首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
基于无人机高光谱影像的引黄灌区水稻叶片全氮含量估测   总被引:18,自引:14,他引:4  
实时监测水稻氮素状况对于评估水稻长势及精准田间管理意义重大。为确定宁夏引黄灌区水稻叶片全氮含量的最优高光谱估测方法,该文依托不同氮素水平水稻试验,基于成像高光谱数据和无人机高光谱影像,综合运用统计分析及遥感参数成图技术,对比分析光谱指数与偏最小二乘回归方法预测水稻叶片全氮含量的精确度和稳健性。结果表明,以组合波段738和522 nm光谱反射率的一阶导数构成的比值光谱指数(ratio spectral index,RSI)构建的线性模型为水稻叶片全氮含量的最优估测模型(检验R2为0.673,均方根误差为0.329,相对分析误差为2.02);无人机高光谱影像反演的水稻叶片全氮含量分布范围(1.28%~2.56%)与地面实际情况较相符(1.34%~2.49%)。研究结果可为区域尺度水稻氮素含量的空间反演及精准农业的高效实施提供科学和技术依据。  相似文献   

2.
水稻叶片氮素及籽粒蛋白质含量的高光谱估测模型   总被引:4,自引:0,他引:4  
研究水稻叶片氮素和籽粒蛋白质含量的高光谱快速、无损监测方法,对于水稻营养诊断、籽粒品质监测及氮肥高效利用具有重要意义。本文通过水稻盆栽试验,测定水稻叶片氮素、籽粒蛋白质含量和冠层光谱,采用不同的光谱建模方法来提高氮素、籽粒蛋白质含量的估测精度。先用主成分分析(PCA)方法进行特征波段的提取,再用多元线性回归(MLR)、人工神经网络(ANN)和偏最小二乘回归(PLSR)进行建模。结果表明,水稻叶片氮素和籽粒蛋白质含量与特征光谱存在很好的模型关系,3种模型预测的决定系数(R2p)均在0.847以上,并以PLSR模型的预测效果为最好,可以实现水稻氮素营养和籽粒品质的高光谱估测。  相似文献   

3.
黑土土壤中全氮含量的高光谱预测分析   总被引:16,自引:5,他引:11  
为实现快速、准确估测土壤氮素含量水平,推动土壤信息化管理进程,该研究利用ASD2500高光谱仪在室内条件下测定了风干土壤样品的可见—近红外光谱。结果表明,通过不同的变换,光谱反射率对数的一阶导数与土壤全氮含量相关性得到增强,以400~600 nm波段范围内相关性最好。该文确定了以反射率对数的一阶导数光谱预测黑土全氮(TN)含量的最佳回归模型,模型所用的波段为可见光波段的556 nm、近红外的1 642和2 491 nm。同时,也确定了利用由可见光波段550和450 nm组成的归一化光谱指数预测黑土TN含量的最佳预测模型。模型通过验证达到较好的效果:利用反射率对数的一阶导数、归一化光谱指数对土壤TN的预测R2分别为0.863、0.829,均方根误差RMSE分别为0.122、0.152。  相似文献   

4.
苏北沿海滩涂地区土壤有机质含量的高光谱预测   总被引:12,自引:6,他引:6  
基于反射高光谱快速、无损的检测优势,以苏北沿海滩涂地区不同成陆年代土壤作为光谱信息源,应用偏最小二乘回归(PLSR)方法,研究了原始反射光谱(REF)、微分光谱(FDR)、反射率倒数的对数(lg(1/R))和波段深度(BD)对不同成陆年代土壤有机质含量的预测精度。结果表明,不同成陆年代土壤有机质含量预测的最佳光谱指标存在差异。REF是构建总体样本有机质含量PLSR预测模型的最佳光谱指标,均方根误差(RMSE)和相关系数(r)分别为2.7231和0.8701;FDR是预测成陆千年土壤样本有机质含量的最佳光谱指标,RMSE和r分别为2.0110和0.9436;BD所构建的成陆百年土壤有机质含量的PLSR预测模型为最优,RMSE和r分别为2.7051和0.8770。相关分析表明,可见光波段、以1 400 nm为中心及1 900~2 450 nm的红外波段是估算土壤有机质含量的最佳波段。  相似文献   

5.
利用高光谱遥感技术监测小麦土壤重金属污染   总被引:2,自引:1,他引:1  
为了探讨基于小麦叶片高光谱间接估测土壤重金属含量的潜力,该研究以江苏省宜兴市徐舍镇为研究区域,于2019-2020年采集农田土壤样品和小麦叶片光谱,经7种不同的光谱变换预处理后,以遗传算法(genetic algorithm,GA)优化的偏最小二乘回归算法(partial least squares regression,PLSR)对预处理后的光谱建立土壤重金属镉(Cd)和砷(As)含量的估测模型,并对模型结果进行精度评价。研究结果表明:1)光谱预处理技术能够突出光谱中的一些隐藏信息,对小麦叶片光谱进行微分变换、多元散射校正、标准正态变换等数学变换后更加有利于提取光谱敏感信息。2)GA-PLSR相较于一般的PLSR方法提高了模型精度,将GA用于光谱波段选择可以优化模型精度和提高稳定性。3)土壤Cd含量的最佳估测模型为标准正态变换预处理光谱与GA-PLSR结合,其外部验证的决定系数为0.87、均方根误差为0.04 mg/kg、相对分析误差为2.72;土壤As含量的最佳估测模型为多元散射校正预处理光谱与GA-PLSR结合,其外部验证的决定系数为0.91、均方根误差为0.32 mg/kg,相对分析误差为3.25。因此,能够利用小麦叶片高光谱间接估测土壤重金属Cd和As含量,该研究为将来实现定量、动态、无损遥感监测大面积农田土壤重金属污染状况提供参考依据。  相似文献   

6.
基于高光谱的寒地水稻叶片氮素含量预测   总被引:2,自引:2,他引:2  
为快速、无损和准确地诊断水稻营养状况,开展了基于高光谱成像技术的寒地水稻叶片氮素含量预测研究。以不同施氮水平下的水稻叶片为研究对象,利用高光谱成像技术,分析拔节期水稻叶片光谱,采用全波段高光谱数据、连续投影算法及分段主成分分析(segmented principal components analysis,SPCA)与相关分析(correlation analysis,CA)相结合的方法建立多种回归分析模型,并对模型进行检验和筛选。结果表明:随着施氮水平提高,水稻叶片反射率在可见光区域降低,在近红外区域升高。在校正集决定系数上,基于多元逐步回归分析的全波段模型较好,校正集决定系数为0.821,校正集均方根误差RMSEC=0.079;在预测集决定系数上,基于SPCA-CA结合多元回归分析的多变量单波段指数、差值指数、双差值指数模型较好,预测集决定系数为0.869,预测集均方根误差RMSEP=0.085。该研究结果为快速检测水稻叶片氮素含量及水稻生长期间精确施肥管理提供了参考。  相似文献   

7.
砂姜黑土有机质含量高光谱估测模型构建   总被引:1,自引:1,他引:0  
为快速估测砂姜黑土有机质含量,该研究以河南省商水县砂姜黑土为对象,采用光谱指数和遗传算法结合支持向量机构建砂姜黑土有机质估测模型。结果表明,以Savitzky-Golay(SG)平滑后的一阶导数光谱792和1 389 nm两波段组合构建的比值指数表现最好,建模集决定系数为0.81。利用独立的样本验证,预测决定系数和均方根误差分别为0.91和1.56 g/kg。而相同样本经遗传算法筛选敏感波段结合支持向量机回归构建的模型以SG平滑的一阶导数光谱表现最好,建模集和验证集决定系数分别为0.95和0.91,均方根误差分别为1.01和1.69 g/kg。基于遗传算法结合支持向量机回归和光谱指数2种方法构建的有机质含量估测模型均表现出较高的精度,前者稍优于后者,可用于对砂姜黑土有机质含量的有效估测。该研究成果可为砂姜黑土有机质含量的快速定量估算提供依据和参考。  相似文献   

8.
结合SPA和PLS法提高冬小麦冠层全氮高光谱估算的精确度   总被引:3,自引:1,他引:2  
【目的】 冠层高光谱全波段信息可以在小麦拔节期快速无损地估算叶片的氮含量。本研究结合连续投影算法 (SPA) 和偏最小二乘 (PLS) 技术,筛选了冬小麦拔节期冠层光谱对叶片氮含量的敏感特征波段,以期为冬小麦关键生育期氮素含量的遥感估算提供理论依据和技术支持。 【方法】 以陕西关中地区2015—2016年冬小麦小区试验为基础,基于连续投影算法 (SPA) 提取冬小麦叶片全氮含量的冠层光谱敏感波段,并结合偏最小二乘 (PLS) 回归法建立基于敏感特征波段的冬小麦拔节期叶片氮含量估算模型。 【结果】 SPA算法从冬小麦338~2510 nm的冠层光谱中优选出了1985 nm、2474 nm、1751 nm、1916 nm、2507 nm、1955 nm、2465 nm和344 nm共计8个叶片全氮含量的敏感特征波段,波段数目下降了98.9%,有效降低了光谱信息的冗余;基于敏感特征波段构建的叶片氮含量偏最小二乘回归模型的决定系数和均方根误差分别为0.82和0.28,模型验证方程的决定系数和均方根误差分别为0.84和0.21,模型的相对预测偏差大于2,具有较高的精度和良好的预测能力。 【结论】 与常用植被指数的叶片氮含量估算模型相比,连续投影算法 (SPA) 结合偏最小二乘 (PLS) 方法的叶片氮含量估算精度更高,稳定性更强,可以作为冬小麦拔节期叶片氮含量的高光谱估算方法。   相似文献   

9.
基于高光谱指数估测马铃薯植株氮素浓度的敏感波段提取   总被引:2,自引:1,他引:1  
  【目的】  基于光谱指数的氮素营养诊断是快速获取作物氮素营养状况的方式之一。其中,利用可见光和近红外波段光谱反射率构建的比率和归一化光谱指数对估测作物氮素营养状况具有重要意义。解决氮素营养诊断过程中存在的指数饱和及数据离散问题,以评价已有比率和归一化光谱指数对马铃薯关键生育时期植株氮素浓度诊断的可行性。  【方法】  2014—2016年在内蒙古武川县和四子王旗,设置了4个不同氮肥梯度的多点田间试验。在马铃薯块茎形成期、块茎膨大期和淀粉积累期,采集试验地和邻近农田马铃薯地上部和块茎样品,分析其氮素含量。并在马铃薯冠层以上50~80 cm采集光谱数据。用试验田数据建立了12个已发表的比率、归一化光谱指数和波段优化光谱指数与马铃薯关键生育时期植株氮素浓度的相关性与估测模型,并用农田马铃薯数据验证模型的精度。  【结果】  马铃薯植株氮素浓度分布范围在1.89%~4.69%,平均氮素浓度为3.30%,变异系数为18.75%;验证集数据来源于农民田块,马铃薯植株氮素浓度分布范围在2.00%~4.92%,平均氮素浓度为3.34%,变异系数为19.27%。蓝紫光400~450 nm和红边690~720 nm波段是马铃薯植株氮素浓度估测的敏感波段,部分已有光谱指数虽然可以用于马铃薯植株氮素浓度的估测,但是蓝紫光波段的缺失大大降低了估测的准确性。通过波段优化算法确定的优化光谱指数RSI、NDSI最佳波段位置分别为430、694和426、694 nm。基于优化光谱指数NDSI (426 nm、694 nm) 建立的马铃薯植株氮素浓度线性估测模型为y=?6.87x+6.08,决定系数R2最高,为0.68;RSI光谱指数与马铃薯植株氮素浓度的线性估测模型为y=?1.11x+5.92,R2为0.65,与已有比率和归一化光谱指数相比,优化光谱指数RSI和NDSI克服了高氮浓度条件下光谱指数饱和现象,显著提高了马铃薯植株氮素浓度的线性建模效果。农民田块验证数据显示,估测模型的估测值与实测值接近1∶1线,其中NDSI光谱指数估测模型的验证效果最佳,平均相对误差RE 和均方根误差RMSE分别为10.58%和0.42%。  【结论】  本研究通过波段优化算法确定了比率和归一化光谱指数的马铃薯植株氮素浓度敏感波段,采用蓝紫光400~450 nm和红边690~720 nm波段进行马铃薯植株氮素浓度估测,可以改善诊断高氮浓度时的指数灵敏度和数据离散问题,提高马铃薯植株氮素营养诊断的精度。  相似文献   

10.
基于BP神经网络的橡胶苗叶片磷含量高光谱预测   总被引:4,自引:3,他引:1  
为验证高光谱技术在橡胶苗叶片磷素营养诊断方面的可行性,该文以砂培橡胶苗为研究对象,利用高光谱仪测得不同磷处理水平下橡胶苗叶片光谱反射率,并应用微分技术求取去噪后光谱反射率一阶和二阶导数,以叶片磷含量和光谱变量相关性分析为基础,选择出叶片磷含量敏感波段,最后以敏感波段为输入变量,结合多重线性回归、偏最小二乘回归和反向传播神经网络模型对叶片磷含量进行预测。结果表明:原始光谱反射率555和722 nm、一阶导数674、710、855、1 091、1 197、1 275、1 718、2 181和2 228 nm以及二阶导数816、890、1 339、1 357和2 201 nm为叶片磷含量敏感波段;反向传播神经网络模型预测精度最高,训练集和验证集中预测值和实测值之间的相关系数r分别为0.964和0.967,均方根误差RMSE分别为0.0139和0.00856,模型性能指数(ratio of performance to deviation,RPD)分别为3.71和3.23,证明高光谱技术可以快速、准确诊断橡胶苗叶片磷含量。  相似文献   

11.
可见/近红外光谱技术无损检测果实坚实度的研究   总被引:9,自引:2,他引:7  
该研究的目的是建立可见/近红外光谱与梨果实坚实度之间的数学模型,评价可见/近红外光谱技术无损测量梨果实坚实度的应用价值.在可见/近红外光谱区域(350~1800nm),试验对比分析了不同测量部位、不同光谱预处理方法和不同校正建模算法的梨果实坚实度校正模型.结果表明:赤道部位吸光度一阶微分光谱的偏最小二乘回归所建梨果实坚实度校正模型的预测性能较优,其校正和预测相关系数分别为0.8779和0.8087,校正和预测均方误差分别为1.0804N和1.4455N.研究表明:可见/近红外光谱技术无损检测梨果实坚实度是可行的.  相似文献   

12.
建立基于便携式作物生长监测诊断仪的江西双季稻氮肥调控模型,利用模型推荐穗肥追氮量,实现江西双季稻氮肥追施的精确管理。基于不同株型品种和氮肥处理的田间试验资料,构建了双季稻叶面积指数光谱监测模型,利用拔节期的差值植被指数实时估测叶面积指数,进而结合江西双季稻高产栽培经验和建立的氮肥调控模型,对双季稻穗肥追氮量进行实时推荐,并和当地农户施肥方案和产量进行比较。双季稻关键生育期(分蘖期、拔节期、孕穗期、抽穗期和灌浆期)的冠层差值植被指数DVI(810,720)与叶面积指数均呈显著正相关,线性函数拟合效果优于其他函数。利用独立试验资料对所建模型进行了检验,单生育期的模型预测效果优于全生育期模型;其中,拔节期的光谱监测模型表现最佳,早稻和晚稻叶面积指数的光谱监测模型的R2分别为0.880 6和0.878 8,模型预测早稻和晚稻叶面积指数的均方根误差、相对均方根误差、相关系数分别为0.30和0.25、7.28%和6.18%、0.923 2和0.926 9。氮肥调控模型推荐施肥应用表明,紧凑型品种的穗肥用量高于松散型品种;与农户方案相比,氮肥调控模型推荐施肥的调控方案在产量不降低的情况下减少氮肥用量6.58kg/hm2,提高氮肥农学利用率0.82个百分点、净收益103元/hm2和产投比0.9,而产量比农户方案略高或持平。与传统非定量农户施肥法相比,基于便携式作物生长监测诊断仪的双季稻氮肥调控方法可在保证产量的情况下,减少施氮量,提高氮肥农学利用率,获得更高经济效益,在江西双季稻生产中具有推广应用价值。  相似文献   

13.
A quick method was developed for diagnosis of nitrogen (N) in apple trees based on multiple linear regressions to establish the relationship between near-infrared reflectance spectra (NIRS) and the N contents of fresh and dry tissue. Spectral pretreatment methods such as derivatives, smoothing, and normalization were used. The derivatives appeared to be the most effective. The best calibration for fresh leaf gave 0.842 for the correlation coefficient of validation (Rv), 1.119 g kg?1 for the root mean square error of prediction (RMSEP), and 8.311 for the ratio of the range in reference data from the validation samples to the root mean square error of prediction (RER). The best calibration for dried ground samples was obtained with Rv = 0.952, RMSEP = 0.633 g kg?1, the ratio performance deviation (RPD) = 3.27, and RER = 13.728. The results showed that calibrations of dry-apple leaf are robust enough for an accurate prediction of N.  相似文献   

14.
高光谱图像技术快速预测发酵醋醅总酸分布   总被引:2,自引:1,他引:1  
固态发酵是镇江香醋生产的重要环节之一,直接决定着成品醋的风味和品质。但目前固态发酵的生产控制主要依赖人工经验,难以有效保障镇江香醋的品质。该文分析了总酸(total acid content,TAC)、pH值、含水率在不同阶段的变化规律;采用高光谱图像技术结合联合区间偏最小二乘法(synergy interval partial least squares,siPLS)快速预测固态发酵基质(醋醅)的TAC、pH值和含水率,其最佳模型的相关系数R分别为0.8316、0.9455和0.8503;同时利用主成分分析和逐步多元线性回归模型(stepwise multiple linear regression,SMLR)对醋醅高光谱图像进行分析,研究了总酸在醋醅中的分布情况,以此来快速判断醋醅发酵的均匀性。研究表明,利用高光谱图像技术快速预测醋醅的理化参数及其分布的方法是可行的,结果可为镇江香醋固态发酵的工艺控制提供基础数据和技术手段。  相似文献   

15.
为探索作物生长监测诊断仪(Crop Growth Monitoring and Diagnosis Apparatus,CGMD)在不同株型双季稻长势指标监测应用的准确性和适用性,该研究开展了不同株型品种和施氮量的田间试验,采用CGMD获取冠层差值植被指数(Differential Vegetation Index,DVI)、归一化植被指数(Normalized Difference Vegetation Index,NDVI)和比值植被指数(RatioVegetationIndex,RVI),并同步采用高光谱仪(AnalyticalSpectralDevices,ASD)获取冠层光谱反射率,构建DVI、NDVI和RVI;通过比较2种光谱仪获取的植被指数变化特征及相互定量关系,评价CGMD的监测精度,建立基于CGMD的不同株型双季稻叶面积指数(Leaf Area Index,LAI)监测模型,并用独立数据对模型进行检验。结果表明:不同株型品种的LAI、DVI、NDVI和RVI随施氮量增加而增大,随生育进程推进呈"低—高—低"的变化趋势;基于CGMD与ASD的DVI、NDVI和RVI间的决定系数(Determination Coefficient,R2)分别为0.959~0.968、0.961~0.966和0.957~0.959,表明CGMD具有较高监测精度,可替代价格昂贵的ASD获取DVI、NDVI和RVI。基于CGMD植被指数的单生育期LAI监测模型的预测效果优于全生育期,基于CGMD植被指数的松散型品种LAI监测模型的预测效果优于紧凑型品种;基于DVICGMD的线性方程可较好地预测LAI,模型R2为0.857~0.903,模型检验的相关系数(Correlation Coefficient,r)、均方根误差(Root Mean Square Error,RMSE)和相对均方根误差(Relative Root Mean Square Error,RRMSE)分别为0.950~0.984、0.18~0.43和3.95%~9.40%;基于NDVICGMD的指数方程可较好地预测LAI,模型R2为0.831~0.884,模型检验的r、RMSE和RRMSE分别为0.906~0.967、0.24~0.38和5.73%~9.16%;基于RVICGMD的幂函数方程可较好地预测LAI,模型R2为0.830~0.881,模型检验的r、RMSE和RRMSE分别为0.905~0.954、0.25~0.56和7.37%~9.99%。与传统人工取样测定LAI法相比,利用CGMD可实时无损监测双季稻LAI动态变化,可替代SunScan植物冠层分析仪获取双季稻LAI,在双季稻生产中具有推广应用价值。  相似文献   

16.
王纯阳  马玉涵  刘斌美  郭盼盼  黄青 《核农学报》2019,33(10):2003-2012
为探索NIR光谱技术在水稻种子蛋白质含量分析中的应用,本研究细致分析了单粒稻种在不同光谱采集方式下的近红外光谱(NIRS)特征,并利用离子束诱变育种得到的水稻9311突变体库的种子,建立准确性较好的单粒糙米和单粒稻种的蛋白质定量模型。结果表明,与漫反射光谱采集方式下的单粒糙米蛋白质模型相比,透反射和透射光谱采集方式下能得到相关性较好的糙米蛋白质模型,其中单粒糙米蛋白质最优定量模型的决定系数(R2)为0.97,预测均方根误差(RMSEP)为0.27%。在单粒稻种中,由于种壳的反射作用,漫反射光谱采集方式下依然无法建立准确性高的蛋白质模型,透反射光谱采集方式下能够建立具有一定预测能力的蛋白质定量模型(RMSEP=0.81%),透射光谱采集方式下能够建立准确性高的蛋白质定量模型(R2=0.96,RMSEP=0.24%)。本研究结果为无损快速分析单粒稻种提供了一种解决方法。  相似文献   

17.
该文研究了充分利用土壤漫反射光谱在可见-近红外波段的有效信息,研究快速准确检测土壤硝态氮含量的新方法。试验选取89个风干土壤样本,经粉碎过直径1 mm筛孔后,使用 FieldSpec 3便携式光谱仪(光谱波长范围:400~2 500 nm),获取其漫反射光谱。检查各土样的原始光谱的有效性并进行平均,经偏最小二乘法partial least squares(PLS)聚类分析后,选取其中的63个样本构成校正集建立模型,10个样本构成预测集进行模型验证。通过一阶微分与滑动平均滤波相结合的预处理方法,用15个主成分建立的主成分+神经网络模型为最好,其校正模型的回判相关系数为0.9908,均方根误差(RMSEC)为1.4528,预测模型的相关系数为0.7179。研究结果表明,利用可见-近红外光谱技术可以准确地检测茶园土壤硝态氮含量。  相似文献   

18.
蛋壳品质的近红外光谱检测分析   总被引:1,自引:1,他引:0  
蛋壳品质对蛋品孵化、贮存和运输均有重要影响。为了探索近红外光谱技术快速检测蛋壳品质的方法,该文在鸡蛋蛋壳品质指标相关性分析的基础上进行了蛋壳品质的近红外光谱检测分析,研究比较了不同建模方法、不同光谱预处理方法和不同波段范围对预测结果的影响。结果表明:在5段特征波长范围内建立的经过多元散射校正的偏最小二乘回归(PLSR,partial least squares regression)模型对蛋壳强度的预测结果最好,相关系数r为0.86,校正、预测均方根误差分别为4.42、7.53 N;同时蛋壳百分比(蛋壳质量/蛋质量)的PLSR模型的相关系数r为0.92,校正、预测误差分别为0.313%、0.529%;蛋壳厚度的PLSR模型的相关系数r为0.81,校正、预测误差分别为0.0176、0.0234 mm。研究结果表明应用近红外光谱技术预测蛋壳品质是可行的,为蛋壳品质的快速无损检测提供了一种新的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号