mg.m‐3) was created at the top of the subsoil layer. The amendments, 500 μg/g of dolomitic limestone and 15 μg/g each of the other amendments, were injected into a 10 × 10 × 0.4 cm slit. Sorghum shoots and roots were harvested 49 days after plant emergence. Plant height was increased 15% by calcium nitrate, calcium phosphate, ammonium phosphate, and dolomitic limestone, but decreased 15% by ammonium nitrate. Twenty‐nine percent of the roots for the check occurred in the subsoil, but this increased to 49% with ammonium phosphate. Soil pH was increased and exchangeable aluminum was decreased by the dolomitic limestone up to 12 mm from point of injection.  相似文献   

2.
Abstract

The interacting effects between topsoil water supply, nitrogen (N) placement and subsoil aluminum (Al) toxicity on wheat growth were studied in two split‐root pot experiments. The native nitrate‐N (NO3‐N) in the topsoil used in each experiment differed and were designated as high (3706 μM) and low (687 μM) for experiments one and two, respectively. Wheat was grown in pots that enabled the root system to be split so that half of the roots were in topsoil and the other half were in subsoils containing varying concentrations of soluble Al. Treatments were imposed which varied the supply of water to the topsoil (either ‘wet’ or ‘dry'). Placement of applied N in either the topsoil or subsoil had little effect on either shoot or root fresh weight, or on the length of roots produced in the subsoil section of the split pots. When water supply to the topsoil was decreased, both shoot and root growth of wheat declined and the yield decrease increased with subsoil Al. In the high‐N experiment, wheat grown in the low Al subsoil with the high native soluble subsoil (NO3 (3002 μM) was able to exploit the N and subsoil water, hence both shoot and root growth increased considerably in comparison to shoot and root growth of wheat grown in soils containing higher concentrations of subsoil Al. When the native NO3 was lower (i.e. the low‐N experiment) inadequate root proliferation restricted the ability of plants to use subsoil N and water irrespective of subsoil Al. The results from this study suggest that wheat, grown on yellow earths with Al‐toxic subsoils, will suffer yield reductions when the topsoil dries out (e.g. in the spring when winter rainfall ceases) because subsoil reserves of water and nitrogen are under utilised.  相似文献   

3.
  【目的】  土壤紧实胁迫破坏土体理化性质,阻碍作物根系生长,降低作物产量,是限制农业生产力提高的世界性难题。根系形态结构决定了植物对土壤资源的探索能力及其对胁迫环境的适应性。讨论紧实胁迫下植物根系–土壤的相互作用,综述国内外关于根系通过形态和生理改变等根系生物学潜力的发挥提高对紧实胁迫适应性的研究进展。  主要进展  土壤紧实胁迫增加根系穿透阻力,限制根系对土壤水分和养分的获取。植物根系会从形态和解剖结构方面对土壤紧实胁迫做出一系列适应性改变,充分利用土壤中的孔隙拓展生长空间。此外,根系也会对紧实胁迫做出生理响应,通过大量释放分泌物,影响根际土壤微结构,改变根土界面微域环境,降低根系生长的机械阻力。  展望  土壤紧实胁迫作为产量限制因素被长期忽视。通过发挥根系自身的生物学潜力,提高根系在紧实土壤中的适应性,对于最大限度地保证其在紧实胁迫下的正常生长非常关键,作为应对土壤紧实胁迫的有效策略具有重要的现实意义。未来的研究方向与重点包括:揭示紧实胁迫下根系分泌物与微生物的“对话机制”,探明紧实胁迫下根系–土壤–微生物的互作关系和作用机制,为发挥根系生物学潜力,强化关键根系/根际性状,塑造健康土壤结构,提高土壤紧实胁迫下的农业生产力提供科学依据。  相似文献   

4.
Row crops such as potatoes (Solanum tuberosum L.) and carrots (Daucus carota L.) are of high economic value in the Nordic countries. Their production is becoming more and more specialized, including continuous arable cropping and heavier farm machinery, with increased risk of soil compaction. The result may be restricted root development and economic losses. Potatoes have widely branched adventitious roots, whereas carrots have taproots with fibrous roots extending from them. Under optimal soil conditions, total root length per surface area may reach more than 10 km m?2 for both species. Maximal root depth is about 140 cm for potato and more than 200 cm in carrots. Most of the root mass is usually distributed within the upper 100 cm, whereof more than 50% may be deeper than 30 cm. Soil compaction causes a dense soil with few large pores, poor drainage and reduced aeration, especially in wet soils with low organic matter content and high proportions of silt or clay. With compacted subsoil layers, roots will be concentrated more in the upper layers and thus explore a smaller soil volume. This will lead to reduced water and nutrient uptake, reduced yields and low nutrient utilization efficiency. In this review article, we describe the interactions between root development and soil conditions for potatoes and carrots, with special focus on sub-optimal conditions caused by soil compaction. We also discuss the effects of tilling strategies, organic material, irrigation and fertilization strategies and controlled traffic systems on root and yield development. To reduce subsoil compaction there is a need to implement practises such as controlled traffic farming, new techniques for ploughing, better timing of soil operations, crop rotations with more perennial crops and supplements of organic material. Moreover, there is a need for a stronger focus on the impacts of farm machinery dimensions.  相似文献   

5.
Nitrate‐N uptake from soil depends on root growth and uptake activity. However, under field conditions N‐uptake activity is difficult to estimate from soil‐N depletion due to different loss pathways. We modified the current mesh‐bag method to estimate nitrate‐N‐uptake activity and root growth of two oilseed‐rape cultivars differing in N‐uptake efficiency. N‐efficient cultivar (cv.) ‘Apex' and N‐inefficient cv. ‘Capitol' were grown in a field experiment on a silty clayey gleyic fluvisol near Göttingen, northern Germany, and fertilized with 0 (N0) and 227 (N227) kg N ha–1. In February 2002, PVC tubes with a diameter of 50 mm were installed between plant rows at 0–0.3 and 0–0.6 m soil depth with an angle of 45°. At the beginning of shooting, beginning of flowering, and at seed filling, the PVC tubes were substituted by PVC tubes (compartments) of the same diameter, but with an open window at the upper side either at a soil depth of 0–0.3 or 0.3–0.6 m allowing roots to grow into the tubes. Anion‐exchange resin at the bottom of the compartment allowed estimation of nitrate leaching. The compartments were then filled with root‐free soil which was amended with or without 90 mg N (kg soil)–1. The newly developed roots and nitrate‐N depletion were estimated in the compartments after the installing period (21 d at shooting stage and 16 d both at flowering and grain‐filling stages). Nitrate‐N depletion was estimated from the difference between NO ‐N contents of compartments containing roots and control compartments (windows closed with a membrane) containing no roots. The amount of nitrate leached from the compartments was quantified from the resin and has been taken into consideration in the calculation of the N depletion. The amount of N depleted from the compartments significantly correlated with root‐length density. Suboptimal N application to the crop reduced total biomass and seed‐yield formation substantially (24% and 38% for ‘Apex’ and ‘Capitol’, respectively). At the shooting stage, there were no differences in root production and N depletion from the compartments by the two cultivars between N0 and N227. But at flowering and seed‐filling stages, higher root production and accordingly higher N depletion was observed at N0 compared to N227. Towards later growth stages, the newly developed roots were characterized by a reduction of root diameter and a shift towards the deeper soil layer (0.3–0.6m). At low but not at high N supply, the N‐efficient cv. ‘Apex’ exhibited higher root growth and accordingly depleted nitrate‐N more effectively than the N‐inefficient cv. ‘Capitol’, especially during the reproductive growth phase. The calculated nitrate‐N‐uptake rate per unit root length was maximal at flowering (for the low N supply) but showed no difference between the two cultivars. This indicated that the higher N‐uptake efficiency of cv. ‘Apex’ was due to higher root growth rather than higher uptake per unit of root length.  相似文献   

6.
Abstract

Some form of deep tillage is required in the coarse‐textured sandy soils of the Southeast in order to attain maximum yield of wheat. ‘Slit‐till’ is a tillage system that modifies plowpans and permits root penetration and proliferation into subsoil horizons. A greenhouse experiment was conducted to determine the effects of calcium nitrate, calcium phosphate, ammonium phosphate, ammonium nitrate, and dolomitic limestone slurry on wheat (Triticum aestivum sp.) root development through the slit of a compacted acid subsoil, and the effects of injection of chemical amendments on the soil chemical properties of acid subsoil. Soil cylinders were prepared using A and B horizons of Marvyn loamy sand (fine‐loamy, siliceous, thermic, Typic Hapludults) soil by placing 56‐cm of subsoil and 10‐cm of topsoil in PVC tubing. A 6‐cm‐thick hardpan was created at the top of the subsoil. Leaf and root concentrations of P were increased by chemical injections in the slit. All amendments increased plant height, but tillering was not affected by chemical amendments. Gypsum blocks placed at 10, 20, and 45 cm indicated a decrease in soil water at the 20‐cm depth 25 days after plant emergence with all amendments except ammonium phosphate. Soil pH was increased and KCl‐extractable aluminum was decreased by dolomitic limestone up to 3.0 cm from zone of injection.  相似文献   

7.
In a two-year (1999–2000) field experiment four Swiss spring wheat (Triticum aestivum L.) genotypes (cvs. ‘Albis’, ‘Toronit’ and ‘Pizol’ and an experimental line ‘L94491’) were compared for genotypic differences in the root parameters that determine uptake potential and nitrogen use efficiency (NUE):root surface area (RSA) and its components, root length density (RLD) and the diameter of the roots. The genotypes were grown under no (N0) and under ample fertilizer nitrogen (N) [ammonium nitrate (NH4NO3); N1; 250 kg N ha?1] supply. Root samples were taken from all the genotypes at anthesis from the subsoil (30–60 cm). Genotypic effects on RLD and RSA were evident only in 2000 and large amounts of N fertilizer usually diminished root growth. Adequate soil moisture in 1999 may have favored the establishment of the root system of all the genotypes before anthesis. Parameters of NUE for each genotype were also determined at anthesis and at physiological maturity. ‘Albis’ the least efficient cv. in recovering fertilizer N (ranged from 36.5 to 61.1%) with the lowest N uptake efficiency (0.47 to 0.79 kg kg?1) had the lowest RLD and RSA in both seasons. Among genotypes ‘Toronit’, a high-yielding cv., efficient in recovering fertilizer N, exhibited the higher NUE (22.4 to 29.3 kg kg?1) and tended to have the highest values of RLD and RSA. Nitrogen fertilization also led to an increase in the proportion of roots with diameters less than 300 μm and decreased the proportion of roots with diameters of 300 to 700 μm. These trends were more pronounced for cv. ‘Pizol’ in 1999 and for cv. ‘Toronit’ in 1999 and 2000. By anthesis in a humid temperate climate, there are no marked differences in the subsoil root growth of the examined genotypes. Some peculiarities on the root growth characteristics of the cultivars ‘Albis’ and ‘Toronit’ may partially explain their different NUE performance.  相似文献   

8.
The main function of deep tillage is to alleviate subsoil compaction, but how long do the benefits of this technique remain? Traffic on loose soil causes a significant increase in soil compaction. Subsoiling and chisel plowing were carried out at 450 and 280 mm depth, respectively on a compacted soil in the west Rolling Pampas region of Argentina. The draft required, physical soil properties, root growth, sunflower (Helianthus annus L. Merr.) yield and traffic compaction over the subsequent two growing seasons were measured. Cone penetrometer resistance was reduced and sunflower yields increased following deep tillage operations. Subsoil compaction caused changes to the root system of sunflower that affected shoot growth and crop yields. Although subsoiling and chiseling had an immediate loosening effect, it was evident that after just 2 years, when traffic intensity was >95 mg km ha−1, re-compaction and settling had occurred in the 300–600 mm depth range.  相似文献   

9.
Sorghum [Sorghum bicolor (L.) Moench] cultivars were planted in 8 cm × 8 cm × 8 cm pots filled with ‘white quartz flintshot’ sand containing 0, 0.25, 0.50, 1.0, or 2.0 mg/kg metolachlor [2‐chloro‐N‐(2‐ethyl‐6‐methylphenyl)‐N‐(2 methoxy‐1‐methylethyl)acetamide] and the pots were watered on alternate days with 100 mL 0.1 M sodium acetate at pH 6.0, 5.5, 5.0, 4.5, or 4.0 to determine the influence of excess H+ and metolachlor concentrations on sorghum root growth. Cultivars utilized were Funk G522DR, SC574, SC283, GP‐10, 58M, and 38M. At pH 4.5 and 4.0 (0 metolachlor), root lengths of Funk G522DR and SC574 were significantly decreased compared to roots from plants grown at pH 6.0. The other four cultivars had decreased root growth at pH 4.0 (0 metolachlor). Metolachlor influence on sorghum cultivar root growth was dependent on pH, cultivar, and metolachlor concentration. None of the cultivars showed increased metolachlor activity which was influenced by pH. Metolachlor (0.25 mg/kg) reversed the influence of excess H+ concentration (pH 4.0) in SC574. Metolachlor (0.5, 1.0, and 2.0 ppmw) reversed the excess H+ concentration inhibition of root growth at pH 4.0 in Funk G522DR.  相似文献   

10.
Abstract

The extent of the rhizosphere was investigated by using root volume and root length in ten replications. The experiment was conducted using split cylindrical pots, 23 cm long and 7.5 cm in diameter. Sorghum (Sorghum bicolor) plants were grown in a calcareous soil of low phosphorus (P) status. Fertilized soil (750 g soil and 250 g sand) was placed in a closed‐bottom PVC tube. At harvest, plant roots were gently removed from the pots and the roots were shaken five times in order to reduce variation between samples. The soil that was easily shaken from the root surface was assumed to be non‐rhizosphere soil, and the soil adhering to the root segment after a gentle shake was considered to be rhizosphere soil. The rhizosphere thickness was found to have a range of 0.39 to 0.64 mm from the root surface (0.51 mm average thickness). Rhizosphere soil mass was also calculated and found to be on average 22% of the total soil mass.  相似文献   

11.
 The combined effects of soil compaction and soil waterlogging on the growth of two rice cultivars (Oryza sativa L., cultivars Kanto 168 and Koshihikari) and soil N transformations were studied in pots. Although waterlogging eliminated initial differences in mechanical resistance between compacted and loose soils, Kanto 168 and Koshihikari roots had, respectively, less biomass and a lower porosity if soil was compacted prior to waterlogging. The cause for this was probably established before waterlogging. Redox values showed that upland soils were well aerated. Loose waterlogged soils contained oxic sites, but compacted waterlogged soils did not. Potential denitrification was stimulated by waterlogging and, to a larger extent, by plant presence. Waterlogging lowered potential nitrifying capacities, by competition between plants and micro-organisms for NH4 + rather than by oxygen shortage. Compaction prior to waterlogging benefited the potential nitrifying capacity of soils with either cultivar and the potential denitrifying capacity for soils with Koshihikari. Compaction had no effect on nitrification or denitrification in upland soils. N recoveries were low, especially in pots without plants, as a result from sampling strategy and N loss. On day 42/43 after potting, total δ15N values of waterlogged pots were positive, whereas after 22 days all pots had negative total δ15N values. Final δ15N values of plant parts from waterlogged and upland soils were positive and negative, respectively. Although the δ15N values generally accorded well with the other results, they did not support higher N losses from compacted waterlogged soils than from loose waterlogged soils with plants, as suggested by potential denitrifying activities. Received: 4 February 2000  相似文献   

12.
Soil aeration is a critical factor for oxygen-limited subsoil processes, as transport by diffusion and advection is restricted by the long distance to the free atmosphere. Oxygen transport into the soil matrix is highly dependent on its connectivity to larger pore channels like earthworm and root colonised biopores. Here we hypothesize that the soil matrix around biopores represents different connectivity depending on biopore genesis and actual coloniser. We analysed the soil pore system of undisturbed soil core samples around biopores generated or colonised by roots and earthworms and compared them with the pore system of soil, not in the immediacy of a biopore. Oxygen partial pressure profiles and gas relative diffusion was measured in the rhizosphere and drilosphere from the biopore wall into the bulk soil with microelectrodes. The measurements were linked with structural features such as porosity and connectivity obtained from X-ray tomography and image analysis. Aeration was enhanced in the soil matrix surrounding biopores in comparison to the bulk soil, shown by higher oxygen concentrations and higher relative diffusion coefficients. Biopores colonised by roots presented more connected lateral pores than earthworm colonised ones, which resulted in enhanced aeration of the rhizosphere compared to the drilosphere. This has influenced biotic processes (microbial turnover/mineralization or root respiration) at biopore interfaces and highlights the importance of microstructural features for soil processes and their dependency on the biopore's coloniser.  相似文献   

13.
植被恢复是防治崩岗侵蚀的重要方法,为研究植物根系对崩岗洪积扇土壤水分状况的影响,以崩岗洪积扇上种植的深根系巨菌草和浅根系宽叶雀稗为研究对象,对其分层取样后,用环刀法测定土壤的密度、孔隙度和最大持水量等物理性质,计算土壤蓄水能力,并用WinRHIZO根系分析系统,测定根长和密度等参数.结果表明:巨菌草和宽叶雀稗的各根系特征指标,均随土层深度的增加而减小,巨菌草各根系指标均大于宽叶雀稗;有植被覆盖下的土壤密度均小于裸地,植被覆盖下土壤总孔隙度和毛管孔隙度均大于裸地,且随土层深度的增加而减小;有植被根系的土壤饱和蓄水量和毛管蓄水量均比裸地高,且与裸地差异显著;在土壤表层,宽叶雀稗增加土壤孔隙性和土壤保水能力大于巨菌草,而在土壤中深层,则巨菌草大于宽叶雀稗;根系改善土壤性质的能力,主要取决于其根长密度和根系总表面积,直径小于0.5mm的根系是影响土壤水分的最主要因子.研究植物根系对改良土壤水分状况的影响,以期为崩岗侵蚀防治中植被种类的筛选和推广提供依据.  相似文献   

14.
Abstract

The measurement of soil, root, and rhizomicrobial respiration has become very important in evaluating the role of soil on atmospheric carbon dioxide (CO2) concentration. The objective of this study was to partition root, rhizosphere, and nonrhizosphere soil respiration during wheat growth. A secondary objective was to compare three techniques for measuring root respiration: without removing shoot of wheat, shading shoot of wheat, and removing shoot of wheat. Soil, root, and rhizomicrobial respiration were determined during wheat growth under greenhouse conditions in a Carwile loam soil (fine, mixed, superactive, thermic Typic Argiaquolls). Total below ground respiration from planted pots increased after planting through early boot stage and then decreased through physiological maturity. Root‐rhizomicrobial respiration was determined by taking the difference in CO2 flux between planted and unplanted pots. Also, root and rhizomicrobial respirations were directly measured from roots by placing them inside a Mason jar. It was determined that root‐rhizomicrobial respiration accounted for 60% of total CO2 flux, whereas 40% was from heterotrophic respiration in unplanted pots. Rhizomicrobial respiration accounted for 18 to 25% of total CO2 flux. Shade and no‐shoot had similar effects on root respiration. The three techniques were not significantly different (p>0.05).  相似文献   

15.
基于两种计算模型的油松与元宝枫根系固土效能分析   总被引:1,自引:0,他引:1  
[目的]定量分析北方常见植物(油松、元宝枫)根系对提高土壤抗剪能力的作用,为更好地评价植物根系固土效能提供理论基础。[方法]选取不同根系面积比(RAR)的油松(Pinus tabulaeformis)根土复合体、元宝枫(Acer truncatum)根土复合体及素土分别进行了不同垂直压力下的直剪试验,得出了油松根土复合体、元宝枫根土复合体及素土的抗剪强度增量。并通过根系的拉伸试验测定了植物根系的抗拉强度,同时使用Wu的根土复合体模型和Pollen的纤维束模型对抗剪强度增量进行模拟并与实际测定的抗剪强度增量进行对比分析。[结果](1)根系主要通过增强土壤的黏聚力来增强土壤的抗剪切强度;(2)植物根系抗拉强度、拔出强度与根系直径都符合幂函数关系,抗拉强度和拔出强度大小存在阈值,根系大于2mm时,根系拔出强度小于根系抗拉强度,小于2mm时则反之;(3)Wu的根土复合体模型高估植物根系固土效果值平均为26.81%,而纤维束模型对根系提高土壤抗剪强度则平均高估9.82%。[结论]相对于Wu模型,纤维束模型对土壤的固土效果的计算更为准确。  相似文献   

16.
Chickpea (Cicer arietinum L.) roots exude carboxylates. While chickpea commonly grows where the topsoil dries out during crop growth, the importance of carboxylate exudation by the roots and mobilization of soil P from below the dry topsoil has not been examined. The study investigates the response of carboxylate exudation and soil P mobilization by this crop to subsoil P fertilizer rate. In constructed soil columns in the glasshouse, the P levels (high, low, and nil P) were varied in the well‐watered subsoil (10–30 cm), while a low level of P in the dry topsoil (0–10 cm) was maintained. At flowering, rhizosphere carboxylates and rhizosphere soil from topsoil and subsoil roots were collected separately and analyzed. The concentration of total carboxylates per unit rhizosphere mass in the subsoil was nearly double that of the topsoil. Plants depleted sparingly soluble inorganic P (Pi), NaOH‐Pi, and HCl‐Pi, along with the labile Pi (water soluble and NaHCO3‐Pi). The P depletion by plants was greater from the subsoil than the topsoil. The study concluded that depletion of sparingly soluble P from the chickpea rhizosphere in the subsoil was linked with the greater levels of carboxylates in the rhizosphere. These findings indicate that chickpea, with its deep rooting pattern, can increase its access to subsoil P when the topsoil dries out during crop growth by subsoil rhizosphere modification.  相似文献   

17.
Aluminum toxicity, associated with soil acidity, is a major growth‐limiting factor for plants in many parts of the world. More precise criteria are needed for the identification of potential Al toxicity in acid soils. The objective of the current study was to relate the acid soil tolerances of two wheat cultivars to three characteristics of an acid Tatum subsoil (clayey, mixed, thermic, typic Hapludult): pH in a 1:1 soil to water suspension; KCl‐extractable Al; and degree of Al saturation. Aluminum‐tolerant ‘BH 1146’ (Brazil) and Al‐sensitive ‘Sonora 63’ (Mexico) wheat cultivars were grown in greenhouse pots of soil treated with CaCO3 to establish final soil pH levels of 4.1, 4.6, 4.7, 4.9, 5.2 and 7.3. Soil Al, Ca and Mg were extracted with 1 N KCl, and Al saturation was calculated as KCl‐Al/KCl Al + Ca + Mg%.

Within the soil pH range of 4.1 to 4.9, BH 1146 tops and roots produced significantly more dry matter than did those of Sonora 63; however, at pH 5.2 and 7.3, the top and root yields of the two cultivars were not significantly different. Significant cultivar differences in yield occurred over a range of 36 to 82% saturation of the Tatum soil. Graphs of relative top or root yields against soil pH, KCl‐extractable Al and Al saturation indicated that the two cultivars could be separated for tolerance to Tatum soil under the following conditions: pH less than 5.2 (1:1 soil‐water); KCl‐Al levels greater than 2 c mole kg‐1 and Al saturations greater than 20%. Results demonstrated that any soil test used to predict Al toxicity in acid soils must take into account the Al tolerances of the plant cultivars involved.  相似文献   

18.
[目的] 探究季冻区公路边坡植物根系对冻融作用影响,为季冻区边坡防护工程的植物选择提供科学参考。[方法] 通过调查季冻区高速公路边坡土壤及植被特征,采用对比分析的方法研究不同植物根系对冻融循环作用的影响。[结果] 3种试验植物根系抵抗冻融破坏的强弱关系依次表现为:刺槐 > 胡枝子 > 紫穗槐。植物根系通过调节土壤物理性质以及发挥根系结构作用影响冻融循环过程,根系的存在调节了土壤含水率从而降低了土体发生融沉或裂缝的概率。[结论] 在季冻区公路边坡冻融破坏防治中,垂直根系生长较深,根系分布范围更广的植物能够提供更好的抵抗冻融破坏的能力。  相似文献   

19.
Information related to the growth of fine roots is important for understanding C allocation in trees and the mechanisms of C cycling in ecosystems. Observations using a camera or scanner embedded in the soil enabled us to obtain continuous images of fine‐root‐growth dynamics. However, these methods are still labor‐intensive because the image analysis has to be conducted manually. We developed an automated method for tracking movement or elongation of fine roots using a sequence of scanner images. We also show how data obtained with these methods can be used for calculating fine‐root behavior. Two A4‐size scanners were buried in a mixed forest in Japan and images were taken continuously from within the soil. We preprocessed these images by extracting the fine‐root area from the images and developed an automated calculation plug‐in we named A‐root for tracking growth movement of the tips of fine roots. A‐root and manual‐tracking results were compared using the same images. The results show the A‐root and manual‐tracking methods yielded similar levels of accuracy. The average growth rate of 17 fine roots tracked using the program was 0.16 mm h–1. The observation of the direction of growth in fine roots showed the direction may be influenced by the original root's growth where the fine roots branched, distribution of soil particles, other roots, and the force of gravity. The A‐root analysis also suggested there may be an interaction between speed of growth and changes in direction of growing fine roots.  相似文献   

20.
Intercropping is an important and widespread land‐management system in the tropics. At two agricultural sites in Central Kenya differing in elevation and soil type Haplic Nitisols (eutric) and Vitric Gleysols (eutric, epiclayic, endoclayic), we investigated the vertical root distributions using the trench wall profile method in single‐crop systems of maize (Zea mays L.) and in intercropping systems of maize and legumes (common bean, Phaseolus vulgaris L.; pigeon pea, Cajanus cajan [L.] Millsp.) to test for possible differences in the use of water and nutrient resources. The physico‐chemical soil properties of the sites were similar and imposed no restrictions to the vertical growth of the roots into soil depths of 1.4 m. The vertical distributions of the fine roots (?? 0.5–2 mm) and very fine roots (?? < 0.5 mm) were quantified by calculating the parameter β which was computed from the cumulative fraction (Y) of the root densities along the depth (d) of the soil profiles (Y = 1 – βd). We found no consistent differences between the single‐crop and the intercropping systems in the rooting depth down to 1.4 m. However, higher β values for fine roots of the intercropping systems were indicative of a more homogeneous vertical root distribution than in the single‐crop fields. In the intercropping fields, 50% of the total number of fine roots were distributed over the uppermost 36 cm of the soil, whereas in the single‐crop fields, 50% of the fine roots were concentrated in the uppermost 15–21 cm. Medium‐sized roots (?? > 2–5 mm) were detected in the intercropping fields only. The more homogeneous root distribution in the intercropping fields likely indicates a more efficient use of the limited resources nutrients and water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号