首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was conducted to evaluate the roles of glycine betaine (GB) in mitigating deleterious effect of salt stress on lettuce. Lettuce plants were subjected to two salinity (0 and 100 mmol l?1 NaCl) and four GB levels (0, 5, 10, 25 mmol l?1). Salinity resulted in a remarkable decrease in growth parameters, relative leaf water content and stomatal conductance. Plants subjected to salt stress exhibited an increase in membrane permeability (MP), lipid peroxidation (MDA), leaf chlorophyll reading value, H2O2 and sugar content. Exogenous foliar applications of GB reduced MP, MDA and H2O2 content in salt-stressed lettuce plants. Salt stress increased Na and generally decreased other nutrient elements. GB reduced Na accumulation, but significantly increased other element contents under salinity conditions. The study showed that gibberellic acid (GA) and salicylic acid (SA) content in salt-stressed plants were lower than those of nonstressed plants. However, salinity conditions generally increased the abscisic acid content. GB treatments elevated the concentrations of GA, SA and indole acetic acid (IAA) at especially 10 and 25 mmol l?1 GB under salt stress conditions. It could be concluded that exogenous GB applications could ameliorate the harmful effects of salt stress in lettuce.  相似文献   

2.
Abstract

The influence of silicon (Si) (2.5 mM), sodium chloride (NaCl) (100 mM), and Si (2.5 mM) + NaCl (97.5 mM) supply on chlorophyll content, chlorophyll fluorescence, the concentration of malondialdehyde (MDA), H2O2 level, and activities of superoxide dismutase (SOD; E.C.1.15.1.1.), ascorbate peroxidase (APx; E.C.1.11.1.11.), catalase (CAT; E.C.1.11.1.6.), guaiacol peroxidase (G-POD; E.C.1.11.1.7.) enzymes, and protein content were studied in tomato (Lycopersicon esculentum Mill c.v.) leaves over 10-day and 27-day periods. The results indicated that silicon partially offset the negative impacts of NaCl stress with increased the tolerance of tomato plants to NaCl salinity by raising SOD and CAT activities, chlorophyll content, and photochemical efficiency of PSII. Salt stress decreased SOD and CAT activities and soluble protein content in the leaves. However, addition of silicon to the nutrient solution enhanced SOD and CAT activities and protein content in tomato leaves under salt stress. In contrast, salt stress slightly promoted APx activity and considerably increased H2O2 level and MDA concentration and Si addition slightly decreased APx activity and significantly reduced H2O2 level and MDA concentration in the leaves of salt-treated plants. G-POD activity was slightly decreased by addition of salt and Si. Enhanced activities of SOD and CAT by Si addition may protect the plant tissues from oxidative damage induced by salt, thus mitigating salt toxicity and improving the growth of tomato plants. These results confirm that the scavenging system forms the primary defense line in protecting oxidative damage under stress in crop plants.  相似文献   

3.
The study examined the effects of kinetin (KIN) and indoleacetic acid (IAA) applied as seed treatment or sprayed on leaves of salinity stressed plants. Five -week old maize (Zea mays L. cv. ‘DK 647 F1’) plants were grown in pots containing peat and perlite in 1:1 (v/v) mixture. Different treatments used were: 1) control (nutrient solution alone), 2) salt stress [100 mM sodium chloride (NaCl)], 3) 100 mM NaCl and 1 mM kinetin (KIN), 4) 100 mM NaCl and 2 mM KIN, 5) 100 mM NaCl and 1 mM indole acetic acid (IAA), 6) 100 mM NaCl and 2 mM IAA, 7) 100 mM NaCl and 25 mg L?1 KIN and 8) 100 mM NaCl and 25 mg L?1 IAA. In treatments 7 and 8 application was to the seeds, for treatments 3-6 it was applied to foliage. The seeds were soaked in KIN or IAA solution for 12 h. Salt stress reduced the total dry matter, chlorophyll content, and relative water content (RWC), but increased proline accumulation, activities of superoxide dismutase (SOD; EC 1.15.1.1), peroxidase (POD; EC. 1.11.1.7), catalase (CAT; EC. 1.11.1.6) and polyphenol oxidase (PPO; 1.10.3.1) and electrolyte leakage. Both foliar applications of KIN and IAA treatments overcame to variable extents the adverse effects of NaCl stress on the above mentioned physiological parameters. However, seed treatments with KIN or IAA did not improve salinity tolerance in maize plants. Furthermore, foliar application or seed treatments with KIN and IAA reduced the activities of antioxidant enzymes in the salt stressed-plants. Salt stress lowered some macronutrient concentrations [calcium (Ca) and potassium (K) in leaves and roots, phosphorus (P) in roots] but foliar application of both KIN and IAA increased Ca in both leaves and roots and P in leaves. Foliar application of IAA increased K concentrations in leaves of the salt-stressed plants. Foliar application of KIN and IAA, especially at 2 mM concentration, counteracted some of the adverse effects of NaCl salinity by causing the accumulation of proline and essential inorganic nutrients as well as by maintaining membrane permeability.  相似文献   

4.
Abstract

In this research the effect of foliar application of selenium (Se) at four levels (Na2OSe4; 0, 5, 10 and 20?mg L?1) was evaluated on some phytochemical characteristics of Sultana grapevine under different salinity levels (NaCl; 0 or 75?mM). The vines were fed twice a week with Hoagland nutrient solution and Se was foliar applied twice with 24 intervals. During growing period, plant height, leaf number and leaf area were recorded. Moreover, at the end of experiment, mature leaves from middle nods of canes were used for measurement of some phytochemical indices. According to results, Se application had a positive effect on plant height, leaf numbers, leaf area and photosynthetic pigments content especially at 5?mg L?1 and to some extent 10?mg L?1 Se levels. Under salinity stress, foliar application of Se at 5?mg L?1 considerably decreased vines leaves electrolyte leakage and lipid peroxidation values compared to non se-treated plants under salinity stress condition. Selenium had an additive effect on salinity stress (75?mM NaCl) induced accumulation of total phenol, total flavonoid, soluble sugars and proline content in leave of vines. Moreover, the interaction of salinity and Se at 5 and 10?mg L?1 improved leaves antioxidant enzymes activities in Sultana grapevine. Likewise, foliar application of Se improved leaf mineral content in 75?mM NaCl -treated vines. Totally, foliar application of selenium (Se at 5 or 10?mg L?1) increased salt tolerance through improvement in nutritional balance and by enzymatic and non-enzymatic antioxidant capacity in grapevine leaves.  相似文献   

5.
Seeds of lettuce, variety Romaine were subjected to different priming treatments such as water, potassium nitrate (KNO3) and gibberellic acid (GA3). Seedlings obtained from primed (Pr) and nonprimed (NP) seeds were grown in a hydroponic culture system supplemented with 0, 100 or 200 mM sodium chloride (NaCl). The different physiological and biochemical responses were studied 15 days after treatment. Under NaCl, the dry weight was higher in plants derived from hydro-primed (HP) seeds when compared to NP, osmoprimed (KNO3P), and hormonal primed (GA3P) ones. Under control and 100 mM NaCl treatment, malondialdehyde (MDA) content and EL did not show any correlation with activities of gaiacol peroxidase (GPX) and catalase (CAT), but did with the increase in reduced ascorbate (AsA) and total ascorbate contents. The results indicated that plants derived from HP seeds exhibited higher adaptive potential under salinity stress. Our findings suggest that a hydropriming technique can be used as a simple commercial approach to alleviate the effects of NaCl induced stress in lettuce plants.  相似文献   

6.
The antioxidative protection system as adaptation strategy to high soil salinity in the leaves of two tomato (Lycopersicon esculentum Mill.) hybrids (Buran F1 and Berberana F1) was investigated. Changes in the activity of superoxide‐dismutase (SOD, EC 1.15.1.1), peroxidase (POD, EC 1.11.1.7), ascorbate peroxidase (APX, EC 1.11.1.11), as well as total and oxidized ascorbate concentrations (AA and DHA) in the plant leaves subjected to three salinity levels (EC 3.80 dS m−1, 6.95 dS m−1, and 9.12 dS m−1) relative to non‐saline control were analyzed during the fruiting phase. The obtained results clearly indicate a relation between SOD activity and AA concentration in the antioxidative protection without any peroxidase‐related H2O2 detoxification. Increased SOD activity accompanied by high AA concentration was noticed at all salinity levels, but the response of hybrids was specific for the particular salt concentration. The first salinity level (EC 3.80 dS m−1) induced the highest level of AA in the Buran F1 (70%), while in Berberana F1 hybrid leaves the highest AA concentration (64%) was noticed at the third salinity level (9.12 dS m−1). All salinity levels caused a decline in POD and APX activities in both hybrids. The possibility of a predominant role of ascorbate and SOD in the antioxidative protection of mature tomato leaves under long‐term salt stress is discussed.  相似文献   

7.
《Journal of plant nutrition》2013,36(7):1367-1382
Abstract

The effect of supplementary potassium nitrate (KNO3) on growth and yield of bell pepper (Capsicum annum cv. 11B 14) plants grown in containers under high root‐zone salinity was investigated. Treatments were (1) control, soil only and (2) high salt treatment, as for control plus 3.5 g NaCl kg?1 soil. Above treatments were combined with or without either 0.5 or 1 g supplementary KNO3 kg?1 soil. Plants grown at high NaCl had significantly less dry matter, fruit yield, and chlorophyll than those in the control treatment. Supplementing the high salt soil with 0.5 and 1 g KNO3 kg?1 increased plant dry matter, fruit yield, and chlorophyll concentrations as compared to high salt treatment. Membrane permeability increased significantly with high NaCl application, but less so when supplementary KNO3 was applied. High NaCl resulted in plants with very leaky root systems as measured by high K efflux; rate of leakage was reduced by supplementary KNO3. These data suggest that NaCl status affect root membrane integrity. Sodium (Na) concentration in plant tissues increased in leaves and roots in the elevated NaCl treatment as compared to control treatment. Concentrations of K and N in leaves were significantly lower in the high salt treatment than in the control. For the high salt treatment, supplementing the soil with KNO3 at 1 g kg?1 resulted in K and N levels similar to those of the control. These results support the view that supplementary KNO3 can overcome the effects of high salinity on fruit yield and whole plant biomass in pepper plants.  相似文献   

8.
Sunflower (Helianthus annuus L.) is an important oilseed crop with clear sensibility to salt stress. In this study, we evaluated silicon (Si) effect on the nitrogen metabolism and antioxidant enzyme activity in sunflower plants subjected to salinity. A 4 × 4 factorial arrangement of treatments in a completely randomized design with four replicates was used, consisting of four concentrations of Si (0.0; 1.0; 1.5; and 2.0 mM) and four concentrations of NaCl (0; 50; 100; and 150 mM) in the nutrient solution. The salinity reduced the nitrate content, but the increasing Si concentration in the medium improved the nitrate uptake, leading this ion to accumulate in salt-stressed plants, particularly in the roots. The nitrate reductase activity and the proline and soluble N-amino contents were also significantly increased by Si in salt conditions. The salinity increased electrolyte leakage and reduced the activity of enzymes superoxide dismutase, ascorbate peroxidase and catalase in sunflower plants, but these decreases were reversed by Si at 2 mM, thus alleviating the effects of salinity on these variables. We conclude that Si is able to positively modulate nitrogen metabolism and antioxidant enzyme activities in sunflower plants in order to alleviate the harmful effects of salinity.  相似文献   

9.
In recent years, considerable interest has been focused on the use of physiological parameters as selection criteria in salt tolerance ranking. Eighteen bread wheat (Triticum aestivum L.) landraces from the west area of the Urmia Saline Lake were grown in a greenhouse in the Department of Plant Biology and Halophytes Biotechnology Center, Azarbaijan University of Tarbiyat Moallem, Tabriz, Iran to study the effects of increasing levels of sodium chloride (NaCl) (control, 75, and 150 mM) on the plant leaves. The experimental design was factorial with a randomized complete block with three replications. The results showed salinity caused an obvious decrease in growth of all landraces. Physiological parameters such as lipid peroxidation, hydrogen peroxide (H2O2) content, and cell membrane injury increased with increasing salinity levels with different degrees among the landraces. Salt stress increased the sodium (Na+) accumulation coupled with a decrease in leaf potassium (K+) depending on salinity levels. The analysis of variance showed significant effects of salinity, landraces and their interactions in all studied parameters. The landraces were ranked for salt tolerance indexes, and cluster group ranking ordered landraces from tolerant to sensitive and their properties for salt stress tolerance are open for further research.  相似文献   

10.
Abstract

A greenhouse experiment was conducted on two salt‐tolerant, two moderately tolerant, and two sensitive Iranian and exotic bread wheat cultivars and their F1 generations to investigate the effect of salt stress on ion contents of young leaves, biomass yield, and salt stress tolerance index. The materials were evaluated in gravel culture under high salinity (EC=22.5 dSm?1) and nonstress (EC=2.0 dSm?1) conditions. Results of stress intensity showed that K+/Na+ ratio, biomass yield, and Na+ concentration were most affected by salt stress. There was no genetic relationship between Mg2+ and Ca2+ contents with salt tolerance. However, strong relationships were observed among K+/Na+ ratio, biomass yield, and stress tolerance index. Factor analysis revealed four factors, which explained 99.79% of the total variation among characters. Three‐dimensional plots based on the first three factor scores confirmed that the most salt‐tolerant cultivar was Roshan (an old Iranian cultivar), and Roshan×Alvand and Kharchia×Roshan and their reciprocal crosses were the best salt‐tolerant crosses.  相似文献   

11.
Abstract

The effects of exogenous NaCl and silicon on ion distribution were investigated in two alfalfa (Medicago sativa. L.) cultivars: the high salt tolerant Zhongmu No. 1 and the low salt tolerant Defor. The cultivars were grown in a hydroponic system with a control (that had neither NaCl nor Si added), a Si treatment (1 mmol L?1 Si), a NaCl treatment (120 mmol L?1 NaCl), and a Si and NaCl treatment (120 mmol L?1 NaCl + 1 mmol L?1 Si). After 15 days of the NaCl and Si treatments, four plants of the cultivars were removed and divided into root, shoot and leaf parts for Na+, K+, Ca2+, Mg2+, Fe3+, Mn2+, Cu2+ and Zn2+ content measurements. Compared with the NaCl treatment, the added Si significantly decreased Na+ content in the roots, but notably increased K+ contents in the shoots and leaves of the high salt tolerant Zhongmu No.1 cultivar. Applying Si to both cultivars under NaCl stress did not significantly affect the Fe3+, Mg2+ and Zn2+ contents in the roots, shoots and leaves of Defor and the roots and shoots of Zhongmu No.1, but increased the Ca2+ content in the roots of Zhongmu No.1 and the Mn2+ contents in the shoots and leaves of both cultivars, while it decreased the Ca2+ and Cu2+ contents of the shoots and leaves of both cultivars under salt stress. Salt stress decreased the K+, Ca2+, Mg2+ and Cu2+ contents in plants, but significantly increased Zn2+ content in the roots, shoots and leaves and Mn2+ content in the shoots of both cultivars when Si was not applied. Thus, salt affects not only the macronutrient distribution but also the micronutrient distribution in alfalfa plants, while silicon could alter the distributions of Na+ and some trophic ions in the roots, shoots and leaves of plants to improve the salt tolerance.  相似文献   

12.
The effects of boron (B) and high irradiance (HI) on the growth and activities of antioxidant enzymes have been investigated in cowpea plants (Vigna unguiculata L. Walp. ‘P152’). A significant decrease in root and shoot lengths were observed in B-deficient (0 ppm) and B-excess (50 ppm) plants compared to B-sufficient (0.5 ppm) plants. Under B and B + HI stress, significant increase in membrane permeability (EC), lipid peroxidation (MDA) and hydrogen peroxide (H2O2) were observed in B-deficient and B-excess leaves. Under B and B + HI stress, the superoxide dismutase (SOD) activity was found to be significantly high whereas the peroxidase (POX), polyphenol oxidase (PPO) activities and the non-enzymatic antioxidants, ascorbic acid and proline accumulation were found to be significantly decreased in B-deficient and B-excess leaves which showed the B inefficiency and susceptible nature of the cowpea plants to B and B + HI stress.  相似文献   

13.
Priming offers an effective means for counteracting different stresses induced oxidative injury and raising seed performance in many crop species. The present study was carried out to investigate the ability of potassium nitrate (KNO3) and urea to promote the tolerance of different maize hybrids to drought and salt stresses to identify some biochemical parameters associated with KNO3 and urea induced resistance in maize seedlings. An experiment was conducted in a controlled environment of the laboratory at the college of agriculture, Shiraz University, Shiraz Iran, during 2010. The first factor was stress type and intensity at five levels; moderate drought, severe drought, moderate salt, severe salt, and control (without stress). Seed priming was the second factor; water as control, KNO3, and urea, and maize hybrids, including Maxima, SC704, Zola, and 304 were the third factor. Results indicated that the highest chlorophyll a (Ch a), chlorophyll b (Ch b), total chlorophyll (Ch T) contents, and carotenoids (Car) were found in no stress treatments and the most proline, protein contents, superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities in severe drought treatment. Also, results revealed that generally, drought and salinity stresses decreased the amount of Ch a and the lowest Ch a was recorded for severe salinity stress (4.29 mg g?1). Stresses caused decrease in Ch b, but the effect of sever salinity level was higher than the others. Priming of KNO3 had significantly higher proline content than water and urea priming. The SC704 and 304 hybrids showed higher proline content than the other ones. Finally, the maize seed KNO3 and urea priming lead to high activities of antioxidant defensive enzymes and increase the tolerance level to abiotic stresses such as salt and drought.  相似文献   

14.
Three rice genotypes, IR 74802, IR 73104 and IR 72593, along with FL 478 and IR 29 as resistant and susceptible controls, respectively, were subjected to 21 days' salinity stress at the seedling stage in modified yoshida solution with two salt levels (60 and 120 mM NaCl). The results indicated that there was a profound increase in proline and ascorbic acid levels, and in the activity of nitrate reductase and antioxidant enzymes, i.e. catalase, peroxidase and ascorbate peroxidase, as well as malondialdhyde and membrane stability index, which were associated with salt tolerance. Salt stress had a significant and drastic effect on all parameters when the salinity level increased to 120 mM NaCl. The increased enzyme activity was directly related to an increased membrane stability index, as in IR 72593, which is identified as the most tolerant among the genotypes tested. It is clearly confirmed that predicting tolerance at the early seedling stage is the best way to assess the salinity tolerance level by utilizing physiological parameters, especially antioxidant enzyme activities which are found to be closely associated with salinity tolerance. Physiological adaptation of the plant to NaCl salt stress resulted in enhanced activity of stress-related enzymes and low sodium uptake in tolerant genotypes.  相似文献   

15.
Abstract

Bell pepper (Capsicum annuum cv. Urfa Isoto) and cucumber (Cucumis sativus cv. Beith Alpha F1) were grown in pots containing field soil to investigate the effects of supplementary potassium phosphate applied to the root zone of salt‐stressed plants. Treatments were (1) control: soil alone (C); (2) salt treatment: C plus 3.5 g NaCl kg?1 soil (C + S); and (3) supplementary potassium phosphate: C + S plus supplementary 136 or 272 mg KH2PO4 kg?1 soil (C + S + KP). Plants grown in saline treatment produced less dry matter, fruit yield, and chlorophyll than those in the control. Supplementary 136 or 272 mg KH2PO4 kg?1 soil resulted in increases in dry matter, fruit yield, and chlorophyll concentrations compared to salt‐stressed (C + S) treatment. Membrane permeability in leaf cells (as assessed by electrolyte leakage from leaves) was impaired by NaCl application. Supplementary KH2PO4 reduced electrolyte leakage especially at the higher rate. Sodium (Na) concentration in plant tissues increased in leaves and roots in the NaCl treatment. Concentrations of potassium (K) and Phosphorus (P) in leaves were lowered in salt treatment and almost fully restored by supplementary KH2PO4 at 272 mg kg?1 soil. These results clearly show that supplementary KH2PO4 can partly mitigate the adverse effects of high salinity on both fruit yield and whole plant biomass in pepper and cucumber plants.  相似文献   

16.
Drip irrigation offers potential for rice (Oryza sativa L.) production in regions where water resources are limited. However, farmers in China’s Xinjiang Province report that drip-irrigated rice seedlings sometimes suffer salt damage. The objective of this study was to learn more about the effects of soil salinity and soil temperature on the growth of drip-irrigated rice seedlings. The study consisted of a two-factor design with two soil salinity treatments (0 and 1.8 g kg?1 NaCl) and three soil temperature treatments (18°C, 28°C and 36°C). The results showed that shoot biomass, root biomass and root vigor were greatest when seedlings were grown with no salt stress (0 g kg?1 NaCl) at 28°C. Moderate salt stress (1.8 g kg?1 NaCl) combined with high temperature (36°C) significantly reduced root and shoot biomass by 39–53%. Moderate salt stress and high temperature also increased root proline concentration by 77%, root malonyldialdehyde concentration by 60% and seedling mortality by 60%. Shoot and root Na+ concentrations, shoot and root Na+ uptake and the Na+ distribution ratio in shoots were all the greatest when moderate salt stress was combined with high temperature. In conclusion, high soil temperature aggravates salt damage to drip-irrigated rice seedlings. Therefore, soil salinity should be considered before adopting drip-irrigation for rice production.  相似文献   

17.
Application of plant growth regulator (PGR) may alleviate some negative effects of environmental stresses such as salinity. A controlled environment experiment was conducted to study barley (Hordeum vulgare L. cv. Reyhane) growth, yield, antioxidant enzymes and ions accumulation affected by PGRs under salinity stress conditions at Shiraz University during 2012. The treatments were PGRs at four levels—water (as control), cycocel (CCC, 19 mM), salicylic acid (SA, 1 mM), and jasmonic acid (JA, 0.5 mM)—and four salinity levels—no stress (0.67 dS m?1, as control), 5, 10, and 15 dS m?1, which were arranged in a factorial experiment based on completely randomized design with four replicates. The results showed that salinity stress significantly decreased plant height, peduncle length, leaf area, ear length, grain number, dry weight, grain yield, harvest index, potassium (K+) accumulation, and potassium/sodium (K+/Na+) concentration ratio, which were closely associated with stress severity. However, PGRs compensated some of these negative effects, so that SA foliar application had the most ameliorative effect. Salt stress also increased Na+ accumulation as well as the activity of peroxidase, catalase, and superoxide dismutase (SOD). Since ion discrimination and enhanced antioxidant enzymes are associated with salt tolerance, in this experiment PGRs application might have enhanced K+ accumulation and antioxidant enzyme activity. The activity of SOD and K+/Na+ ratio were found to be useful in salt tolerance manipulation in barley plants.  相似文献   

18.
The effects of seed soaking with gibberellic acid (GA3) on germinability of conventional corn variety ‘Nongda 108’ and super sweet corn variety ‘Chaotian 3’ were investigated under deep-sowing condition. GA3 soaking significantly improved seed germination and mesocotyl elongation of both varieties under 10 or 6 cm sowing depth. The most significant promotion occurred at 0.175 g L?1 GA3 in ‘Nongda 108’ and 0.035 g L?1 GA3 in ‘Chaotian 3’. To further illustrate the physiological explanations, seed respiration was estimated from dehydrogenase activity test and oxygen-sensing test. Dehydrogenase activities of both varieties were dramatically promoted after GA3 soaking. Compared with water soaking, the dehydrogenase activity in 0.175 g L?1 GA3-soaked seeds of ‘Nongda 108’ and 0.035 g L?1 GA3-soaked ones of ‘Chaotian 3’ was increased by 15.4% and 78.8%, respectively. Oxygen-sensing test showed that increased metabolism time (IMT) critical oxygen pressure (COP) and relative germination time (RGT) were decreased while oxygen metabolism rate (OMR) and relative germination rate (RGR) were increased in GA3-soaked seeds, suggesting that exogenous GA-accelerated seed respiration. Our results suggested that seed soaking with exogenous GA3 was a simple and practicable method to improve deep-sowing tolerance during corn seed germination, and the significant promotions were attributed to vigorous respiratory metabolism.  相似文献   

19.
Abstract

Growth response of a halophyte species, Suaeda salsa (L.) Pall, to graded NaCl concentrations was examined under water culture conditions. Growth increased with increasing NaCl concentration from 2 to 200 mol m?3, but decreased at NaCl concentrations above 200 mol m?3. Maximum growth was attained at 50 to 200 mol m?3. The role of Na and Cl in the growth stimulation by NaCl was examined by growing S. salsa in nutrient solutions with or without Na and Cl separately at 5 and 50 mol m?3. The growth stimulation induced by Cl was greater than that induced by Na, and Na did not significantly induce growth stimulation. The effect of Na or Cl on O2 evolution from leaves was examined under 5 and 50 mol m?3 concentrations using an oxygen electrode. Oxygen evolution from leaves in –Cl treatments was smaller than that in +Cl treatments both at 5 and 50 mol m?3. The O2 evolution in Na treatments with Cl was similar to that at NaCl. These results indicated that the mechanism of growth stimulation induced by Cl was mainly an increased photosystem II of photosynthesis in leaves. The contribution of Na on the growth stimulation of S. salsa by NaCl was smaller than Cl.  相似文献   

20.
Salt-affected soils are widespread, particularly in arid climates, but information on nutrient dynamics and carbon dioxide (CO2) efflux from salt-affected soils is scarce. Four laboratory incubation experiments were conducted with three soils. To determine the influence of calcium carbonate (CaCO3) on respiration in saline and non-saline soils, a loamy sand (6.3% clay) was left unamended or amended with NaCl to obtain an electrical conductivity (EC) of 1.0 dS?m?1 in a 1:5 soil/water extract. Powdered CaCO3 at rates of 0%, 0.5%, 1.0%, 2.5%, 5.0% and 10.0% (w/w) and 0.25-2 mm mature wheat residue at 0% and 2% (w/w) were then added. Cumulative CO2-C emission from the salt amended and unamended soils was not affected by CaCO3 addition. To investigate the effect of EC on microbial activity, soil respiration was measured after amending a sandy loam (18.8% clay) and a silt loam (22.5% clay) with varying amount of NaCl to obtain an EC1:5 of 1.0–8.0 dS?m?1 and 2.5 g glucose C?kg?1 soil. Soil respiration was reduced by more than 50% at EC1:5?≥?5.0 dS?m?1. In a further experiment, salinity up to an EC1:5 of 5.0 dS?m?1 was developed in the silt loam with NaCl or CaCl2. No differences in respiration at a given EC were obtained between the two salts, indicating that Na and Ca did not differ in toxicity to microbial activity. The effect of different addition rates (0.25–2.0%) of mature wheat residue on the response of respiration to salinity was investigated by adding NaCl to the silt loam to obtain an EC1:5 of 2.0 and 4.0 dS?m?1. The clearest difference between salinity levels was with 2% residue rate. At a given salinity level, the modelled decomposition constant ‘k’ increased with increasing residue addition rate up to 1% and then remained constant. Particulate organic carbon left after decomposition from the added wheat residues was negatively correlated with cumulative respiration but positively correlated with EC. Inorganic N (NH 4 + -N and NO 3 ? -N) and resin P significantly decreased with increasing salinity. Resin P was significantly decreased by addition of CaCl2 and CaCO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号