首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Medusahead (Taeniatherum caput-medusae [L.] Nevski) is an exotic annual grass invading western rangelands. Invasion by medusahead is problematic because it decreases livestock forage production, degrades wildlife habitat, reduces biodiversity, and increases fire frequency. Revegetation of medusahead-invaded sagebrush steppe is needed to increase ecosystem and economic productivity. Most efforts to revegetate medusahead-infested plant communities are unsuccessful because perennial bunchgrasses rarely establish after medusahead control. The effects of prescribed burning (spring or fall), fall imazapic application, and their combinations were evaluated for medusahead control and the establishment of seeded large perennial bunchgrasses. One growing season after treatments were applied, desert wheatgrass (Agropyron desertorum [Fisch. ex Link] Schult.) and squirreltail (Elymus elymoides [Raf.] Swezey) were drill seeded into treatment plots, except for the control treatment. Vegetation characteristics were measured for 2 yr postseeding (second and third year post-treatment). Medusahead was best controlled when prescribed burned and then treated with imazapic (P < 0.05). These treatments also had greater large perennial bunchgrass cover and density compared to other treatments (P < 0.05). The prescribed burned followed by imazapic application had greater than 10- and 8-fold more perennial bunchgrass cover and density than the control treatment, respectively. Prescribed burning, regardless of season, was not effective at controlling medusahead or promoting establishment of perennial bunchgrasses. The results of this study question the long-term effectiveness of using imazapic in revegetation efforts of medusahead-infested sagebrush steppe without first prescribed burning the infestation. Effective control of medusahead appears to be needed for establishment of seeded perennial bunchgrasses. The results of this study demonstrate that seeding desert wheatgrass and squirreltail can successfully revegetate rangeland infested with medusahead when medusahead has been controlled with prescribed fire followed by fall application of imazapic.  相似文献   

2.
Medusahead (Taeniatherum caput-medusae [L.] Nevski) is an invasive annual grass that reduces biodiversity and production of rangelands. To prevent medusahead invasion land managers need to know more about its invasion process. Specifically, they must know about 1) the timing and spatial extent of medusahead seed dispersal and 2) the establishment rates and interactions with plant communities being invaded. The timing and distance medusahead seeds dispersed from invasion fronts were measured using seed traps along 23 35-m transects. Medusahead establishment was evaluated by introducing medusahead at 1, 10, 100, 1 000, and 10 000 seeds · m−2 at 12 sites. Most medusahead seeds dispersed less than 0.5 m from the invasion front (P < 0.01) and none were captured beyond 2 m. Medusahead seeds dispersed from the parent plants from early July to the end of October. More seeds were trapped in August than in the other months (P < 0.01). Medusahead establishment increased with higher seed introduction rates (P < 0.01). Medusahead density was negatively correlated to tall tussock perennial grass density and positively correlated to annual grass density of the preexisting plant communities (P = 0.02). Medusahead cover was also negatively correlated with tall tussock perennial grass density (P = 0.03). The results suggest that containment barriers around medusahead infestations would only have to be a few meters wide to be effective. This study also suggests that promoting or maintaining tall tussock perennial grass in areas at risk of invasion can reduce the establishment success of medusahead. Tall tussock perennial grass and annual grass density, in combination with soil data, may be useful in predicting susceptibility to medusahead invasion.  相似文献   

3.
Cost-efficient strategies for revegetating annual grass-infested rangelands are limited. Restoration efforts typically comprise a combination of pre-emergent herbicide application and seeding to restore desired plant materials. However, practitioners struggle with applying herbicide at rates sufficient to achieve weed control without damaging nontarget species. The objective of this research was to determine if seed enhancement technologies using activated carbon would improve selectivity of the pre-emergent herbicide imazapic. Bluebunch wheatgrass (Pseudoroegneria spicata) seed was either untreated, coated with activated carbon, or incorporated into “herbicide protection pods” (HPPs) made of activated carbon through a newly developed seed extrusion technique. In a grow-room facility, bluebunch wheatgrass seeds were sown in pots that contained seed of the exotic-annual grass downy brome (Bromus tectorum). After planting, pots were sprayed with 70, 105, 140, or 210 g acid equivalent (ae) · ha-1 of imazapic or left unsprayed. Where herbicide was not applied, downy brome biomass dominated the growing space. Imazapic effectively controlled downy brome and untreated bluebunch wheatgrass. Seed coating improved bluebunch wheatgrass tolerance to imazapic at 70 g ae · ha-1. HPPs provided protection from imazapic at all application rates. When untreated seeds and HPPs are compared at the four levels of herbicide application (excluding the no herbicide level), HPPs on average were 4.8-, 3.8-, and 19.0-fold higher than untreated seeds in density, height, and biomass, respectively. These results indicate that HPPs and, to a lesser extent, activated carbon–coated seed have the potential to further enhance a single-entry revegetation program by providing land practitioners with the ability to apply imazapic at rates necessary for weed control while minimizing nontarget plant injury. Additional research is merited for further development and evaluation of these seed enhancement technologies, including field studies, before they can be recommended as restoration treatments.  相似文献   

4.
It has recently been proposed that the cost of rehabilitating medusahead (Taeniatherum caput-medusae [L.] Nevski)–invaded rangelands may be reduced by concurrently seeding desired vegetation and applying the preemergent herbicide imazapic. However, the efficacy of this “single-entry” approach has been inconsistent, and it has not been compared to the multiple-entry approach where seeding is delayed 1 yr to decrease herbicide damage to nontarget seeded species. We evaluated single- and multiple-entry approaches in medusahead-invaded rangelands in southeastern Oregon with seeding for both approaches occurring in October 2011. Before seeding and applying herbicide, all plots were burned to improve medusahead control with imazapic and prepare the seedbed for drill seeding–introduced perennial bunchgrasses. Both approaches effectively controlled medusahead during the 2 yr postseeding. However, almost no seeded bunchgrasses established with the single-entry treatment (< 0.5 individals · m-2), probably as a result of nontarget herbicide mortality. Perennial grass cover and density in the single-entry treatment did not differ from the untreated control. In contrast, the multiple-entry treatment had on average 6.5 seeded bunchgrasses · m-2 in the second year postseeding. Perennial grass (seeded and nonseed species) cover was eight times greater in the multiple-entry compared to the single-entry treatment by the second year postseeding. These results suggest that the multiple-entry approach has altered the community from annual-dominated to perennial grass–dominated, but the single-entry approach will likely be reinvaded and dominated medusahead without additional treatments because of a lack of perennial vegetation.  相似文献   

5.
Downy brome or cheatgrass (Bromus tectorum) and medusahead (Taeniatherum caput-medusae) are the most problematic invasive annual grasses in rangelands of the western United States, including sagebrush communities that provide habitat to sage grouse. Rehabilitation of infested sites requires effective weed control strategies combined with seeding of native plants or desirable competitive species. In this study, we evaluated the effect of three fall-applied pre-emergence herbicides (imazapic, rimsulfuron, and chlorsulfuron + sulfometuron), and one spring-applied postemergence herbicide (glyphosate) on the control of downy brome and medusahead and the response of seeded perennial species and resident vegetation in two sagebrush communities in northeastern California. All pre-emergence treatments gave > 93% control of both invasive species at both sites in the first year. Glyphosate was less consistent, giving > 94% control at one site and only 61% control of both species at the other site. Imazapic was the only herbicide to maintain good control (78–88%) of both species 2 yr after treatment. No herbicide caused detectible long-term damage to either perennial grasses or annual forbs, and imazapic treatment resulted in an increase in resident native forb cover 3 yr after treatment. Broadcast seeding with or without soil incorporation did not result in successful establishment of perennial species, probably due to below-average precipitation in the year of seeding. These results indicate that several chemical options can give short-term control of downy brome and medusahead. Over the course of the study, imazapic provided the best management of both invasive annual grasses while increasing native forb cover.  相似文献   

6.
Invasive annual grasses, such as medusahead (Taeniatherum caput-medusae [L.] Nevski), ventenata (Ventenata dubia [Leers] Coss.), downy brome (Bromus tectorum L.), and Japanese brome (Bromus japonicus Thunb. ex Murr.), are negatively impacting millions of hectares of US rangelands. Amino acid synthesis inhibitor and photosynthesis inhibitor herbicides are sometimes used to control invasive annual grasses. Conversely, growth regulator herbicides are generally considered ineffective against invasive annual grasses. However, in a recent study of pre-emergence herbicide applications, the growth regulator aminopyralid appreciably reduced medusahead cover, primarily by killing emerging medusahead plants. Additionally, in recent studies of postemergence herbicide applications, we found the growth regulators aminopyralid, dicamba, and picloram drastically reduced downy brome and Japanese brome seed production. In these postemergence studies, growth regulators sterilized the plants without otherwise greatly affecting them. The purpose of this greenhouse study was to extend our growth regulator/plant sterility research from downy brome and Japanese brome to medusahead and ventenata. Each tested aminopyralid rate and application growth stage (late seedling, internode elongation, heading) reduced medusahead seed production to nearly zero. Picloram also reduced medusahead seed production, but not quite as consistently as aminopyralid. With ventenata, aminopyralid applied at the seedling stage reduced seed production ∼ 95–99%. Beyond the seedling stage, however, ventenata responses to aminopyralid were highly variable. Picloram had low activity against ventenata seed production. These results contribute to a growing body of evidence suggesting it may be possible to use growth regulators to control invasive annual grasses by depleting their short-lived seedbanks.  相似文献   

7.
Medusahead (Taeniatherum caput-medusae [L.] Nevski) is an exotic annual grass invading western rangelands. Successful revegetation of invaded-plant communities can be prohibitively expensive because it often requires iterative applications of integrated control and revegetation treatments. Prescribed burning has been used to control medusahead and prepare seedbeds for revegetation, but burning has been constrained by liability concerns and has produced widely varying results. Capitalizing on naturally occurring wildfires could reduce revegetation costs and alleviate liability concerns. Thus, our objective was to determine if early summer wildfires and fall drill seeding could be used as a treatment combination to decrease medusahead and increase perennial and native vegetation. Treatments were evaluated pretreatment and for 3 yr postfire at six sites and included 1) an early summer wildfire combined with a seeding treatment (burn and seed) and 2) a nontreated (no burn, no seed) control. Perennial grass density was 4.6- to 10.0-fold greater in the burn-and-seed treatment compared to the control in the first 3 yr posttreatment (P < 0.05). Exotic annual grass density and cover in the third year posttreatment were lower in the burn-and-seed treatment than in the control (P < 0.05). However, exotic annual grass density was still > 130 individuals · m?2 in the burn-and-seed treatment. The density of exotic annual grass is of concern because over time medusahead may displace perennial grasses and annual forbs that increased with the burn-and-seed treatment. Though not directly tested in this study, we suggest that, based on other research, the burn-and-seed treatment may need to incorporate a preemergent herbicide application to further suppress medusahead and increase the establishment of seeded vegetation. However, it appears that early summer wildfires may provide an opportunity to reduce the cost of integrated programs to revegetate medusahead-invaded plant communities.  相似文献   

8.
Medusahead is an aggressive, winter annual that is of dire concern for the health and sustainability of western rangelands in the United States. Medusahead reduces plant diversity, alters ecosystem function, and reduces carrying capacities for both livestock and wildlife. The species has competitive advantages over cheatgrass and native grasses that causes an increased amount of fine fuels deposited on western rangelands. The Channeled Scablands of eastern Washington in the United States represent a typical example of a region being challenged by the expansion of this weed. The costs of the invasion are high and financial constraints can limit successful management. Managers need the ability to identify medusahead across entire landscapes, so they can work towards effective and efficient management approaches. Remote sensing offers the ability to measure vegetation cover at large spatial scales, which can lead to a better understanding of the invasive characteristics of problematic species like medusahead. For instance, research has been successful in creating large-scale distribution maps of cheatgrass over western rangelands. Many applications rely on the phenological characteristics of a target plant which can present problems in separating two species with similar phenologies (i.e. cheatgrass & medusahead). A medusahead-specific map gives managers the flexibility to prioritize and direct management needs when attempting to control the spread of medusahead into non-invaded areas. This study integrated GPS acquired field locations from three study sites (Sites S, C, & N) and imagery from two remote sensing platforms (1-m aerial imagery & 30-m Landsat), to model and predict fractional cover of medusahead over 37,000+ ha of rangelands in the Channeled Scabland region of eastern Washington. Using a multi-scaled approach, this research showed that regression tree algorithms can model the complex spectral response of senesced medusahead using late summer Landsat scenes. The predictive performances resulted in a R2 of 0.80 near the model's training site (Site S) and an average R2 of 0.68 away from the training site (Sites C & N). This research provides a non-phenological approach to produce accurate large-scale, distribution maps of medusahead which can aid land managers who are challenged by its invasion.  相似文献   

9.
Reducing seed germination and seedling emergence of downy brome (Bromus tectorum L.) improves the success of revegetating degraded shrubland ecosystems. While pre-emergence herbicides can potentially reduce these two processes, their impact on germination and emergence of downy brome and revegetation species in semiarid ecosystems is poorly understood and has not been comprehensively studied in soils with potentially contrasting herbicide bioavailability (i.e., residual plant activity). We designed a greenhouse experiment to evaluate the effects two pre-emergence acetolactate synthase–inhibiting herbicides (rimsulfuron and imazapic) on germination and emergence of downy brome and two revegetation grass species (crested wheatgrass &lsqb;Agropyron cristatum {L.} Gaertn.] and bottlebrush squirreltail &lsqb;Elymus elymoides {Raf.} Swezey]) that were grown in representative soils from salt desert and sagebrush shrublands. Pre-emergence herbicides significantly (P &spilt; 0.05) reduced seedling emergence and biomass production of downy brome and crested wheatgrass and increased mortality more so in sagebrush compared to salt desert soil, suggesting that these common Great Basin soils fundamentally differ in herbicide bioavailability. Also, germination and emergence of the two highly responsive species (crested wheatgrass and downy brome) were clearly more impacted by rimsulfuron than imazapic. We discuss these results in terms of how the specific soil physiochemical properties influence herbicide adsorption and leaching. Our results shed new light on the relative performance of these two promising herbicides and the importance of considering soil properties when applying pre-emergence herbicides to reduce germination and emergence of invasive annual grasses and create suitable seedbed conditions for revegetation.  相似文献   

10.
Questions have been raised about whether herbaceous productivity declines linearly with grazing or whether low levels of grazing can increase productivity. This paper reports the response of forage production to cattle grazing on prairie dominated by Kentucky bluegrass (Poa pratensis L.) in south-central North Dakota through the growing season at 5 grazing intensities: no grazing, light grazing (1.3 ±  animal unit months [AUM] · ha-1), moderate grazing (2.7 ±  AUM · ha-1), heavy grazing (4.4 ±  AUM · ha-1), and extreme grazing (6.9 ±  AUM · ha-1; mean ± SD). Annual herbage production data were collected on silty and overflow range sites from 1989 to 2005. Precipitation and sod temperature were used as covariates in the analysis. On silty range sites, the light treatment produced the most herbage (3 410 kg · ha-1), and production was reduced as the grazing intensity increased. Average total production for the season was 545 kg · ha-1 less on the ungrazed treatment and 909 kg · ha-1 less on the extreme treatment than on the light treatment. On overflow range sites, there were no significant differences between the light (4 131 kg · ha-1), moderate (4 360 kg · ha-1), and heavy treatments (4 362 kg · ha-1; P &spigt; 0.05). Total production on overflow range sites interacted with precipitation, and production on the grazed treatments was greater than on the ungrazed treatment when precipitation (from the end of the growing season in the previous year to the end of the grazing season in the current year) was greater than 267.0, 248.4, 262.4, or 531.5 mm on the light, moderate, heavy, and extreme treatments, respectively. However, production on the extreme treatment was less than on the ungrazed treatment if precipitation was less than 315.2 mm. We conclude that low to moderate levels of grazing can increase production over no grazing, but that the level of grazing that maximizes production depends upon the growing conditions of the current year.  相似文献   

11.
Medusahead (Taeniatherum caput-medusae [L.] Nevski) and other exotic annual grasses have invaded millions of hectares of sagebrush (Artemisia L.) steppe. Revegetation of medusahead-invaded sagebrush steppe with perennial vegetation is critically needed to restore productivity and decrease the risk of frequent wildfires. However, it is unclear if revegetation efforts provide long-term benefits (fewer exotic annuals and more perennials). The limited literature available on the topic questions whether revegetation efforts reduce medusahead abundance beyond 2 or 3 yr. We evaluated revegetation of medusahead-invaded rangelands for 5 yr after seeding introduced perennial bunchgrasses at five locations. We compared areas that were fall-prescribed burned immediately followed by an imazapic herbicide treatment and then seeded with bunchgrasses 1 yr later (imazapic-seed) with untreated controls (control). The imazapic-seed treatment decreased exotic annual grass cover and density. At the end of the study, exotic annual grass cover and density were 2-fold greater in the control compared with the imazapic-seed treatment. The imazapic-seed treatment had greater large perennial bunchgrass cover and density and less annual forb (predominately exotic annuals) cover and density than the untreated control for the duration of the study. At the end of the study, large perennial bunchgrass density average 10 plant ? m? 2 in the imazapic-seed treatment, which is comparable with intact sagebrush steppe communities. Plant available soil nitrogen was also greater in the imazapic-seed treatment compared with the untreated control for the duration of the study. The results of this study suggest that revegetation of medusahead-invaded sagebrush steppe can provide lasting benefits, including limiting exotic annual grasses.  相似文献   

12.
Rangeland managers need tools to control invasive annual grasses, particularly following wildfire. We assessed responses of native and invasive/exotic grasses to the MB906 soil amendment containing live cultures of a purportedly weed-suppressive strain of the bacterium Pseudomonas fluorescens (“WSB”). MB906 was applied alone and in combination with the pre-emergent herbicide imazapic on >3000 ha across three sagebrush-steppe landscapes burned several months prior. Replicate plots of each treatment type were established and plant cover was measured in the following three years. Cover of invasive-annual grasses (“IAG”) was not responsive to MB906 when all IAG species were considered (“IAG-All”). However, MB906 led to a 54% reduction in the IAG's that were previously reported to be controlled by WSB (“IAG-Target”) in the second year following application (IAG-Target = cheatgrass, Bromus tectorum and medusahead, Taeniatherum caput-medusae; IAG-All also includes Vulpia myuros and Bromus arvensis). MB906 reduced the effectiveness of co-applied imazapic: Imazapic alone reduced IAG-All by 83% and 68% in years 1 and 2, respectively, while imazapic+MB906 reduced IAG-All by 48% and 38% in years 1 and 2, respectively, across all landscapes, and a similar response pattern was observed for IAG-Target. Perennial grass cover was unaffected by the treatments except where it increased 4-fold in response to imazapic applied at a high rate (0.140 kg a.i. ha−1) in one of the landscapes. Tank mixing MB906 and herbicide may have lessened the biological activity of the herbicide by altering the pH or mineral content of the spray solution or by direct metabolism of the herbicide by the bacteria. These results do not provide strong support for MB906 as a tool for annual grass control, though they suggest further investigation may be warranted.  相似文献   

13.
Substantial gaps exist between weed management researchers and practitioners with respect to prompt exchange of knowledge between the two groups, hindering the implementation of effective management to solve weed problems. We conducted a survey between 2016 and 2018 among weed management practitioners (n = 259) across diverse ecoregions on California rangelands and collected essential information from practitioners for bridging the research-implementation gap. The information included management costs, high-priority weeds, and spatial scales and temporal changes in weed management. The management cost had a mean of $5.12 ha−1yr−1 with a large variance implying the uncertainty of this information. The percentage of annual budget dedicated to weed management explained about 30% of the variation in this cost. Moreover, this annual per-unit area cost decreased with increasing management area. The average size of rangeland managed by survey respondents was 1 256 ha. The top three high-priority weeds statewide were yellow starthistle (Centaurea solstitialis), medusahead (Taeniatherum caput-medusae), and all thistles combined. Medusahead and some thistle species remained on the top list in each ecoregion. Respondents overwhelmingly (80.9%) noted changes in weed problems in the past 5−10 yr, specifically citing greater weed pressure and changes in weed species. A significantly higher proportion of respondents from agencies and private businesses reported changes in weed problems than those from universities and nongovernmental organizations (NGOs), further underscoring the gap between practitioners and researchers. A majority of the respondents (75.3%) indicated the record-setting California drought had a negative effect on weed management, reducing treatment efficacy and favoring weeds over desirable species. Overall, our findings illustrate increasing challenges in weed management on California rangeland. These challenges call for adaptive management-research programs to increase cost-effectiveness of weed management and to swiftly and effectively respond to dynamic weed problems on large spatial and long temporal scales.  相似文献   

14.
Ventenata (Ventenata dubia [Leers] Coss.) is an exotic annual grass that can invade intermountain rangeland plant communities, where it can form monotypic stands, degrade wildlife habitat, and reduce livestock forage. There is limited information on ventenata control in rangelands as it has only recently been identified as a substantial problem. Imazapic is a pre-emergent herbicide commonly used to control other exotic annual grasses and, therefore, is likely to control ventenata in rangelands. We evaluated five application rates of imazapic (0  175 g ae  ha 1) on ventenata and other exotic annual grass control and plant community response at two rangeland sites in 2 yr (2014 and 2015). Imazapic reduced exotic annual grass (largely ventenata) cover and density, with greater control with increasing imazapic rates. Exotic annual grass density at the highest levels of control (82%−94%) was 184  299 plants  m 2 the first yr after imazapic application. Exotic annual grasses fully recovered in the second or third yr after imazapic application. Bare ground generally increased with imazapic application. However, density of perennial vegetation (grasses and forbs) did not vary among treatments. Perennial vegetation cover generally did not increase with imazapic control of ventenata and other exotic annual grasses. Imazapic can control ventenata; however, even at the highest rates, control was not enough to shift the dominance from exotic annual species to perennial species. Integrating other treatments with imazapic application may be a strategy to improve ventenata control and increase perennial vegetation and will require further investigation. The difficulty and likely expense of achieving substantial and lasting control of ventenata suggest, similar to other exotic annual grasses, that preventing ventenata invasion and dominance should be a high management priority.  相似文献   

15.
This study quantified herbaceous biomass responses to increases in honey mesquite (Prosopis glandulosa Torr.) cover on two soils from 1995 to 2001 in north central Texas. Vegetation was sampled randomly with levels of mesquite ranging from 0% to 100%. With no mesquite covering the silt loam soils of bottomland sites, peak herbaceous biomass averaged (±SE) 3 300 ± 210 kg · ha−1 vs. 2 560 ± 190 kg · ha−1 on clay loam soils of upland sites (P = 0.001). A linear decline of 14 ± 2.5 kg · ha−1 in herbaceous biomass occurred for each percent increase in mesquite cover (P = 0.001). The slope of this decline was similar between soils (P = 0.135). Herbaceous biomass with increasing mesquite cover varied between years (P = 0.001) as did the slope of decline (P = 0.001). Warm-season herbaceous biomass decreased linearly with increasing mesquite cover averaging a 73 ± 15% reduction at 100% mesquite cover (P = 0.001) compared to 0% mesquite cover. Cool-season herbaceous biomass was similar between soils with no mesquite, 1 070 ± 144 kg · ha−1 for silt loam vs. 930 ± 140 kg · ha−1 for clay loam soils, but averaged 340 ± 174 kg · ha−1 more on silt loam than on clay loam soils at 100% mesquite cover (P = 0.004). Multiple regression analysis indicated that each centimeter of precipitation received from the previous October through the current September produced herbaceous biomass of 51 kg · ha−1 on silt loam and 41 kg · ha−1 on clay loam soils. Herbaceous biomass decreased proportionally with increasing mesquite cover up to 29 kg · ha−1 at 100% mesquite cover for each centimeter of precipitation received from January through September. Increasing mesquite cover reduces livestock forage productivity and intensifies drought effects by increasing annual herbaceous biomass variability. From a forage production perspective there is little advantage to having mesquite present.  相似文献   

16.
Comparisons of tree-removal treatments to reduce the cover of single-leaf pinyon (Pinus monophylla Torr. and Frém.) and Utah juniper (Juniperus osteosperma [Torr.] Little), and subsequently increase native herbaceous cover in black sagebrush (Artemisia nova A. Nelson), are needed to identify most cost-effective methods. Two adjacent vegetation management experiments were initiated in 2006 and monitored until 2010 in eastern Nevada to compare the costs and efficacy of various tree reduction methods. One Department of Energy (DOE) experiment compared a control to five treatments: bulldozing imitating chaining ($205 · ha-1), lop-pile-burn ($2 309 · ha-1), lop-and-scatter ($1 297 · ha-1), feller-buncher and chipper ($4 940 · ha-1), and mastication ($1 136 · ha-1), whereas a second Bureau of Land Management (BLM) experiment compared one-way chaining ($205 · ha-1) to a control treatment. Chaining and bulldozing resulted in the least reduction of tree cover among the treatments. In the DOE experiment, forb cover only decreased in the mastication treatment. Litter increased in all methods. Slash cover was lowest in the control and lop-pile-burn treatments, intermediate in the feller-buncher and mastication treatments, and highest in the bulldozing and lop-and-scatter treatments. By 2010, forb cover and the combined cover of dead shrubs and trees were increased and decreased, respectively, by chaining in the BLM experiment. Nonnative annual grass and biotic crust were absent or uncommon before and after treatment implementation. In both experiments, tree removal resulted in a nonsignificant increase in perennial grass cover even 4 yr post-treatment. An ecological return-on-investment (EROI) metric was developed to compare perennial grass cover and tree cover per unit area cost of each active treatment. By 2010, chaining or bulldozing, followed by mastication, showed the highest EROI for improving perennial grass and decreasing tree cover. Mastication is recommended for restoration of smaller tree-encroached areas, whereas land managers should reconsider smooth chaining, despite its negative perceptions, for rapid and cost-efficient restoration of large landscapes obligates.  相似文献   

17.
Medusahead (Taeniatherum caput-medusae [L.] Nevski) is an exotic, annual grass invading sagebrush steppe rangelands in the western United States. Medusahead invasion has been demonstrated to reduce livestock forage, but otherwise information comparing vegetation characteristics of medusahead-invaded to noninvaded sagebrush steppe communities is limited. This lack of knowledge makes it difficult to determine the cost–benefit ratio of controlling and preventing medusahead invasion. To estimate the impact of medusahead invasion, vegetation characteristics were compared between invaded and noninvaded Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis [Beetle & A. Young] S. L. Welsh) steppe communities that had similar soils, topography, climate, and management. Noninvaded plant communities had greater cover and density of all native herbaceous functional groups compared to medusahead-invaded communities (P < 0.01). Large perennial grass cover was 15-fold greater in the noninvaded compared to invaded plant communities. Sagebrush cover and density were greater in the noninvaded compared to the medusahead-invaded communities (P < 0.01). Biomass production of all native herbaceous functional groups was higher in noninvaded compared to invaded plant communities (P < 0.02). Perennial and annual forb biomass production was 1.9- and 45-fold more, respectively, in the noninvaded than invaded communities. Species richness and diversity were greater in the noninvaded than invaded plant communities (P < 0.01). The results of this study suggest that medusahead invasion substantially alters vegetation characteristics of sagebrush steppe plant communities, and thereby diminishes wildlife habitat, forage production, and ecosystem functions. Because of the broad negative influence of medusahead invasion, greater efforts should be directed at preventing its continued expansion.  相似文献   

18.
Native plant communities invaded by cheatgrass (Bromus tectorum L.) are at risk of unnatural high intensity fires and conversion to cheatgrass monocultures. Management strategies that reduce cheatgrass abundance may potentially allow native species to expand and minimize further cheatgrass invasion. We tested whether the selective herbicide imazapic is effective in reducing cheatgrass and “releasing” native species in a semiarid grassland and shrub steppe in north-central Oregon. The experiment consisted of a completely randomized design with two treatments (sprayed with 70 g ai · ha?1 of imazapic and unsprayed) and three replicates of each treatment applied to either 2.5 or 4 ha plots. We repeated this experiment in three different sites dominated by the following native species: 1) bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] A. Löve ssp. spicata) and needle and thread (Hesperostipa comata [Trin. & Rupr.] Barkworth), 2) needle and thread and Sandberg bluegrass (Poa secunda J. Presl), and 3) big sagebrush (Artemisia tridentata Nutt.). Nested frequency of all plant species in 1-m2 quadrats was collected for 1  yr pretreatment and 4  yr posttreatment. In all three sites, cheatgrass frequencies were significantly lower in sprayed plots than unsprayed plots for 3–4  yr posttreatment (P < 0.1). Other annual plant species were also impacted by imazapic, but the effects were highly variable by species and site. Only two native perennial species, hoary tansyaster (Machaeranthera canescens [Pursh] Gray) and big sagebrush, increased in sprayed plots, and increases occurred only at two sites. These results suggest that a short-term reduction in cheatgrass alone is not an effective strategy for increasing the abundance of most native perennial plant species.  相似文献   

19.
Approaches and techniques for control of exotic annual grasses are a high priority in rangelands including sagebrush steppe. Strains of the soil bacterium Pseudomonas fluorescens have been proposed to be selectively pathogenic to multiple species of exotic annual grasses (“Pf,” weed-suppressive bacteria, “WSB”). However, defensible tests of the target and nontarget effects of these WSB strains in the field are needed. We evaluated the effects of D7 and MB906 strains of Pf WSB in sagebrush steppe invaded by cheatgrass (Bromus tectorum L), medusahead (Taeniatherum caput-medusae L. Nevski), and other exotic annual grasses. We evaluated the WSB strains with and without herbicides (imazapic, rimsulfuron) or discing to mix surface-spray of the WSB into deeper soils, and we replicated these tests in three ecoregions that differed in soils and climate. Over 3 yr after treatment, neither WSB strain affected cover of exotic annual grasses, perennial bunchgrasses, or the total community, either with WSB alone or in combination with herbicides or discing. WSB has received considerable attention and is being applied across large rangeland areas, but the WSB strains and methods applied here were ineffective. We recommend any future use of WSB be applied in an experimental fashion, with experimental design and measurement of responses, until its effects can be proven.  相似文献   

20.
Selective grazing can modify the productive capacity of rangelands by reducing competitiveness of productive, palatable species and increasing the composition of more grazing-resistant species. A grazing system (season-long and short-duration rotational grazing) × stocking rate (light: 16 steers · 80 ha-1, moderate: 4 steers · 12 ha-1, and heavy: 4 steers · 9 ha-1) study was initiated in 1982 on northern mixed-grass prairie. Here, we report on the final 16 years of this study (1991–2006). Spring (April + May + June) precipitation explained at least 54% of the variation in peak standing crop. The percentage of variation explained by spring precipitation was similar between stocking rates with short-duration grazing but decreased with increasing stocking rate for season-long grazing. April precipitation explained the greatest percentage of the variation in peak standing crop for the light stocking rate (45%), May precipitation for the moderate stocking rate (49%), and June precipitation for the heavy stocking rate (34%). Peak standing crop was 23%–29% greater with light (1 495 ± 66 kg · ha-1, mean ± 1 SE) compared to moderate (1 218 ± 64 kg · ha-1) and heavy (1 156 ± 56 kg · ha-1) stocking rates, which did not differ. Differences in peak standing crop among stocking rates occurred during average and wet but not dry springs. Neither the interaction of grazing system and stocking rate nor grazing system alone affected standing crop across all years or dry, average, or wet springs. Grazing-induced modification of productive capacity in this northern mixed-grass prairie is attributed to changes in species composition with increasing stocking rate as the less productive, warm-season shortgrass blue grama (Bouteloua gracilis [H.B.K.] Lag. ex Griffiths) increases at the expense of more productive, cool-season midheight grasses. Land managers may need to substantially modify management to offset these losses in productive capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号