首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Abstract

Two studies were conducted to determine if temporary sequestration of fingerling channel catfish, Ictalurus punctatus, in cages improves production of multiple-crop ponds. In the first study, 0.04-ha ponds were stocked with 295 large (mean weight = 566 g) and 780 fingerling (mean weight = 21 g) catfish. Fingerlings were stocked into cages or open ponds. At 120 days after stocking, fish in cages were released. After an additional 40 days, ponds were clean-harvested to remove large (>500 g) and small (<500 g) fish. In the second study, ponds (0.08-ha) were stocked with 750 large (mean weight = 46 g) and 750 small (mean weight = 20 g) fingerling catfish. Small fingerlings were stocked into cages or open ponds. At 60 days after stocking, fish in cages were released. Market-ready fish were selectively harvested at five and nine months after stocking. Results from the first study indicated that individual weight, weight gain, and yield of both size classes of fish raised in sequestered ponds were significantly greater (P< 0.05) than that of fish raised in open ponds. In addition, total weight gain and yield of fish in sequestered ponds was significantly greater (P< 0.05) than those in non-sequestered ponds. Results from the second study indicated that a significantly greater (P< 0.05) number of market-ready fish were harvested from sequestered ponds than from non-sequestered ponds. Mean yield of sequestered ponds was 31% greater than that of non-sequestered ponds; however, differences were not significant (P> 0.05). Amount of feed fed to fish raised in sequestered ponds was significantly greater (P< 0.05) than amount of feed fed to fish raised in non-sequestered ponds in both studies. It is unclear which factor or factors were responsible for the enhanced production of sequestered ponds; however, temporary sequestration may reduce agonistic behavior and competition for feed between fish size groups.  相似文献   

2.
The objective of the present work was to determine the influence of artificial substrates that increase the area for biofilm development on the production performance of Farfantepenaeus paulensis juveniles in pens. Shrimp were stocked at a density of 20/m2 in pen structures (bottom area?=?50 m2) that were installed in the Patos Lagoon estuary. Two treatments with three repetitions were analyzed, where artificial substrates (polyethylene nets—1-mm mesh size) were added to increase the area for biofilm development by 100%, and where no substrates were added. During the experimental period, the biomass and the composition of the biofilm were assessed. After 86 days of rearing, no significant differences were found in shrimp performance between the treatments (p?>?0.05). However, the examination of the chlorophyll a, dry weight, and composition of the biofilm indicated that the shrimp were actively consuming the biofilm attached to the artificial substrates. Significant decreases in the abundances of nematodes >?500 μm after the 56th day and of tintinnids and rotifers between day 28 and day 42, indicated that the shrimp were selectively predating on these organisms. Moreover, a decrease in the chlorophyll a concentration in the biofilm suggests that the shrimp were consuming the microalgae. Although the increase in the area for biofilm development did not improve shrimp performance, the shrimp presented the highest growth rates when they consumed most of the biofilm microorganisms.  相似文献   

3.
This study was designed to determine the production characteristics of the Pacific white shrimp, Litopenaeus vannamei, stocked into grow‐out ponds at three different sizes and ages. To meet this goal, three groups of postlarvae (PL) were obtained. The first group was placed in a nursery system for 21 d (N21), the second for 14 d (N14), and the third was stocked directly into ponds (DS). Shrimp from each nursery treatment (three tanks per treatment) were pooled and then subdivided for stocking into four replicate 0.1 ha ponds per treatment, another four ponds were stocked directly (DS) with PL8. All 12 ponds were stocked on the same day at a density of approximately 35 PL/m2, and cultured over a 16‐wk period and then drain harvested. After harvest, mean average weights (15.4, 16.9, and 14.9 g), survivals (63, 62, and 64%), FCRs (2.7, 2.5, and 2.7), and average yields (3592, 4005, and 3374 kg/ha) were determined for N21, N14, and DS, respectively. No significant (P > 0.05) differences were observed among treatments. Regardless of nursing time, nursed juveniles did not differ significantly in production characteristics from shrimp stocked directly from the hatchery.  相似文献   

4.
This investigation examined the effects of light intensity, stocking density and temperature on the air-bubble disease, survivorship and growth of early juveniles (2–30 days old) of seahorse Hippocampus erectus Perry. The juveniles in the 100 lx treatment had the highest air-bubble disease rate of 20.8 ± 6.2% and the juveniles in the 500 lx treatment had the highest survival rate of 84.4 ± 5.5%. The juvenile seahorses cultured in the 1500 lx treatment had the highest final wet weight of 0.13 ± 0.02 g and the highest final standard length of 4.54 ± 0.37 cm (F7, 144=57.406, F7, 144=12.315, P<0.05). There was no significant effect of stocking density on the air-bubble disease rate (F6, 21=1.893, P=0.126). The juveniles cultured in the 1 ind L−1 had the highest wet weight increment of 0.134 ± 0.031 g, but juveniles in the 2 ind L−1 had the highest standard length increment of 3.17 ± 0.30 cm (F6, 126=34.902, F6, 126=11.726, P<0.05), and juveniles cultured in the 1.5 ind L−1 had the highest survival rate of 86.1 ± 4.6%. The result of interaction of light intensity and temperature showed that the juveniles cultured in the 1500 lx and 26 °C had the highest weight gain and specific growth rate of 3791.17 ± 323.97% and 13.07 ± 0.18, respectively, and the lowest air-bubble disease rate of 9.3 ± 4.5% occurred in the 1000 lx and 26 °C (F8, 36=12.355, P<0.05).  相似文献   

5.
ABSTRACT

Sea lice, Lepeophtheirus salmonis, mobile stages were caught using a light trap, in cages holding Atlantic salmon, Salmo salar, and their abundance determined through calculation. Seasonal changes were shown with an increase in abundance as the temperature increased toward the end of the season. Analysis of manual lice-count data indicated variations in lice abundance between cages with and without deployed light traps. Analysis indicated that these variations were in larval presence (P = 0.006) and presence of gravid females (P = 0.015), but not in abundance of in pre-adults (P = 0.172). Cage net condition also affected the abundance and infection intensity of sea lice on Atlantic salmon within aquaculture cages. Abundance of larvae were affected by net condition (P = 0.01), as were abundance of pre-adults on salmon (P = 0.04). The infection intensity of gravid females, however, did not vary with net condition (P = 0.74). Other species of zooplankton such as, American lobster, Homarus americanus, larvae and various Brachi-pod larvae, were also collected with the light trap. The light trap, as presented in this research, could provide an alternate method of lice control in aquaculture cages.  相似文献   

6.
The objective of this study was to evaluate inclusion of distiller's dried grains with solubles (DDGS) as partial replacement of commercial, solvent‐extracted soybean meal (SBM) in fish meal‐free diets for Pacific white shrimp, Litopenaeus vannamei. Aquaria connected to a recirculating biofiltration system were utilized to evaluate growth, survival, and feed conversion of shrimp during the 8‐wk feeding trial. Each 110‐L aquarium was stocked with 15 shrimp (mean individual weight 0.99 g) and fed one of five diets: a diet containing 20% fish meal (FM), which served as the control (Diet 1); a diet containing 0% FM and 52.5% SBM (Diet 2); and diets containing 0% FM and either 10, 20, or 30% DDGS as partial replacement of SBM (Diets 3, 4, and 5, respectively). Shrimp were fed according to a pre‐determined feeding chart five times daily (0730, 1030, 1330, 1630, and 1930 h) and there were three replicates per dietary treatment. The results from the feeding trial demonstrated that final weight, weight gain (g), and percentage weight gain were significantly higher (P < 0.05) for shrimp fed Diet 1 (10.96 g, 10.01 g, and 1051%, respectively) compared to shrimp fed diets containing DDGS; however, shrimp fed diets containing DDGS had similar (P > 0.05) final weight, weight gain (g), and percentage weight gain as shrimp fed a diet containing 0% FM and 52.5% SBM (Diet 2). Feed conversion ratio (FCR) of shrimp fed Diet 1 (2.84) was significantly lower (P < 0.05) compared to shrimp fed any other diet. Survival (%) was not different (P > 0.05) among treatments and averaged 77.3% for the study. This study demonstrated that practical shrimp diets containing no FM had an adverse impact on growth performance of white shrimp when grown in a clear‐water system and that further research is needed to refine diet formulations when culturing shrimp in these systems when attempting to feed a diet without FM.  相似文献   

7.
The development of biofloc production technology has generated significant commercial and research interest directed toward the inland culture of Pacific white shrimp, Litopenaeus vannamei. Most work to date has been conducted in greenhouses, where photoautotrophic organisms are significant contributors to system functionality. In more temperate locations, operations in insulated buildings would reduce heating costs. This experiment was designed to evaluate the effect of light on shrimp cultured in intensive biofloc systems. A 92‐d experiment was conducted in 3.8‐m3 tanks. There were five light treatments: (1) natural sunlight (SUN) as a control (midday: 718 lx); (2) one metal halide light (MHL) (1074 lx); (3) one fluorescent light (1FL) (214 lx); (4) two fluorescent lights (2FL) (428 lx); and (5) three fluorescent lights (3FL) (642 lx). Artificial light treatments operated on a 12:12 daily cycle. There were three replicate tanks per treatment and each was separated by black plastic to prevent light transmission between replicates. Each tank was stocked at 465 shrimp/m2 of tank bottom (initial mean weight = 0.4 g). Light treatment had a significant (P≤ 0.05) impact on average individual weight, survival, harvest yield (kg/m2), and feed conversion ratio (FCR). Harvest yield and survival among shrimp in the SUN, MHL, and 1FL treatments were not significantly different. However, there was an inverse linear relationship (P≤ 0.05; R2 = 0.76) between the number of fluorescent fixtures and survival, which was related to greater concentrations of filamentous bacteria as the intensity of fluorescent light increased, causing gill fouling. Natural light and MHL did not result in high concentrations of filamentous bacteria. These results indicate that natural light, metal halide lighting, and/or relatively low levels of fluorescent lighting are suitable for indoor production of Pacific white shrimp in biofloc systems. Light spectrum and intensity can affect bacterial community structure, which has a profound effect on shrimp survival and production.  相似文献   

8.
A comparative study was carried out to compare the effect of caging mullet and tilapia in a shrimp polyculture system. In six shrimp tanks (three tanks for each fish species), either mullet, Mugil cephalus (CCT‐SM), or tilapia, Oreochromis niloticus (CCT‐ST), was stocked in cages. In three other tanks, mullets were allowed to roam freely in shrimp tanks (D‐SM). White shrimp, Litopenaeus vannamei (0.50 g), was cultured as the predominant species were distributed randomly into nine fibreglass tanks (5 m3) at a density of 300 shrimp/tank, while fish (1.50 g) were stocked at the same density of 10% of the initial total shrimp biomass. The results showed that water quality parameters were not significantly different among treatments (p > .05), except for total suspended solids (TSSs). System performances based on parameters such as total weight gain (2,808.15 g/tank) and nutrient recovery were higher in D‐SM treatment (39.80% for nitrogen and 27.40% for phosphorus) than in CCT‐SM and CCT‐ST treatments (p < .05). These system performance parameters were significantly affected by the mullet‐holding strategy; however, they were not affected by fish species. The addition of mullet or tilapia in shrimp tanks did not affect shrimp growth differentially. Fish growth performances based on parameters such as final weight (98.43 g/fish) and DGR (1.29 g/day) were significantly higher in D‐SM treatment and were significantly different among D‐SM, CCT‐SM and CCT‐ST treatments (p < .05). It is concluded that in shrimp–fish polyculture with a stocking density of fish at 10% of the initial total shrimp biomass, tilapia is more effective than mullet, when caged. However, under free‐roaming conditions, the use of mullet is more effective in terms of system performances relative to a system holding caged tilapia.  相似文献   

9.
Abstract.— A 12‐wk feeding trial was conducted in cages with juvenile Nile tilapia Oreochromis niloticus to evaluate distillers grains with solubles (DDGS) as a direct feed, the effects of pelleting on its utilization, and the compatibility of caged tilapia and prawns in polyculture. Nine 1.0‐m3 cages were stocked with 200 juvenile (26 ± 0.9 g) tilapia. Cages were suspended in a 0.2‐ha pond stocked with juvenile freshwater prawns Macrobrachium rosenbergii at 40,000/ha. Three replicate cages were randomly assigned to each dietary treatment. In one dietary treatment DDGS was fed as an unpelleted loose grain ration (26% protein). In a second dietary treatment fish were fed DDGS that had been steam‐pelleted (23% protein). Fish in a third dietary treatment were fed a commercial catfish diet (31% protein) for comparison. After 12 wk, individual weight, individual length, and specific growth rate were significantly higher (P < 0.05) and feed conversion ratio was significantly lower (P < 0.05) for fish fed the commercial catfish diet than for fish fed either unpelleted or pelleted DDGS. Specific growth rate was significantly higher (P < 0.05) for fish fed pelleted DDGS than for fish fed unpelleted DDGS. Survival did not differ significantly (P > 0.05) among treatments (>95%). Although growth was increased in fish fed the commercial diet, their cost of production (<0.66/kg gain) was significantly higher (P < 0.05) than in fish fed unpelleted and pelleted DDGS (<0.26/ kg gain and <0.37/kg gain, respectively). The costs of gain in fish fed unpelleted DDGS was significantly lower (P < 0.05) than in fish fed the pelleted DDGS. Prawn production was 1,449 kg/ha and addition of tilapia in polyculture increased total pond productivity approximately 81 %. These data suggest that DDGS provides economical growth in tilapia when fed as a direct feed and that polyculture of tilapia may improve overall pond efficiency in freshwater prawn production ponds, even at temperate latitudes.  相似文献   

10.
The main aim of this study was to examine the effects of a polyculture system on the control of the external parasites of western white shrimp, Litopenaeus vannamei. To this end, the western white shrimp postlarvae (PLs) were stocked in nine earthen ponds (600 m2) at a density of 20 PLs m?2 and reared for 4 months. After 40 days of shrimp stocking, Mullets, Mugil cephalus, were stocked at various densities including: control (0 fish/100 m2 pond), treatment 1 (T1: 2 fish/100 m2 pond) and treatment 2 (T2: 4 fish/100 m2 pond). Over the course of the experiment, the external parasites of shrimps were investigated by the preparation of a wet mount from the gill tissue. Based on the obtained results, totally two genera of protozoan parasites, i.e. Zoothamnium sp. and Epistylis sp., were identified over the course of the experiment. In all experimental groups, the incidence and abundance of Zoothamnium sp. was significantly higher than Epistylis sp. (< 0.05). Also, mean incidence per cent and mean abundance of Zoothamnium sp. and Epistylis sp. were significantly lower in the polyculture treatments (T1 and T2) compared to the monoculture group (control) (P < 0.05). Throughout this experiment, the total organic matter (TOM %) content of the bottom sediments and biological oxygen demand (BOD5 mg L?1) of water samples in the polyculture ponds were significantly lower than the monoculture group (P < 0.05). In contrast, the polyculture ponds had a higher concentration of water dissolved oxygen (O2 mg L?1) compared to the monoculture (P < 0.05). In conclusion, our results show that mullet as a secondary farmed species can reduce indirectly the parasitic pollution of western white shrimp probably through reducing the total organic matters in water and sediments and improving the water quality parameters.  相似文献   

11.
To address the preference of mud crab farmers for larger size Scylla serrata juveniles (5.0–10 g body weight or BW; 3.0–5.0 cm internal carapace width or ICW), a study was conducted to compare the growth and survival of crab juveniles (2.0–5.0 g BW; 1.0–3.0 cm ICW) produced a month after stocking of megalopae in net cages when reared further in net cages installed in earthen ponds or when stocked directly in earthen ponds. In a 3 × 2 factorial experiment, three stocking densities (1, 3 and 5 ind m−2), two types of rearing units (net cages or earthen pond) were used. Megalopae were grown to juvenile stage for 30 days in net cages set inside a 4000 m2 brackishwater pond and fed brown mussel (Modiolus metcalfei). Crab juveniles were then transferred to either net cages (mesh size of 1.0 mm) or earthen ponds at three stocking densities. After 1 month, no interaction between stocking density and rearing unit was detected so data were pooled for each stocking density and rearing unit. There were no significant differences in the growth or survival rate of crab juveniles across stocking density treatments. Regardless of stocking density, survival in net cages was higher (77.11±6.62%) than in ponds (40.41±3.59%). Growth, however, was significantly higher for crab juveniles reared in earthen ponds. The range of mean BW of 10.5–16.0 g and an ICW of 3.78–4.33 cm obtained are within the size range preferred by mud crab operators for stocking grow‐out ponds.  相似文献   

12.
A two‐factor experiment was performed to evaluate the effects of cage colour (black or white 0.5 m3 experiment cages) and light environment (natural sunlight or reduced level of natural sunlight) on the skin colour of darkened Australian snapper. Each treatment was replicated four times and each replicate cage was stocked with five snapper (mean weight=351 g). Snapper exposed to natural sunlight were held in experimental cages located in outdoor tanks. An approximately 70% reduction in natural sunlight (measured as PAR) was established by holding snapper in experimental cages that were housed inside a ‘shade‐house’ enclosure. The skin colour of anaesthetized fish was measured at stocking and after a 2‐, 7‐ and 14‐day exposure using a digital chroma‐meter (Minolta CR‐10) that quantified skin colour according to the L*a*b* colour space. At the conclusion of the experiment, fish were killed in salt water ice slurry and post‐mortem skin colour was quantified after 0.75, 6 and 22 h respectively. In addition to these trials, an ad hoc market appraisal of chilled snapper (mean weight=409 g) that had been held in either white or in black cages was conducted at two local fish markets. Irrespective of the sampling time, skin lightness (L*) was significantly affected by cage colour (P<0.05), with fish in white cages having much higher L* values (L*≈64) than fish held in black cages (L*≈49). However, the value of L* was not significantly affected by the light environment or the interaction between cage colour and the light environment. In general, the L* values of anaesthetized snapper were sustained post mortem, but there were linear reductions in the a* (red) and b* (yellow) skin colour values of chilled snapper over time. According to the commercial buyers interviewed, chilled snapper that had been reared for a short period of time in white cages could demand a premium of 10–50% above the prices paid for similar‐sized snapper reared in black cages. Our results demonstrate that short‐term use of white cages can reduce the dark skin colour of farmed snapper, potentially improving the profitability of snapper farming.  相似文献   

13.
Three genetic strains (Texas [cultured], Hawaii [cultured], and Myanmar [wild]) of freshwater prawn, Macrobrachium rosenbergii, were characterized and compared under two pond grow‐out management technologies using a 3 × 2 factorial design. Juvenile prawns (45 d nursed juveniles) from each strain were stocked at individual average weights of 0.4 ± 0.3 g (Texas), 0.3 ± 0.2 g (Hawaii), and 0.3 ± 0.2 g (Myanmar). The low input management technology prawns were stocked at 24,700 /ha with no added substrate. The high input management technology prawns were stocked at 74,100 /ha with the addition of artificial substrate. Each of the six treatment combinations were replicated in three, 0.04 ha earthen ponds (total of 18 ponds). Prawns were fed a sinking pellet (32% protein) once daily at a standardized rate. After 112 d, prawns were harvested, bulk weighed, and counted. Survival of Texas strain (95%) was significantly higher (P ≤ 0.05) than Myanmar strain (77–80%) under both management technologies with survival of Hawaii strain (86–91%) intermediate and not significantly different (P > 0.05) from other strains. Under both management technologies, average weight, total production, and marketable percentage (>20 g) was significantly better (P ≤ 0.05) in Texas and Hawaii strains in comparison to the Myanmar strain. These data appear to indicate that the cultured strains evaluated in this study demonstrate positive impacts of domestication and do not indicate inbreeding depression.  相似文献   

14.
The effects of open‐water and caged fish density on growth, feed utilization, water quality and profitability were investigated to assess the feasibility of a small‐scale rotational system for production of Oreochromis niloticus (L.) in fertilized ponds. Hand‐sexed male fingerlings averaging 18.6 and 29.9 g were stocked in open water and cages, respectively in four treatments with open‐pond:caged tilapia ratios of 300:0 (control), 150:150 (L), 300:150 (H1) and 300:300 (H2). The ponds in L and H1 contained one cage, two cages in H2, and the control ponds had no cages. Each cage contained 150 fish, which were fed daily at 1.5% body weight for 125 days. All fish in the open water except the control fish were not fed. Growth of open water tilapia was significantly (P<0.05) higher in L than in control. Feed utilization, dawn DO and economic returns were significantly better (P<0.05) in caged than control ponds. Growth of tilapia in L was significantly lower (P<0.05) in cages than in open water. Fingerling production was significantly lower (P<0.05) in L than in other treatments. In conclusion, cage‐cum‐open‐pond integrated treatment (L) was optimal for O. niloticus production in fertilized ponds. However, the system could not rotate and needed further fine‐tuning to rotate.  相似文献   

15.
The effects of four different ionic composition low salinity water (T1, T2, T3, and T4), on growth and survival of Litopenaeus vannamei marine shrimp juveniles were investigated. Shrimp culture in seawater (Tm) was used as control treatment. The results indicated that there were no significant difference (P < 0.05) in growth, survival, production, and feed conversion ratio (FCR) of L. vannamei juveniles reared in the different treatments, but significant differences (P < 0.05) were observed between each of them when compared with seawater (Tm). After 84 days, culture shrimp grew from 0.02 to 7.58 g in T1. The lowest growth rate was attained in T3 (0.57 g/week), in which potassium and calcium ions concentrations were the lowest (0.58 and 28.00 mg/L, respectively). The recorded survival rate (76.35% to 79.55%) is considered well for the 84 days growout period, although it was 7.6% lower than that recorded in the control treatment. Although there were no significant differences (P < 0.05) in growth with respect to the ionic composition of the four treatments, there was a trend of increasing growth in relation with the ionic ratio found in the seawater (Tm). This aspect should be evaluated more closely in future research.  相似文献   

16.
Spinefoot rabbitfish, Siganus rivulatus, is an economically important species of herbivorous fish that is relatively easy to rear and thus considered to be suitable for aquaculture. Juveniles are generally reared in nursery systems before being stocked into growout cages or ponds. We report here our evaluation of the effects of stocking density on the survival, growth, feed efficiency and condition index of S. rivulatus juveniles in nursery tanks. The experiment was conducted in a recirculating system of twelve 52-l aquaria connected to a biological filter and a sand filter. Juvenile fish (average weight 6.5 g) were stocked into aquaria at four stocking densities (10, 20, 30, and 40 fish/aquarium) with three replicate aquaria per treatment. Diet was provided at 3% body weight daily divided into two feedings. Fish were weighed weekly for 8 weeks and the diet increased accordingly. Survival was greater than 95% in all treatments, with no significant differences observed among treatments. There were also no differences in specific growth rate (SGR 2.12–2.27) of the fish among treatments. Growth rate was linear during the 8 weeks in all treatments, and harvested biomass increased proportionally to stocking density (198, 401, 600 and 785 g per increasing stocking density, respectively). Feed efficiency (FE 0.67–0.71) of the fish did not vary significantly among treatments. The coefficient of variation was high (35–41%) among the harvested fish, but it also did not differ significantly among treatments. The final condition indices of the fish in all treatments were similar to each other but significantly greater than the initial values (P < 0.05). The results suggest that there is no apparent effect of stocking density at the levels tested on the survival and growth of juvenile rabbitfish.  相似文献   

17.
The present work aimed at studying the growth performance and feeding preference of Litopenaeus vannamei juveniles fed on diets supplemented or not with Spirulina meal. Litopenaeus vannamei juveniles (3.89 ± 0.25 g) were stocked for 72 days in 28 round 500‐L tanks at 44 shrimp/tank (77 juveniles/m2). The diets were supplemented with 0.5% of a commercial feed attractant (C25 and C50) or with Spirulina meal (S25 and S50). In C25/S25 and C50/S50 there were reductions of 25% and 50% in fishmeal inclusion level respectively. In a further study, two feeding trays with different diets were allowed to shrimp at the same moment and they were located in opposite walls of the tank. The feed remains in each feeding tray were collected and weighted to calculate the dry feed remains. The weekly growth rate of shrimp fed on S25 (0.89 ± 0.03 g) was not significantly different from those fed on C25 (0.89 ± 0.01 g). The attractiveness experiment showed that S25 was preferred significantly more by shrimp than C25. In conclusion, Spirulina meal added at 0.5% in a complete diet for L. vannamei juveniles, with 14% of Peruvian fishmeal, has proved itself as a nutritionally efficient feeding attractant.  相似文献   

18.
In a Biofloc Technology System (BFT), there is constant biofloc formation and suspended solids accumulation, leading to effects on water quality parameters that may affect the growth performance of cultured shrimp. This study aimed to analyse during biofloc formation the effect of different total suspended solids (TSS) levels on water quality and the growth performance of Litopenaeus vannamei shrimp in a BFT system. A 42‐day trial was conducted with treatments of three ranges of TSS: 100–300 mg L?1 as low (TL), 300–600 as medium (TM) and 600–1000 as high (TH). The initial concentrations of 100 (TL), 300 (TM) and 600 mg L?1 (TH) were achieved by fertilization before starting the experiment. Litopenaeus  vannamei juveniles with an average weight of 4.54 ± 1.19 g were stocked at a density of 372 shrimp m?3. Physical and chemical water parameters and shrimp growth performance were analysed. After 6 weeks, TSS mean concentrations were 306.37, 532.43 and 745.2 mg L?1 for, respectively, TL, TM and TH treatments. Significant differences (P < 0.05) were observed in TSS, settleable solids, pH, alkalinity and nitrite, especially between the TL and TH treatments. Similarly, differences (P < 0.05) were observed in the growth performance parameters, specifically final weight, survival, feed conversion and productivity. The water quality parameters at lower range of total suspended solids concentration (TL) treatment resulted in a better performance of L. vannamei in the BFT system. The maintenance at range of 100–300 mg L?1 TSS is thus important to the success of shrimp culture.  相似文献   

19.
Two trials were conducted with two sizes, grow‐out (80.0 mg b.w.) and fattening (5.0 g b.w.), of Penaeus semisulcatus to compare the production and yield of shrimp cultured at different stocking densities within an indoor running‐seawater system. In the first experiment, postlarvae were cultured at 50, 100, 150 and 200 m?3 for 68 days, while in the second experiment, juveniles were cultured at 24, 50, 74 and 100 m?3 for 126 days. The results of the two experiments showed significant decrease in weight of shrimp as the stocking density increased. During the grow‐out stage, no statistical differences were observed on survival rates among the shrimp stocked at different densities. Thus, as the primary factor to consider at this stage is the number of shrimp produced, it is recommended to use a density of 200 shrimp m?3. During the fattening stage, the survival rate at the highest density was statistically lower than the other three densities. The mean yield was 437.02, 869.16, 1217.62 and 1446.78 g m?3 for shrimp stocked at 24, 50, 74 and 100 m?3 respectively. Although the average harvest size of juveniles at the lowest stocking density was statistically higher than those stocked at the highest stocking density, both sizes (18.12 and 16.67 g) will be classified as one size group in the market, i.e. medium. As the yield significantly increases as the stocking density is increased, it is therefore recommended that the stocking density for the fattening stage be 100 shrimp m?3.  相似文献   

20.
The study was conducted to determine if stunting of young bighead carp Aristichtys nobilis (Richardson) would affect subsequent growth and reproduction. Juveniles (3 g each) were stocked directly in cages (control) in a lake or stunted in tanks for 6, 12, 18 or 24 months before being stocked in cages. Initially, body weights and lengths of stunted carp in cages were significantly lower (P<0.05) than those of the control fish. The carp stunted for 6, 12 and 18 months showed growth compensation, although their weights and lengths were slightly lower than those of the control fish. The body weight and length of fish stunted for 24 months were the lowest throughout the rearing period. Sexual maturation occurred only in the control fish and those stunted for 6 and 12 months. However, the onset of gonad maturity was delayed significantly (P<0.05) in males stunted for 12 months and in both groups of stunted female fish. The relative fecundity (44 000–56 000 eggs per kg body weight) and number of 3‐day‐old larvae produced per female (78 000–89 000) did not differ significantly among the three treatments (P>0.05), but production was somewhat lower in fish stunted for 12 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号