首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salinity reduces crop yield by limiting water uptake and causing ion‐specific stress. Soybean [Glycine max (L.) Merr.] is sensitive to soil salinity. However, there is variability among soybean genotypes and wild relatives for salt tolerance, suggesting that genetic improvement may be possible. The objective of this study was to identify differences in salt tolerance based on ion accumulation in leaves, stems and roots among accessions of four Glycine species. Four NaCl treatments, 0, 50, 75 and 100 mm , were imposed on G. max, G. soja, G. tomentella and G. argyrea accessions with different levels of salinity tolerance. Tolerant genotypes had less leaf scorch and a greater capacity to prevent Na+ and Cl? transport from soil solution to stems and leaves than sensitive genotypes. Magnitude of leaf injury per unit increase in leaf Na+ or Cl? concentrations was lower in tolerant than in susceptible accessions. Also, plant injury was associated more with Na+ rather than with Cl? concentration in leaves. Salt‐tolerant accessions had greater leaf chlorophyll‐meter readings than sensitive genotypes at all NaCl concentrations. Glycine argyrea and G. tomentella accessions possessed higher salt tolerance than G. soja and G. max genotypes.  相似文献   

2.
P. Surekha  Rao  B. Mishra    S. R. Gupta    A. Rathore 《Plant Breeding》2008,127(3):256-261
Salinity and alkalinity (sodicity) seriously threaten rice production in south Asia. Improving screening methodologies for identifying sources of tolerance is crucial for breeding salt tolerant rices. Rice genotypes of varying tolerance (tolerant, semi‐tolerant and sensitive) were screened in saline soil of electrical conductivity, ECe 4 and 8 dS/m and alkali soil of pH 9.5 and 9.8 in lysimeters. Vegetative growth events were less affected by both the stresses in comparison to reproductive stage. Grain yield was reduced by 26.7%, 45.7% and 50.3% at ECe 8 dS/m in three tolerance groups respectively. At pH 9.8 the reduction was 25.1%, 37.2% and 67.6% in the three groups respectively. Higher floret fertility contributed to higher seed set and grain yields in tolerant genotypes whereas higher spikelet sterility led to poor seed set and lower grain yields in sensitive genotypes. The 1000 grains weight was also significantly reduced at ECe 4 or pH 9.8. Screening at reproductive stage for morphological traits like floret fertility is thus more useful to identify rice genotypes tolerant to both salinity and alkalinity stress. Genotypic (G) and environmental (E) effects and GE interactions were highly significant for the growth attributes and grain yield. Based on analysis of variance, genotypes tolerant to salinity and alkalinity as well to both the stresses were identified.  相似文献   

3.
The role of phosphorus application on growth and yield of rice under saline conditions was studied in a set of two experiments, one in nutrient and the other in soil culture. In experiment 1, the effect of inorganic phosphate (Pi) on the growth and ionic relations of four rice cultivars, varying in salt tolerance and phosphorus use efficiency, grown in nutrient solution with and without 50 mol m?3 NaCl was measured in a 2 week trial. The growth of all rice cultivars was affected to different degrees due to external P, in the presence of salt. External P, concentration up to 100 μM in the presence of NaCl caused stimulation of all growth parameters (shoot, root, tillering capacity), above this concentration P, had an inhibitory effect. Salt-induced P toxicity was exhibited at a much lower P, concentration (10 μM) by the salt sensitive cultivar. Increasing the supply of phosphorus (from 1 to 100 μM Pi) to the saline medium tended to decrease the concentrations of Na1 and CI in all cultivars except IR 1561. Shoot concentrations of these saline ions were much lower in the salt tolerant and moderately salt tolerant rice cultivars. Shoot P and Zn concentrations showed an increasing trend in the presence of external P, and salt in the rooting nr -idium but most strikingly P: Zn ratio was lower in salt tolerant and moderately salt tolerant cultivars. Significantly higher concentrations of Na+, P and CI, and lower concentrations of Zn, were determined in the shoots of salt sensitive cultivars when exposed to salt stress in the presence of Pi Results were confirmed in naturally salt-affected soils of two different types (saline-sodic and saline) where paddy yield of NIAB 6 (salt tolerant) and IR 1561 (salt sensitive) showed improvement through moderate phosphorus supply (18 kg P ha?1).  相似文献   

4.
A combination of appropriate crop rotation(s) and management interventions has the potential to transform saline‐sodic soil and water resources from an environmental burden into an economic asset. We carried out 2‐year field studies in the Indus Basin of Pakistan to evaluate different irrigation and soil management options of using saline‐sodic waters (SSW) and soils for reclamation and for growing salt‐tolerant cultivars of rice (SSRI‐8) and wheat (SIS‐32). These soils have variable levels of salinity and sodicity (ECe 9–44 dS m?1 and SAR 83–319). The treatments on both the sites were the same and consisted of: (1) Irrigation with SSW, (2) Irrigation with freshwater (FW), (3) Soil application of gypsum at 100 % gypsum requirement of soil + SSW (G + SSW), (4) G + one irrigation with SSW and one with FW (G + 1SSW + 1FW), (5) G + two irrigations with SSW and one with FW (G + 2SSW + 1FW), (6) Farm manure at 25 Mg ha?1 each year before rice + one irrigation with SSW and one with FW (FM + 1SSW + 1FW) and (7) FM + two irrigations with SSW and one with FW (FM + 2SSW + 1FW). Rice was grown as the first crop. After harvesting final wheat crop (fourth in sequence), maximum decrease in bulk density and increase in infiltration rate was observed with G + 1SSW + 1FW while FM + 1SSW + 1FW treatment showed higher decrease in pHs and ECe. Significantly the highest decrease in SAR occurred at both sites with G + 1SSW + 1FW. Maximum yields of rice and wheat were generally observed with G + 1SSW + 1FW. The crop yield and economic benefits with treatments showed a positive correlation with that of improvement in soil physical and chemical properties. Overall, the greatest net benefit was obtained from G + 1SSW + 1FW treatment. We also found that the farmers’ management skills were crucial in the overall success in improving crop yields during reclamation of saline‐sodic soils. Based on the results of this study, we propose that SSW could be used to reclaim saline‐sodic soils by using a rice–wheat rotation and a site‐specific combination of soil amendments and water application strategies.  相似文献   

5.
Four bread wheat genotypes differing in salt tolerance were selected to evaluate ion distribution and growth responses with increasing salinity. Salinity was applied when the leaf 4 was fully expanded. Sodium (Na+), potassium (K+) concentrations and K+/Na+ ratio in different tissues including root, leaf‐3 blade, flag leaf sheath and flag leaf blade at three salinity levels (0, 100 and 200 mm NaCl), and also the effects of salinity on growth rate, shoot biomass and grain yield were evaluated. Salt‐tolerant genotypes (Karchia‐65 and Roshan) showed higher growth rate, grain yield and shoot biomass than salt‐sensitive ones (Qods and Shiraz). Growth rate was reduced severely in the first period (1–10 days) after salt commencements. It seems after 20 days, the major effect of salinity on shoot biomass and grain yield was due to the osmotic effect of salt, not due to Na+‐specific effects within the plant. Grain yield loss in salt‐tolerant genotypes was due to the decline in grain size, but the grain yield loss in salt‐sensitive ones was due to decline in grain number. Salt‐tolerant genotypes sequestered higher amounts of Na+ concentration in root and flag leaf sheath and maintained lower Na+ concentration with higher K+/Na+ ratios in flag leaf blade. This ion partitioning may be contributing to the improved salt tolerance of genotypes.  相似文献   

6.
7.
As a low‐cost strategy, the cultivation of certain salt‐tolerant crop species on calcareous saline‐sodic soils, i.e. phytoreclamation, has enjoyed great attention in recent years. A lysimeter study was carried out to evaluate whether a phytoreclamation approach alone, or in combination with some booster dose of either gypsum or sulphuric acid, is sufficient to reclaim a calcareous, moderately saline‐sodic soil. Four crop rotations, rice (Oryza sativa L.)–wheat (Triticum aestivum L.)–sesbania (Sesbania aculeata L.); rice–berseem (Trifolium alexandrinum L.); Kallar grass (Leptochloa fusca L.)–alfalfa (Medicago sativa L.) and sesbania–berseem were tested against three treatments: (T1) control, (T2) sulphuric acid application 25 % of soil gypsum requirement (SGR), and (T3) application of gypsum 25 % SGR. To decrease the sodium adsorption ratio of the saline‐sodic soil well below the threshold level, especially from deeper depth, a booster dose of gypsum or sulphuric acid 25 % SGR was quite effective. Rice–berseem and Kallar grass–alfalfa rotations were more promising in combination with inorganic amendments than the rest of the rotations. The study also suggests that better yields of wheat and rice crops can be obtained with the application of inorganic amendments like gypsum or sulphuric acid. However, Kallar grass yield was somewhat suppressed with these amendments.  相似文献   

8.
Quinoa is recently introduced to Pakistan as a salt‐tolerant crop of high nutritional value. Open field trials were conducted to evaluate its performance on normal and salinity/sodicity‐degraded lands at two locations of different salinity/sodicity levels, S1 (UAF Farm, Normal Soil), S2 (Paroka Farm UAF, saline sodic), S3 (SSRI Farm, normal) and S4 (SSRI Farm, saline sodic) during 2013–2014. Two genotypes (Q‐2 and Q‐7) were grown in lines and were allowed to grow till maturity under RCBD split‐plot arrangement. Maximum seed yield (3,062 kg/ha) was achieved by Q‐7 at normal field (S1) soil which was statistically similar with yield of same genotype obtained from salt‐affected field S2 (2,870 kg/ha). Furthermore, low yield was seen from both genotypes from both S3 and S4 as compared to S1 and S2. Q‐7 was best under all four conditions. Minimum yield was recorded from Q‐2 (1,587 kg/ha) at S4. Q‐7 had higher SOD, proline, phenolic and K+ contents, and lower Na+ content in leaves as compared to Q‐2. High levels of antioxidants and K+/Na+ of Q‐7 helped to withstand salt stress and might be the cause of higher yields under both normal and salt‐affected soils. Seed quality (mineral and protein) did not decrease considerably under salt‐affected soils even improved seed K+, Mg2+ and Mn2+.  相似文献   

9.
Soil salinity is one of the major production constraints. Development and planting of salt‐tolerant varieties can reduce yield losses due to salinity. We screened 185 rice genotypes at germination stage in petri dishes under control, 50, 100 and 150 mm salt stress, and at seedling stage in Yoshida's hydroponic nutrient solution under control, 50 and 100 mm salt stress. At germination stage, 15 genotypes including Nona Bokra, Sonahri Kangni, 7421, 7423 and 7467, whereas at seedling stage, 28 genotypes including Nona Bokra, Jajai‐77, KSK‐133, KSK‐282, Fakhr‐e‐Malakand, Pakhal, IR‐6, Khushboo‐95, Shahkar and Shua‐92 were found salt tolerant. Basmati‐370, Mushkan, Homo‐46 and accessions 7436, 7437 and 7720 were sensitive to salinity at both germination and seedling stage. We further screened a subset of 33 salt‐tolerant and salt‐sensitive genotypes with SSR markers. Four SSR markers (RM19, RM171, RM172 and RM189) showed significant association with two or more of the studied traits under 50, 100 and 150 mm salt stress. These markers may be further tested for their potential in marker‐assisted selection. The salt‐tolerant genotypes identified in this study may prove useful in the development of salt‐tolerant rice varieties in adapted genetic background.  相似文献   

10.
水稻高世代回交导入系耐盐性的遗传研究   总被引:2,自引:0,他引:2  
水稻是一种对盐敏感的作物,盐分是限制水稻产量的主要因子之一。本研究利用广泛推广种植的杂交籼稻的亲本珍汕97(ZS97)和测序粳稻品种日本晴(Nipponbare)杂交、回交构建的导入系,对水稻的耐盐性进行遗传研究。用88份导入系作苗期盐胁迫(0.3%氯化钠)处理试验,发现6份导入系的耐盐性同受体亲本ZS97有显著差异,其中5份导入系耐盐,1份对盐敏感。图示基因型分析表明5份导入系中含有少数外源导入片段及耐盐相关的基因。  相似文献   

11.
In rice, pre‐exposure to sublethal treatment followed by harsh lethal treatment is known to improve tolerance of different abiotic stresses at the vegetative stage within and across generations. Our major aim was to test the phenomenon of thermo‐tolerance at flowering across (trans)‐generations and within generation using rice cultivars contrasting for heat stress tolerance at flowering. To test trans‐generational response, plants were exposed to higher temperature at flowering stage and seeds obtained from previous generations were exposed to heat stress during flowering, which recorded significantly lower fertility when exposed to the same degree of stress in their subsequent generations. A pre‐acclimation to moderately high acclimating temperatures imposed over three different durations during the vegetative and initial reproductive stage showed positive response in the tolerant N22, particularly under severe heat stress (40 °C). This finding indicates the possibility of acquiring ameliorative thermo‐tolerant mechanisms at anthesis, restricted to tolerant genetic backgrounds to combat subsequent harsh conditions within the same generation. However, trans‐generational memory was ineffective in mitigating spikelet sterility losses in both tolerant and susceptible backgrounds. Rice is extremely sensitive to heat stress during flowering; hence, similar exercise across other crops of interest needs to be carried out before generalizing conclusions.  相似文献   

12.
Legumes' sensitivity to salt is exacerbated under growth conditions requiring nitrogen fixation by the plant. Phosphorus (P) deficiency is widespread in legumes, especially common bean (Phaseolus vulgaris L). To examine the performance of P. vulgaris under salt stress conditions, a field experiment was conducted using two recombinants inbred lines (RILs) 115 (P‐deficiency tolerant) and 147 (P‐deficiency susceptible), grown under different salinity levels (L) (1.56, 4.78, and 8.83 dS m?1 as LI, L2, and L3, respectively) and supplied with four P rates (0, 30, 60, and 90 kg ha?1 P as P0, P30, P60, and P90, respectively) in order to assess the impact of P on salt tolerance. Results indicate that growing both RILs at P60 or P90 under all salinity levels (especially L1) significantly increased total chlorophyll, carotenoids, total soluble sugars, total free amino acids, and proline. Increasing P supply up to P60 under all salinity levels significantly induced higher accumulation of P, K+, Ca2+ and Mg2+ leaves in both RILs. Based on quadratic response over all locations, the maximum seed yield of 1.465 t ha?1 could be obtained at application of P 81.0 kg ha‐1 in RIL115, while seed yield of 1.275 t ha?1 could be obtained with P rate of 78.3 kg ha?1 in RIL147. RIL115 exhibited more salt‐tolerance with positive consequence on plant biomass and grain yield stability. Improved salt tolerance through adequate P fertilization is likely a promising strategy to improve P. vulgaris salinity tolerance and thus productivity, a response that seems to be P‐rate dependent.  相似文献   

13.
Rice is used as a model cereal to study drought response at the molecular level, with the goal of applying results to other cereals. To assess the relevance of results from rice to other species, the kinetics of drought development and plant response of tolerant and susceptible tropical rice ( Oryza sativa L.) and subtropical wheat ( Triticum aestivum L.) cultivars were compared under vegetative and reproductive stage drought in pot experiments. Water was withheld during reproductive stage until plant available soil moisture content was 30 % of field capacity (FC) or leaf wilting was observed, and then reapplied. Rice reached 30 % FC 9 days after withholding water and wheat after 13 days. Before rewatering, both species reached leaf water potentials of −12 bars and similarly low transpiration rates. Stress reduced leaf relative water content, leaf elongation and membrane stability. When water stress was imposed during reproductive stage, pollen fertility was most affected in wheat, while panicle exsertion and anther dehiscence were severely affected in rice. When water stress was imposed during vegetative stage, wheat was less affected to vegetative stage drought than rice. The nature of differences between tolerant and susceptible cultivars was similar for the two species. However, the differential growth habitats and growth rate of plants needs to be considered in these kinds of experiments.  相似文献   

14.
Forty-five accessions of sunflower collected from different countries were screened for salinity tolerance after 2 weeks growth in sand culture salinized with 150 meq l?1 of NaCl2+ CaCl2 (1:1 ratio equivalent wt. basis) in half strength Hoagland's nutrient solution. The results for plant biomass of 45 accessions show that there was considerable variation in salinity tolerance. In a further greenhouse experiment, the salinity tolerance of three tolerant (HO-1, Predovik, Euroflor) and two sensitive (SMH-24, 9UO-985) lines (selected on the basis of their performance in the seedling experiment) was assessed at the adult stage to evaluate the consistency of salinity tolerance at different growth stages. All three salt tolerant accessions produced significantly greater plant biomass, seed yield and seed oil content than the salt sensitive accessions. The tolerant accessions accumulated less Cl? and more K+ in the leaves under saline conditions compared with the salt sensitive accessions. The salt tolerant accessions also maintained relatively high leaf K:Na ratio and K+ versus Na+ selectivity. Although statistically nonsignificant, all three tolerant accessions had greater soluble carbohydrates, soluble proteins, total free amino acids and proline in the leaves than the sensitive accessions. A field trial conducted in a salt-affected field confirmed the greenhouse results of the selected accessions. This study shows that salinity tolerance of sunflower does not vary with stage of plant cycle, so selection for increased salt tolerance can be carried out at the initial growth stage. Secondly, it is found that there is great variation of salt tolerance in sunflower. Low uptake of Cl?, high uptake of K+, and maintenance of high K:Na ratios and K+ versus Na+ selectivity in the leaves and possibly the accumulation of organic osmotica such as soluble carbohydrates, soluble proteins, proline and free amino acids seem to be the important components of salt tolerance in sunflower.  相似文献   

15.
Cowpea is widely cultivated in arid and semi‐arid regions of the world where salinity is a major environmental stress that limits crop productivity. The effects of moderate salinity on growth and photosynthesis were examined during the vegetative phase of two cowpea cultivars previously classified as salt‐tolerant (Pitiúba) and salt‐sensitive (TVu). Two salt treatments (0 and 75 mm NaCl) were applied to 10‐day‐old plants grown in nutrient solution for 24 days. Salt stress caused decreases (59 % in Pitiúba and 72 % in TVu) in biomass accumulation at the end of the experiment. Photosynthetic rates per unit leaf mass, but not per unit leaf area, were remarkably impaired, particularly in TVu. This response was unlikely to have resulted from stomatal or photochemical constraints. Differences in salt tolerance between cultivars were unrelated to (i) variant patterns of Cl? and K+ tissue concentration, (ii) contrasting leaf water relations, or (iii) changes in relative growth rate and net assimilation rate. The relative advantage of Pitiúba over TVu under salt stress was primarily associated with (i) restricted Na+ accumulation in leaves paralleling an absolute increase in Na+ concentration in roots at early stages of salt treatment and (ii) improved leaf area (resulting from a larger leaf area ratio coupled with a larger leaf mass fraction and larger specific leaf area) and photosynthetic rates per unit leaf mass. Overall, these responses would allow greater whole‐plant carbon gain, thus contributing to a better agronomic performance of salt‐tolerant cowpea cultivars in salinity‐prone regions.  相似文献   

16.
Inheritance of salt tolerance in rice   总被引:7,自引:0,他引:7  
Summary The genetic behavior of salt tolerance was studied in artificially salinized conditions at the International Rice Research Institute.Divergent selection, carried out at a salinity level where the ECe was 15.2 mmhos/cm at 25 C in F3 lines from two crosses confirmed the effects of salt tolerance on F4 progeny with realized heritability values of 0.39 and 0.62, respectively.In a cross between two tolerant cultivars there was clear over-dominance for tolerance, despite the high environmental fluctuation which resulted in a low genetic response as indicated by a low but significant repeatability of 0.20–0.25, and many progeny lines more tolerant than the parents were recovered. The superior tolerance of these progenies compared to the parents was confirmed subsequently at 3 different salt levels. In the same experiment a cross between tolerant and susceptible cultivars produced some progeny of comparable tolerance with tolerant sources.In a 6×6 diallel cross experiment with two tolerant, moderate, and susceptible varieties each, both general and specific combining ability were significant.The findings indicate the possibility of breeding rices more tolerant than existing tolerant cultivars through cumulative crosses of tolerant cultivars. Further improvement can be attained by crossing highly tolerant lines with donors of good agronomic traits and pest and disease resistance.  相似文献   

17.
Salt tolerance of rice (Oryza sativa L.) at the seed germination stage is one of the major determinants for the stable stand establishment in salinity soil. One population of recombinant inbred lines (RILs, F2:9), derived from a cross between a japonica rice landrace tolerant to salt stress and a sensitive indica rice variety, was used to determine the germination traits including imbibition rate and germination percentage under control (water) and salt stress (100 mM NaCl) for 10 days at 30 °C. The multiple interval mapping (MIM) were applied to conduct QTL for the traits. The results showed that seed germination was a quantitative trait controlled by several genes, and strongly affected by salt stress. A total of 16 QTLs were detected in this study, and each QTL could explain 4.6–43.7% of the total phenotypic variance. The expression of these QTLs might be developmentally regulated and growth stage-specific. In addition, only one digenic interaction was detected under salt stress, showing small effect on germination percentage with R2 2.7%. Among sixteen QTLs detected in this study, four were major QTLs with R2 > 30%, and some novel alleles of salt tolerance genes in rice. The results demonstrated that the japonica rice Jiucaiqing is a good source of gene(s) for salt tolerance and the major or minor QTLs identified could be used to improve the salt tolerance by marker-assisted selection (MAS) in rice.  相似文献   

18.
Maize (Zea mays L.) is susceptible to salinity but shows genotypic variation for salt tolerance. How maize genotypes with contrasting root morphological traits respond to salt stress remains unclear. This study assessed genotypic variation in salinity tolerance of 20 maize genotypes with contrasting root systems exposed to NaCl for 10 days (0, 50 mM or 100 mM NaCl, added in four increments every other day from 14 days after transplanting, DAT) in a semi-hydroponic phenotyping system in a temperature-controlled greenhouse. Considerable variation was observed for each of the 12 measured shoot and root traits among the 20 genotypes under NaCl treatments. Salt stress significantly decreased biomass production by up to 54% in shoots and 37% in roots compared with the non-saline control. The 20 genotypes were classified as salt-tolerant (8 genotypes), moderately tolerant (5) and salt-sensitive (7) genotypes based on the mean shoot dry weight ratio (the ratio of shoot dry weight at 100 mM NaCl and non-saline control) ± one standard error. The more salt-tolerant genotypes (such as Jindan52) had less reductions in growth, and lower shoot Na+ contents and higher shoot K+/Na+ ratios under salt stress. The declared salt tolerance was positively correlated with shoot height, shoot dry weight and primary root depth, and negatively correlated with shoot Na+ content at 100 mM NaCl. Primary root depth is critical for identifying salt responsiveness in maize plants and could be suggested as a selection criterion for screening salt tolerance of maize during early growth. The selected salt-tolerant genotypes have potentials for cultivation in saline soils and for developing high-yielding salt-tolerant maize hybrids in future breeding programmes.  相似文献   

19.
This study was carried out to determine the effects of salinity levels (control, 6, 12 and 18 dS m?1) on germination, seedling growth, some agronomic traits and proline accumulation in leaves of nine wheat varieties adapted to semi‐arid areas of Jordan. The tested wheat materials included eight durum wheat varieties (Haurani 27, Acsad 65, Om Rabbeeh, Sham 1, Safra Ma’an, Katma, Al‐Samra and F8) and one bread wheat variety (Diel Harthon). Final germination percentage, shoot and seminal root length, and all growth and yield parameters were significantly (P < 0.05) decreased by increasing salinity level. Proline content was significantly (P < 0.05) increased by increasing salinity. There were significant variety × salt interactions (P < 0.05) on final germination percentage, seminal root length, grain yield and yield‐related traits indicating that the varieties responded to salt differently. Sham 1 did not show any decrease in germination ability at the different salinity levels. Haurani 27, Acsad 65, Al‐Samra and Diel Harthon showed a nonsignificant reduction in germination potential at low and intermediate salt levels. Safra Ma’an and Al‐Samra showed the lowest reduction in seminal root length at low salt level and consequently exhibited the lowest stress susceptibility index ‘S’ values. Grain yield‐based stress susceptibility index ‘S’ indicated that Haurani 27, Acsad 65, Katma, Al‐Samra, F8 and Diel Jardoon were more salt tolerant than Om Rabbeeh, Sham 1 and Safra Ma’an. In conclusion, a similar salt tolerance was observed at different growth stages in Haurani 27, Acsad 65 and Al‐Samra. Consequently, these three varieties could be considered as salt tolerant and accordingly they are suitable for durum wheat improvement. Furthermore, Sham 1 had the highest ability to germinate at high salinity level indicating that it has a genetic potential for salt tolerance, at least at this stage of its life cycle.  相似文献   

20.
Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice   总被引:7,自引:0,他引:7  
Salinity is a major constraint to irrigated rice production, particularly in semi-arid and arid climates. Irrigated rice is a well suited crop to controlling and even decreasing soil salinity, but rice is a salt-susceptible crop and yield losses due to salinity can be substantial. The objective of this study was to develop a highly predictive screening tool for the vegetative growth stage of rice to estimate salinity-induced yield losses. Twenty-one rice genotypes were grown over seven seasons in a field trials in Ndiaye, Senegal, between 1991 and 1995 and were subjected to irrigation with moderately saline water (3.5 mS cm-1, electrical conductivity) or irrigation with fresh water. Potassium/sodium ratios of the youngest three leaves (K/NaLeaves) were determined by flame photometry at the late vegetative stage. Grain yield was determined at maturity. All cultivars showed strong log-linear correlations between K/NaLeaves and grain yield, but intercept and slope of those correlations differed between seasons for a given genotype and between genotypes. The K/NaLeaves under salinity was related to grain yield under salinity relative to freshwater controls. There was a highly significant correlation (p < 0.001) between K/NaLeaves and salinity-induced grain yield reduction: the most susceptible cultivars had lowest K/NaLeaves and the strongest yield reductions. Although there were major differences in the effects of salinity on crops in both the hot dry season (HDS) and the wet season, the correlation was equally significant across cropping seasons. The earliest possible time to establish the relationship between K/NaLeaves under salinity and grain yield reduction due to salinity was investigated in an additional trial in the HDS 1998. About 60 days after sowing, salinity-induced yield loss could be predicted through K/NaLeaves with a high degree of confidence (p < 0.01). A screening system for salinity resistance of rice, particularly in arid and semi-arid climates, is proposed based on the correlation between K/NaLeaves under salinity and salinity-induced yield losses. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号