首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bamboo (Phyllostachys pubescens) internode was subjected to steam explosion treatment to produce an excellent fiber for binderless boards. Lignin was isolated from extract-free bamboo meal with Björkman’s procedure and steam-exploded pulp. The self binding-mechanism was discussed by scanning electron microscopy (SEM), thermo-gravimetry (TG), differential scanning calorimetry (DSC) and analytical ozonation. It is well-known that steam explosion treatment liberates lignin from the cell wall to the fiber surface, which is the most important component relevant to binderless board production. Results of TG and DSC analyses showed that steam-exploded bamboo pulp started mass loss at lower temperature compared to bamboo internode meal. The thermal softening temperature of lignin prepared from steam-exploded pulp was much lower than that of lignin prepared from extract-free bamboo meal. This suggests that intermonomer linkages of lignin, especially β-aryl-ether linkage which is the major intermonomer linkage of lignin, were cleaved during steam explosion treatment resulting in low molecular weight phenolic compounds. The cleavage of β-aryl-ether intermonomer linkage of lignin was also confirmed by ozonation analysis.  相似文献   

2.
Chemical changes in cell wall components of bamboo internode during steam explosion process were analyzed to investigate self-binding mechanism of binderless board from steam-exploded pulp. More than 30% of xylose on initial mass, which is a major hydrolyzate of bamboo hemicelluloses, was lost after steam explosion treatment. Bamboo lignin is characterized by the presence of ester- and/or ether-linked p-coumaric acid to lignin. The content of phenolic hydroxyl groups of lignin isolated from steam-exploded pulp was characterized 2.3 times higher than those of the extract-free bamboo internode due to the cleavage of β-O-4 linkages. Alkaline nitrobenzene oxidation of the bamboo lignin gave vanillin, syringaldehyde and p-hydroxybenzaldehyde as major products. The content of p-hydroxybenzaldehyde decreased after steam explosion treatment, indicating the cleavage of ester- and/or ether-linked p-coumaric acid. The total yield of erythronic and threonic acids in ozonation products of the extract-free bamboo internode lignin was 268 mmol (200 g lignin)−1, while those of lignins in the steam-exploded pulp and powdery fraction were 96 and 129 mmol (200 g lignin)−1, respectively, suggesting the significant cleavage of β-O-4 linkages during steam explosion treatment. The cleavage of β-O-4 linkages was also confirmed by 1H- and 13C-NMR spectroscopic observations.  相似文献   

3.
毛竹无胶粘剂蒸爆板的制造和特性研究   总被引:1,自引:0,他引:1  
研究了22、26、33 kg/cm2爆破压力,5 min蒸煮时间对毛竹无胶粘剂蒸爆板的制造和特性的影响,结果表明,无胶板的静曲强度、弹性模量和内结合强度与板材密度普遍呈紧密的线性正相关。爆破压力26 kg/m2、蒸煮时间5 min的蒸爆条件有利于产生高强度的弹性和内结合力。无胶板密度超过1.1 g/cm3时,24 h浸泡处理水分吸收率不超过30%,几乎所有压制成的无胶板的24 h浸泡处理厚度膨胀率不超过10%。  相似文献   

4.
采用硫酸水解法(aldito-acetate procedure)、X射线粉末衍射(XRD)、傅里叶变换红外光谱(FTIR)分析了蒸爆过程中毛竹材加工剩余物纤维聚集态结构及主要化学成分的变化.研究结果表明,(1)毛竹材加工剩余物经蒸爆处理,60%左右的半纤维素水解,木质素低分子化且裸露到纤维表面,易被80%乙醇及木质素溶剂提取,从而实现毛竹材加工剩余物主要组分的有效分离.(2)毛竹材加工剩余物经蒸爆处理,80%乙醇抽提物得率提高,综纤维素得率减少,木质素含量减少:葡萄糖相对含量增加,半纤维素降解明显.(3)210℃处理10 min和220℃处理10 min的蒸爆浆的化学组成变化几乎没有区别,但两者与200℃处理10 min差别较大,210℃处理10 min是毛竹材加工剩余物适宜的处理温度.(4)FTIR结果显示蒸爆处理后在1040~1060 cm-1区的吸收峰分裂为明显的2个峰表明半纤维素降解,1166 cm-1处的吸收强度明显减弱,表明C-O-C键有不同程度的断裂.X-身寸线衍射分析结果显示毛竹材加工剩余物蒸爆处理后纤维素相对结晶度增加.  相似文献   

5.
采用蒸汽爆破技术处理尾叶桉木材,研究蒸汽爆破对其主化学成分的影响,以及爆破材料用纤维素酶水解的工艺,确定了水解糖化条件:温度50qC,pH值4.8,酶用量25FPIU/g底物,底物浓度2%。结果表明,蒸汽爆破过程溶解出一定量的半纤维素和木质素,而纤维素基本不受损失,有利于提高酶解率;爆破前用硫酸预处理,木质素脱除率和木聚糖分解率在同样的爆破压力下比未用硫酸预处理的高。在最优的水解条件下,硫酸预处理,2.2MPa爆破的尾叶按木材多糖水解率达到82.43%,比未用硫酸预处理的提高36.86%。  相似文献   

6.
The properties of the binderless boards of moso bamboo depending on the harvest seasons and the parts of the height were reported and the optimum harvesting conditions investigated. The binderless boards were prepared from the powdered bamboo harvested each month from June to May, and the parts in height. The hot water extract (HWE), lignin, α-cellulose, and hemicelluloses contents were examined. The board properties were evaluated with internal bonding (IB), water absorption (WA), and thickness swelling (TS). From the experiment, the boards prepared between March and October had higher HWE content and higher IB and lower WA and TS than the ones prepared in other months. The board from the top part showed lower IB and higher WA and TS than the bottom and the middle. The boards prepared from the residue after extraction of HWE showed lower IB than the unextracted samples. These results indicated that for producing board from bamboo, the suitable harvesting season is when HWE contents are higher and that the suitable parts in height for harvesting are the bottom and the middle where lignin contents are not low.  相似文献   

7.
Binderless boards were prepared from steam-exploded fiber of oil palm(Elaeis guineensis Jacq.) frond at six levels of explosion conditions. Their properties were investigated and evaluated. The mechanical properties (i.e., modulus of rupture, modulus of elasticity, and internal bonding strength) of the boards increased linearly with increasing board density as the usual hardboard. The boards made from fibers treated under a steam explosion condition of 25 kgf/cm2 (steam pressure) and 5 min (digestion period) exhibited the maximum strength. These boards at a density of 1.2 g/cm3 met the requirement of S-20 grade of JIS A 5905 — 1994 (fiberboard). Thickness swelling of the boards ranged from 6% to 14% under the JIS A 5908 — 1994 (particleboard) test condition and showed no significant changes with increasing board density. The main bonding strength of the board is believed to be due to a ligninfurfural linkage. Considering the chemical components of oil palm frond, which is rich in hemicellulose, there seems to be a good possibility for producing binderless boards using steam-exploded fibers of oil palm frond.This study was presented in part at the 2nd International Wood Science Seminar, Serpong, Indonesia, November 1998  相似文献   

8.
Self-bonding is the main factor of the performance expression of binderless boards, and therefore its clarification is considered to be an important issue. For this purpose, a series of chemical analyses were conducted on kenaf core binderless boards and their chemical changes during the hot-pressing process are discussed in this article. First of all, binderless boards were prepared from kenaf core powder at different pressing temperatures (without steam-explosion process) and were used for chemical analyses after they were reduced into powders and extracted with methanol. To investigate their chemical changes, lignin, holocellulose, and neutral sugar contents were determined, Fourier transform infrared (FTIR) spectra were recorded, and the nitrobenzene oxidation procedure was applied. As a result, it was found that parts of lignin and hemicelullose were decomposed during the hot-pressing process; however, the contribution of the resulting fractions to selfbonding was not observed. In addition, progress of condensation reactions in lignin and the formation of chemical bonds by low molecular weight conjugated carbonyl compounds in methanol extractives were observed. Thermal softening of lignin is also suggested to play an important role in the expression of board performance.  相似文献   

9.
Thermoplastic processing of lignin is restricted by its high glass transition temperature (T g). In this study, lignin was modified with polyethylene glycol (PEG) during steam explosion to improve its thermoplastic properties, and the effects of steam explosion and PEG on the chemical structure and thermal properties of lignin were investigated. Structure characterization using Fourier transform infrared spectroscopy showed that hydroxyl and ether functional groups increased and the activity of lignin was improved by steam explosion. In addition, steam explosion treatment was more effective than heat treatment for promoting the reaction of PEG with lignin. Solid-state 13C NMR revealed that PEG was grafted onto lignin. The T g of raw lignin was 164.1 °C; after steam explosion, lignin exhibited more than one T gs. The T g of lignin was reduced when the steam explosion temperature increased and decreased further, to around 60 °C, when PEG was used to modify lignin. Therefore, this work provides an effective approach to reducing the high T g of lignin.  相似文献   

10.
杉木热处理材结晶度及力学性能的研究   总被引:1,自引:0,他引:1  
热处理对木材力学性能的影响是多样的,这与热处理条件下木材的物理化学变化密切相关。本次研究将杉木板材在160℃、180℃和220℃常压蒸汽条件下进行热处理,考察处理材的结晶度、抗弯弹性模量、抗弯强度及相互可能的关联。结果表明,热处理使试材结晶度增加,有助于提高木材的刚性,使热处理材的抗弯弹性模量高于常规对照材;结晶度的提高对抗弯强度没有改善作用,热处理后试材的抗弯强度明显下降。  相似文献   

11.
蒸汽爆破-乙醇蒸煮两步法预处理对麦秆结构的影响   总被引:1,自引:0,他引:1  
对麦秆采用先蒸汽爆破后乙醇蒸煮的两步法进行预处理,研究预处理对麦秆组分及结构变化的影响。蒸汽爆破过程实验条件选取200 g绝干麦秆,压力1.75 MPa和时间3.5 min。乙醇预处理过程选取80 g蒸汽爆破麦秆(绝干),55%乙醇,两者固液比1∶5(g∶mL),温度170℃、时间30 min。通过高效液相色谱法测定,预处理最终产物组分中半纤维素降低89%左右,木质素降低35%左右。采用红外光谱、纤维形态分布分析及SEM分析对预处理过程中麦秆结构变化情况进行研究,结果表明:蒸汽爆破过程破坏了半纤维素酯键连接且半纤维素降解非常明显,但对纤维素链结构影响和降解作用相对较低;麦秆经过蒸汽爆破预处理后,纤维平均长度明显降低,而平均宽度却显著增加;再经乙醇预处理后纤维平均长度基本保持不变,但平均宽度降低;经两步预处理后麦秆纤维的天然物理结构由紧密到蓬松,纤维束呈松散状态且纤维表面基本无碎片附着物,利于后续加工利用。  相似文献   

12.
To provide basic information on self-bonding in kenaf core binderless boards, a series of chemical analyses was conducted on binderless boards and their chemical changes during hot pressing were examined in our previous study. In this study, binderless boards were manufactured under conditions that may accelerate the supposed chemical changes to investigate their effect on the board properties. First, to investigate the influence of the chemical bonds formed by carbonyl compounds on self-bonding, the influence of acetic acid addition prior to board manufacturing was studied and the effect of methanol extractives (containing the carbonyl compounds) was also examined. Second, the influence of the condensation reaction in lignin was discussed from the viewpoint of board density. Last, to examine the influence of thermal softening of lignin, the influences of temperature condition and moisture content, as well as those of microwave pretreatment, were investigated. As a result, the estimated chemical changes were suggested to influence the binderless board properties.  相似文献   

13.
The steam explosion (SE) pretreatment associated with the organosolv process was investigated to produce dissolving pulp from eucalyptus. Prehydrolysis Kraft (PHK) pulping was also done to produce viscose and acetate grade pulps as reference. The organosolv pulps were delignified in two steps with sodium chlorite. Viscose and acetate grade PHK pulps were bleached by OD0(EH)D1P and OD0(EP)D1PCCE sequences, respectively. Dilute acid-catalyzed (with acid addition) SE pretreatment dissolved more xylan than auto-catalyzed (no acid addition) SE pretreatment. Steam-exploded unbleached organosolv pulps showed lower residual lignin content and screened yield than unbleached organosolv pulps without SE pretreatment. Steam explosion pretreatment helped to decrease lignin content and damaged fiber length of unbleached organosolv pulps. The 1.0% H2SO4 organosolv pulp (organosolv dissolving pulp at bioconversion conditions) showed the highest reactivity. Even showing low viscosity for some applications, in general, the organosolv dissolving pulps produced in this study can be used for making lyocell fibers.  相似文献   

14.
以竹子开条、开片或拉丝加工过程产生的长条状剩余物为研究对象,采用低温碱液润胀、苄化处理试验,系统研究了预处理及苄化反应条件对竹材增重率(苄化率)的影响;并借助FTIR、X-射线、SEM、DSC等现代分析手段研究分析了苄化竹材的微观结构、化学结构特征及热熔特征的变化规律。试验结果表明:碱液润胀工艺对竹材苄化增重率的影响最大,苄化试剂用量与反应时间对竹材苄化也有不同程度的作用。在试验范围内较佳的工艺条件为:碱液浓度22.5%、润胀时间10 h、苄化试剂用量50 mL、反应时间1 h。苄化增重率不同,苄化竹材的玻璃化转变温度有显著差异。将苄化增重率45%~50%的变性竹材按同纤维方向重组,可在温度为140℃、单位压力2.0MPa的条件下热压熔接成板。  相似文献   

15.
不同热压方法对无胶竹碎料板力学性能影响   总被引:1,自引:0,他引:1  
分别采用普通热压和喷蒸热压两种热压方法制备了无胶竹碎料板,对它们的物理力学性能进行了对比研究与分析.结果表明,与普通热压法相比,喷蒸热压法制备的无胶竹碎料板的静曲强度、弹性模量与内结合强度明显提高,吸水厚度膨胀率显著减小,这可能是因为两种热压法热压过程中竹碎料发生的化学变化不同所致.  相似文献   

16.
Chemical changes in steam-pressed kenaf core binderless particleboard   总被引:4,自引:0,他引:4  
The effects of chemical changes in kenaf core binderless particleboards on the bonding performance and thickness swelling of boards were investigated by chemical and spectroscopic analyses. Mild steam-injection treatments (0.6–1.0MPa) caused significant degradation of hemicelluloses, lignin, and cellulose. Conventional hot pressing caused a lower degree of degradation of the chemical components. The hot-pressed kenaf core board without any binders showed poor bonding performance. Thus, it was found that partial degradation of the three major chemical components of the kenaf core by mild steam-injection treatment increased the bonding performance and dimensional stability of the binderless boards, and gave better quality binderless boards than those made by hot-pressing treatments.Part of this report was presented at the 4th International Wood Science Symposium, Serpong, Indonesia, September 2002; and at the 53rd Annual Meeting of The Japan Wood Research Society, Fukuoka, March 2003  相似文献   

17.
An outdoor exposure test was conducted on kenaf core binderless boards (pressing temperatures 200°, 180°, and 160°C; pressing pressure 3.0 MPa, time 10 min, target board thickness 5 mm, target board density 0.8 g/cm3) to estimate their bond durability. Modulus of rupture (MOR), modulus of elasticity (MOE), internal bonding strength (IB), thickness change, weight loss, Fourier transform infrared (FTIR) spectra, and color difference (ΔE*) by the CIE L*a*b* system were measured at various outdoor exposure periods up to 19 months. These values were then compared with those of a commercial medium-density fiberboard (MDF; melamine-urea-formaldehyde resin; thickness 9.0 mm, density 0.75 g/cm3). Generally, dimensional stability and the retention ratios of MOR, MOE, and IB after the outdoor exposure test increased with increased pressing temperature of binderless boards. The MOR retention ratio of the kenaf core binderless boards with a pressing temperature of 200°C was 59.5% after 12 months of outdoor exposure, which was slightly lower than that of the MDF (75.6% after 11 months of outdoor exposure). Despite this, the bond durability of the kenaf core binderless boards should be viewed as favorable, especially when considering the fact that the retention ratio of 59.5% was achieved without binder and without obvious element loss. Part of this report was presented at the International Symposium on Wood Science and Technology, IAWPS2005, November 27-30, 2005, Yokohama, Japan  相似文献   

18.
A two-cycle accelerated aging boil test was conducted on kenaf core binderless boards to estimate their bond durability. This is one of the methods to estimate the bond quality of kenaf core binderless boards, as stipulated by Notification 1539 of the Ministry of Land, Infrastructure, and Transport, October 15, 2001, for the Building Standard Law of Japan. Generally, retention ratios of modulus of rupture (MOR), modulus of elasticity (MOE), and internal bond (IB) strength after the boil test increased with increased pressing temperature. In particular, the MOR retention ratio of boards with a pressing temperature of 200°C (average 106.4%) was higher than that of a commercial medium-density fiberboard (MDF) (melamine-urea-formaldehyde resin) (average 72.7%), and the value sometimes exceeded 100%. The durability of kenaf core binderless boards with a pressing temperature of 200°C compared favorably with that of the commercial MDF (melamine-urea-formaldehyde resin), having almost the same retained strength values after the boil test. Part of this article was presented at the International Symposium on Wood Science and Technology, IAWPS2005, November 27–30, 2005, Yokohama, Japan  相似文献   

19.
This paper describes the features of binderless particleboard manufactured from sugarcane bagasse, under a high pressing temperature of 200–280 °C. Mechanical properties [i.e., modulus of rupture (MOR) and elasticity (MOE) in dry and wet conditions, internal bonding strength (IB)] and dimensional stability [i.e., thickness swelling (TS)] of the board were evaluated to investigate the effect of high pressing temperature. Recycled chip binderless particleboards were manufactured under the same conditions for comparison, and particleboards bonded with polymeric methylene diphenyl diisocyanate (PMDI) resin were manufactured as reference material. The target density was 0.8 g/cm3 for all of the boards. The results showed that the mechanical properties and dimensional stability of both types of binderless boards were improved by increasing the pressing temperature. Bagasse showed better performance than that of recycled chip as a raw material in all evaluations. Bagasse binderless particleboard manufactured at 260 °C had an MOE value of 3.5 GPa, which was equivalent to the PMDI particleboard, and a lower TS value of 3.7 % than that of PMDI particleboard. The MOR retention ratio under the dry and wet conditions was 87.0 %, while the ratio for the PMDI particleboard was only 54.6 %. The obtained results showed the possibility of manufacturing high-durability binderless particleboard, with good dimensional stability and water resistance, which previously were points of weakness for binderless boards. Manufacturing binderless boards under high temperature was effective even when using particles with poor contact area, and it was possible to express acceptable properties to allow the manufacture of particleboards. Further chemical analysis indicated a contribution of a saccharide in the bagasse to the improvement of the board properties.  相似文献   

20.
In this study, molding moso bamboo strips to a curved shape using hot-press molding operation was explored. Bamboo strips with different thickness and moisture content (MC) were subjected to press molding under 120–210 °C for different time. Changes in the chemical components of bamboo were analyzed by Fourier-transform infrared spectroscopy (FTIR). Effect of MC on thermal mechanical behavior of bamboo was investigated using dynamic mechanical analysis (DMA). Results showed that the influencing degree of four variables on compression and recovery ratios decreased as: temperature?>?time?>?thickness?>?MC. Compression ratio increased and recovery ratio decreased dramatically when pressing temperature exceeded 180 °C. FTIR analysis indicated that polysaccharide (especially hemicelluloses) underwent a progressive thermal degradation during compression at 180 and 210 °C for 40 min, whereas relative content of lignin increased. DMA results showed that bamboo samples with a higher MC had a lower storage modulus value, confirmed water had a plasticizing effect. The loss factor of bamboo with higher MC (12 and 16%) exhibited two major transitions centred around 100 °C (α1) and 50 °C (α2), respectively. The temperature of these α transitions kept almost unchanged as moisture level increased from 12 to 16%. These findings provide fundamental information for the future preparation of curved bamboo as profiled components in engineered products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号