首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Short-term effects of nitrogen on methane oxidation in soils   总被引:6,自引:0,他引:6  
 The short-term effects of N addition on CH4 oxidation were studied in two soils. Both sites are unfertilized, one has been under long-term arable rotation, the other is a grassland that has been cut for hay for the past 125 years. The sites showed clear differences in their capacity to oxidise CH4, the arable soil oxidised CH4 at a rate of 0.013 μg CH4 kg–1 h–1 and the grassland soil approximately an order of magnitude quicker. In both sites the addition of (NH4)2SO4 caused an immediate reduction in the rate of atmospheric CH4 oxidation approximately in inverse proportion to the amount of NH4 + added. The addition of KNO3 caused no change in the rate of CH4 oxidation in the arable soil, but in the grassland soil after 9 days the rate of CH4 oxidation had decreased from 0.22 μg CH4 kg–1 h–1 to 0.13 μg CH4 kg–1 h–1 in soil treated with the equivalent of 192 kg N ha–1. A 15N isotopic dilution technique was used to investigate the role of nitrifiers in regulating CH4 oxidation. The arable soil showed a low rate of gross N mineralisation (0.67 mg N kg–1 day–1), but a relatively high proportion of the mineralised N was nitrified. The grassland soil had a high rate of gross N mineralisation (18.28 mg N kg–1 day–1), but negligible nitrification activity. It is hypothesised that since there was virtually no nitrification in the grassland soil then CH4 oxidation at this site must be methanotroph mediated. Received: 31 October 1997  相似文献   

2.
Denitrification plays an important role in N-cycling. However, information on the rates of denitrification from horticultural growing media is rare in literature. In this study, the effects of pH, N, C, and moisture contents on denitrification were investigated using four moderately decomposed peat types (oligotrophic, mesotrophic, eutrophic, and transitional). Basal and potential denitrification rates (20°C, 18 h) from the unlimed peat samples varied widely from 2.0 to 21.8 and from 118.9 to 306.6 μg (N2O + N2)–N L−1 dry peat h−1, respectively, with the highest rates from the eutrophic peat and the lowest from the transitional one. Both basal and potential denitrification rates were substantially increased by 3.6–14- and 1.4–2.3-fold, respectively, when the initial pH (4.3–4.8) was raised to 5.9–6.5 units. Emissions of (N2O + N2)–N from oligotrophic, mesotrophic, and transitional peats were markedly increased by the addition of 0.15 g NO3–N L−1 dry peat but further additions had no effect. Denitrification rates were increased by increasing glucose concentration suggesting that the activity of denitrifiers in all peat types was limited by the low availability of easily decomposable C source. Increasing moisture contents of all peats from 40 to 50% water-filled pore space (WFPS) did not significantly (p > 0.05) increase (N2O + N2)–N emissions. However, a positive effect was observed when the moisture contents were increased from 60% to 70% WFPS in the eutrophic peat, from 70% to 80% in the transitional, from 80% to 90% in the oligotrophic and from 70% to 90% in the mesotrophic peat. It can be concluded that liming, N-fertilization, availability of easily decomposable C, and moist condition above 60% WFPS could encourage denitrification from peats although the rates are greatly influenced by the peat-forming environments (eutrophic > mesotrophic > oligotrophic > transitional types).  相似文献   

3.
We compared, from 2004 through 2006, rates of soil–atmosphere CH4 exchange at permanently established sampling sites in a temperate forest exposed to ambient (control plots; ∼380 μL L−1) or elevated (ambient + 200 μL L−1) CO2 since August 1996. A total of 880 observations showed net atmospheric CH4 consumption (flux from the atmosphere to the soil) from all static chambers most of the time at rates varying from 0.02 mg m−2 day−1 to 4.5 mg m−2 day−1. However, we infrequently found net CH4 production (flux from the soil to the atmosphere) at lower rates, 0.01 mg m−2 day−1 to 0.08 mg m−2 day−1. For the entire study, the mean (±SEM) rate of net CH4 consumption in control plots was higher than the mean for CO2-enriched plots, 0.55 (0.03) versus 0.51 (0.03) mg m−2 day−1. Annual rates of 184, 196, and 197 mg m−2 for net CH4 consumption at control plots during the three calendar years of this study were 19, 10, and 8% higher than comparable values for CO2 enriched plots. Differences between treatments were significant in 2004 and 2005 and nearly significant in 2006. Volumetric soil water content was consistently higher at CO2-enriched sites and a mixed-effects model identified a significant soil moisture x CO2 interaction on net atmospheric CH4 consumption. Increased soil moisture at CO2-enriched sites likely increases diffusional resistance of surface soils and the frequency of anaerobic microsites supporting methanogenesis, resulting in reduced rates of net atmospheric CH4 consumption. Our study extends our observations of reduced net atmospheric CH4 consumption at CO2-enriched plots to nearly five continuous years, suggesting that this is likely a sustained negative feedback to increasing atmospheric CO2 at this site.  相似文献   

4.
Laboratory incubation study showed that iron pyrites retarded nitrification of urea-derived ammonium (NH4 +), the effect being greatest at the highest level (10000 mg kg–1 soil). Nitrification inhibition with 10000 mg pyrite kg–1 soil, at the end of 30 days, was 40.3% compared to 55.9% for dicyandiamide (DCD). The inhibitory effect with lower rates of pyrite (100–500 mg kg–1) lasted only up to 9 days. Urea+pyrite treatment was also found to have higher exchangeable NH4 +-N compared to urea alone. DCD-amended soils had the highest NH4 +-N content throughout. Pyrite-treated soils had about 7–86% lower ammonia volatilization losses than urea alone. Total NH3 loss was the most with urea+DCD (7.9% of applied N), about 9% more than with urea alone. Received: 11 November 1995  相似文献   

5.
Crop residues with high C/N ratio immobilize N released during decomposition in soil, thus reducing N losses through leaching, denitrification, and nitrous oxide (N2O) emission. A laboratory incubation experiment was conducted for 84 days under controlled conditions (24°C and moisture content 55% of water-holding capacity) to study the influence of sugarcane, maize, sorghum, cotton and lucerne residues, and mineral N addition, on N mineralization–immobilization and N2O emission. Residues were added at the rate of 3 t C ha−1 to soil with, and without, 150 kg urea N ha−1. The addition of sugarcane, maize, and sorghum residues without N fertilizer resulted in a significant immobilization of soil N. Amended soil had significantly (P < 0.05) lower NO3–N, which reached minimum values of 2.8 mg N kg−1 for sugarcane (at day 28), 10.3 mg N kg−1 for maize (day 7), and 5.9 mg N kg−1 for sorghum (day 7), compared to 22.7 mg N kg−1 for the unamended soil (day 7). During 84 days of incubation, the total mineral N in the residues + N treatments were decreased by 45 mg N kg−1 in sugarcane, 34 mg kg−1 in maize, 29 mg kg−1 in sorghum, and 16 mg kg−1 in cotton amended soil compared to soil + N fertilizer, although soil NO3–N increased by 7 mg kg−1 in lucerne amended soil. The addition of residues also significantly increased amended soil microbial biomass C and N. Maximum emissions of N2O from crop residue amended soils occurred in the first 4–5 days of incubation. Overall, after 84 days of incubation, the cumulative N2O emission was 25% lower with cotton + N fertilizer, compared to soil + N fertilizer. The cumulative N2O emission was significantly and positively correlated with NO3–N (r = 0.92, P < 0.01) and total mineral N (r = 0.93, P < 0.01) after 84 days of incubation, and had a weak but significant positive correlation with cumulative CO2 in the first 3 and 5 days of incubation (r = 0.59, P < 0.05).  相似文献   

6.
 In a first experiment, the effect of land use on the uptake rate of atmospheric CH4 was studied in laboratory incubations of intact soil cores. A soil under deciduous forest showed the highest CH4 oxidation. Its overall CH4 uptake during the measuring period (202 days) was 1.03 kg CH4 ha–1. Natural grassland showed the second highest CH4 oxidizing capacity (0.71 kg CH4 ha–1). The overall amount of CH4 uptake by fertilized pasture was 0.33 kg CH4 ha–1. CH4 oxidation in arable soils with different fertilizer treatments varied between 0.34 and 0.37 kg CH4 ha–1. Undisturbed soils had a higher CH4 uptake capacity than agricultural soils. The moisture content of the soil was found to be an important parameter explaining temporal variations of CH4 oxidation. Different methods of fertilization which had been commenced 10 years previously were not yet reflected in the total CH4 uptake rate of the arable soil. In a second experiment, a number of frequently used pesticides were screened for their possible effect on CH4 oxidation. In a sandy arable soil lenacil, mikado and oxadixyl caused significantly reduced CH4 oxidation compared to the control. Under the same conditions, but in a clayey arable soil, mikado, atrazine and dimethenamid caused a reduction of the CH4 uptake. In a landfill cover soil, with a 100-fold higher CH4 oxidation rate, no inhibition of CH4 oxidation was observed, not even when the application rate of pesticides was tenfold higher than usual. Received: 1 December 1998  相似文献   

7.
 At two field sites representing northeastern German minerotrophic fens (Rhin-Havelluch, a shallow peat site; Gumnitz, a partially drained peat site) the influence of different factors (N fertilization, groundwater table, temperature) on N2O and CH4 emissions was investigated. The degraded fens were sources or sinks of the radiatively active trace gases investigated. The gas fluxes measured were much higher than those found in other terrestrical ecosystems such as forests. Lowering the groundwater table increased the release of N2O and the oxidation of CH4. High CH4 emission rates occurred when the groundwater tables and soil temperatures were high (>12  °C). N fertilization stimulated the release of N2O only when application rates were very high (480 kg N ha–1). A moderate N supply (60 or 120 kg N ha–1) hardly increased the release of N2O in spite of high soluble soil NO3 contents. Received: 31 October 1997  相似文献   

8.
Methane oxidation in forest soils removes atmospheric CH4. Many studies have determined methane uptake rates and their controlling variables, yet the microorganisms involved have rarely been assessed simultaneously over the longer term. We measured methane uptake rates and the community structure of methanotrophic bacteria in temperate forest soil (sandy clay loam) on a monthly basis for two years in South Korea. Methane uptake rates at the field site did not show any seasonal patterns, and net uptake occurred throughout both years. In situ uptake rates and uptake potentials determined in the laboratory were 2.92 ± 4.07 mg CH4 m−2 day−1 and 51.6 ± 45.8 ng CH4 g−1 soil day−1, respectively. Contrary to results from other studies, in situ oxidation rates were positively correlated with soil nitrate concentrations. Short-term experimental nitrate addition (0.20-1.95 μg N g−1 soil) significantly stimulated oxidation rates under low methane concentrations (1.7-2.0 ppmv CH4), but significantly inhibited oxidation under high methane concentrations (300 ppmv CH4). We analyzed the community structures of methanotrophic bacteria using a DNA-based fingerprinting method (T-RFLP). Type II methanotrophs dominated under low methane concentrations while Type I methanotrophs dominated under high methane concentrations. Nitrogen addition selectively inhibited Type I methanotrophic bacteria. Overall, the results of this study indicate that the effects of inorganic N on methane uptake depend on methane concentrations and that such a response is related to the dissimilar activation or inhibition of different types of methanotrophic bacteria.  相似文献   

9.
 The 15N isotope dilution method was combined with a field incubation technique to provide simultaneous measurements of gross and net rates of N turnover in three long-term swards: unfertilized (Z) or receiving N either from N fixation as clover (C), or as 200 kg fertilizer N ha–1 year–1 (F). Uniform N enrichment of soil microplots was achieved with a multi-point soil injector to measure mineralization/immobilization turnover and nitrification over a 4-day incubation. Net rates of mineralization ranged between 0.6 and 2.9 μg N g–1 day–1 and in all three treatments were approximately half the gross rates. Nitrification rates (gross) were between 1.0 and 1.6 μg N g–1 day–1. In the F treatment, the turnover of NH4 +-N and NO3 -N pools was on a 2- and 4-day cycle, respectively, whereas in the N-limited treatments (C and Z) turnover rates were faster, with the NO3 -N pools turning over twice as fast as the NH4 +-N pools. Therefore, available N was recycled more efficiently in the C and Z treatments, whereas in the F treatment a higher N pool size was maintained which would be more vulnerable to leakage. A large proportion of the added 15N was recovered in the soil microbial biomass (SMB), which represented a 4–5 times larger sink for N than the plant biomass. Although the C treatment had a significantly lower SMB than the grass-only treatments, there were no differences in microbial activity. Gross rates of nitrification increased along the gradient of N input intensity (i.e. Z<C<F), and the addition of a nitrification inhibitor (C2H2) tended to increase microbial immobilization, but did not influence plant N uptake. In this study, the value of combining different techniques to verify net rates was demonstrated and the improved methodology for 15N labelling of soil enabled measurements to be obtained from relatively undisturbed soil under natural field conditions. Received: 25 May 1999  相似文献   

10.
Nitrogen fertilizers promote denitrification   总被引:8,自引:0,他引:8  
A laboratory study was conducted to compare the effects of different N fertilizers on emission of N2 and N2O during denitrification of NO3 in waterlogged soil. Field-moist samples of Drummer silty clay loam soil (fine-silty, mixed, mesic Typic Haplaquoll) were incubated under aerobic conditions for 0, 2, 4, 7, 14, 21, or 42 days with or without addition of unlabelled (NH4)2SO4, urea, NH4H2PO4, (NH4)2HPO4, NH4NO3 (200 or 1000 mg N kg–1 soil), or liquid anhydrous NH3 (1000 mg N kg–1 soil). The incubated soil samples were then treated with 15N-labelled KNO3 (250 mg N kg–1 soil, 73.7 atom% 15N), and incubation was carried out under waterlogged conditions for 5 days, followed by collection of atmospheric samples for 15N analyses to determine labelled N2 and N2O. Compared to samples incubated without addition of unlabelled N, all of the fertilizers promoted denitrification of 15NO3 . Emission of labelled N2 and N2O decreased in the order: Anhydrous NH3>urea<$>\gg<$> (NH4)2HPO4>(NH4)2SO4≃NH4NO3≃NH4H2PO4. The highest emissions observed with anhydrous NH3 or urea coincided with the presence of NO2 , and 15N analyses indicated that these emissions originated from NO2 rather than NO3 . Emissions of labelled N2 and N2O were significantly correlated with fertilizer effects on soil pH and water-soluble organic C. Received: 17 January 1996  相似文献   

11.
Future climate change is predicted to influence soil moisture regime, a key factor regulating soil nitrogen (N) cycling. To elucidate how soil moisture affects gross N transformation in a cultivated black soil, a 15N tracing study was conducted at 30%, 50% and 70% water-filled pore space (WFPS). While gross mineralization rate of recalcitrant organic N (Nrec) increased from 0.56 to 2.47 mg N kg−1 d−1, the rate of labile organic N mineralization declined from 4.23 to 2.41 mg N kg−1 d−1 with a WFPS increase from 30% to 70%. Similar to total mineralization, no distinct moisture effect was found on total immobilization of ammonium, which primarily entered the Nrec pool. Nitrate (NO3) was mainly produced via autotrophic nitrification, which was significantly stimulated by increasing WFPS. Unexpectedly, heterotrophic nitrification was observed, with the highest rate of 1.06 mg N kg−1 d−1 at 30% WFPS, contributing 31.8% to total NO3 production, and decreased with WFPS. Dissimilatory nitrate reduction to ammonium (DNRA) increased from near zero (30% WFPS) to 0.26 mg N kg−1 d−1 (70% WFPS), amounting to 16.7–92.9% of NO3 consumption. A literature synthetic analysis from global multiple ecosystems showed that the rates of heterotrophic nitrification and DNRA in test soil were comparative to the forest and grassland ecosystems, and that heterotrophic nitrification was positively correlated with precipitation, soil organic carbon (SOC) and C/N, but negatively with pH and bulk density, while DNRA showed positive relationships with precipitation, clay, SOC, C/NO3 and WFPS. We suggested that low pH and bulk density and high SOC and C/N in test soil might favor heterotrophic nitrification, and that C and NO3 availability together with anaerobic condition were crucial for DNRA. Overall, our study highlights the role of moisture in regulating gross N turnover and the importance of heterotrophic nitrification for NO3 production under low moisture and DNRA for NO3 retention under high moisture in cropland.  相似文献   

12.
《Soil biology & biochemistry》2001,33(12-13):1797-1804
Sulphur transformations were monitored in a unique set of arable, grassland and woodland soils from the Broadbalk Classical Experiment, which started in 1843. In an open incubation experiment with periodic leaching, 14–35 mg SO42−-S kg−1 was mineralised in 28 weeks at 25°C, equivalent to 4.4–8.3% soil organic S. Cumulative amounts of S mineralised increased linearly during the 28 weeks, indicating constant rates of mineralisation. The rate of mineralisation was the greatest in the woodland soil (170 μg SO4-S kg−1 day−1), followed by the grassland (120 μg SO4-S kg−1 day−1) and the arable soil from the farmyard manure (FYM) plot (110 μg SO4-S kg−1 day−1). Three soils from arable plots receiving different inorganic fertiliser treatments but no FYM had similar rates of S mineralisation (~70 μg SO4-S kg−1 day−1). In an incubation experiment with 35SO42−, addition of glucose greatly enhanced S immobilisation. In 132 days, the woodland and grassland soils immobilised more S than the arable soils, with or without glucose amendment. Immobilisation and mineralisation of S occurred concurrently, and both were stimulated by glucose addition. The results show that S mineralisation and immobilisation were influenced strongly by the type of land-use and long-term organic manuring, whereas annual application of sulphate-containing fertilisers for over 150 years had few effects on short-term S transformations.  相似文献   

13.
Since swine wastewater is used by farmers for soil fertilization, evaluation of toxic compounds or micro-contaminants of separate streams is required. This paper uses the toxicity identification evaluation (TIE) procedure for the physicochemical and ecotoxicological characterization of swine wastewater. To distinguish the most important toxic compounds, a physicochemical characterization and phase I-TIE procedure were performed. The acute toxic effect of swine wastewater and treated fractions (phase II-TIE) were evaluated using Daphnia magna determining 48-h LC50. Results show a high level of conductivity (23.5 μS cm−1), which is explained as due to the concentration of ions, such as ammonium (NH4+–N 1.6 g L−1), sulfate (SO42− 397.3 mg L−1), and chlorine (Cl 1,230.0 mg L−1). The acute toxicity of the swine wastewater was evaluated on D. magna (48-h LC50 = 3.4%). Results of the different water treatments indicate that anionic exchange treatments could reduce 22.5% of swine wastewater’s acute toxicity by reducing chlorine (to around 51%) and conductivity (8.5%). On the other hand, cationic exchange treatment increased acute toxicity on D. magna (% RT = −624.4%), by reducing NH4+–N (around 100%) and total nitrogen (95.5%). This finding suggests that part of the toxicity comes from anionic compounds, such as chlorine.  相似文献   

14.
Methane uptake to soil was examined in individual chambers at three small forest catchments with different treatments, Control, Limed and Nitrex sites, where N-deposition was experimentally increased. The catchments consisted of both well-drained forest and wet sphagnum areas, and showed uptake of CH4 from the ambient air. The lowest CH4 uptakes were observed in the wet areas, where the different treatments did not influence the uptake rate. In the well-drained areas the CH4 uptakes were 1.6, 1.4 and 0.6 kg ha–1 year–1 for the Limed, Control and Nitrex sites, respectively. The uptake of methane at the well-drained Nitrex site was statistically smaller than at the other well-drained catchments. Both acidification and increase in nitrogen in the soil, caused by the air-borne deposition, are the probable cause for the reduction in the methane uptake potential. Uptake of methane was correlated to soil water content or temperature for individual chambers at the well-drained sites. The uptake rate of methane in soil cores was largest in the 0- to 10-cm upper soil layer. The concentration of CH4 in the soil was lower than the atmospheric concentration up to 30 cm depth, where methane production occurred. Besides acting as a sink for atmospheric methane, the oxidizing process in soil prevents the release of produced methane from deeper soil layers reaching the atmosphere. Received: 27 September 1996  相似文献   

15.
Consumer demand for cleaned squid generates a substantial amount of waste that must be properly disposed of, creating an economic burden on processors. A potential solution to this problem involves converting squid by-products into an organic fertilizer, for which there is growing demand. Because fertilizer application to lawns can increase the risk of nutrient contamination of groundwater, we quantified leaching of NO3–N and PO4–P from perennial ryegrass turf (Lolium perenne L.) amended with two types of fertilizer: squid-based (SQ) and synthetic (SY). Field plots were established on an Enfield silt loam, and liquid (L) and granular (G) fertilizer formulations of squid and synthetic fertilizers were applied at 0, 48, 146, and 292 kg N ha−1 year−1. Levels of NO3–N and PO4–P in soil pore water from a depth of 60 cm were determined periodically during the growing season in 2008 and 2009. Pore water NO3–N levels were not significantly different among fertilizer type or formulation within an application rate throughout the course of the study. The concentration of NO3–N remained below the maximum contaminant level (MCL) of 10 mg L−1 until midSeptember 2009, when values above the MCL were observed for SQG at all application rates, and for SYL at the high application rate. Annual mass losses of NO3–N were below the estimated inputs (10 kg N ha−1 year−1) from atmospheric deposition except for the SQG and SYL treatments applied at 292 kg N ha−1 year−1, which had losses of 13.2 and 14.9 kg N ha−1 year−1, respectively. Pore water PO4–P levels ranged from 0 to 1.5 mg P L−1 and were not significantly different among fertilizer type or formulation within an application rate. Our results indicate that N and P losses from turf amended with squid-based fertilizer do not differ from those amended with synthetic fertilizers or unfertilized turf. Although organic in nature, squid-based fertilizer does not appear to be more—or less—environmentally benign than synthetic fertilizers.  相似文献   

16.
 The influence of fertilizer N applied through nitrate and ammoniacal sources on the availability of nitrate, supply of C, and gaseous N losses via denitrification (using acetylene inhibition technique) in a semiarid subtropical soil (Typic Ustochrepts) was investigated in a growth chamber simulating upland [60% water-filled pore space (WFPS)], nearly saturated (90% WFPS), and flooded (120% WFPS) conditions. The rate of denitrification was very low in the upland soil conditions, irrespective of fertilizer N treatments. Increasing water content to nearly saturated and flooded conditions resulted in four- to sixfold higher rates of denitrification within 2 days, suggesting that the denitrifying activity commences quickly. Results of this study reveal that (1) under restricted aeration, these soils could support high rates of denitrification (∼6 mg N kg–1 day–1) for short periods when nitrate is present; (2) application of fertilizer N as nitrate enhances N losses via denitrification (∼10 mg N kg–1 day–1) – however, the supply of available C determines the intensity and duration of denitrification; (3) when fertilizer N is applied as an ammoniacal form, nitrification proceeds slowly and nitrate availability limits denitrification in flooded soil; (4) the nearly saturated soil, being partially aerobic, supported greater nitrification of applied ammoniacal fertilizer N than flooded soil resulting in higher relative rates of denitrification; and (5) under aerobic soil conditions, 26 mg mineral N kg–1 accumulated in control soil over a 16-day period, demonstrating a modest capacity of such semiarid subtropical soils, low in organic matter, to supply N to growing plants. Received: 7 June 1999  相似文献   

17.
 Under normal conditions, CH4, one of the most important greenhouse gases, is subject to biological oxidation in forest soils. However, this process can be negatively affected by N amendment. The reported experiment was conducted in order to study the short- and long-term effects of N amendment on CH4 oxidation in pine (Pinus sylvestris L.) forest soils. Soil samples were taken from three experimental sites, two of which had been amended with N once, over 20 years earlier, while the third had been amended 3 weeks earlier. The soil samples were incubated fresh at 15  °C at ambient CH4 concentrations (ca. 1.8 ppmv CH4). The variation in CH4-turnover rates was high within the treatments: CH4 was produced [up to 22.6 pmol CH4 g dry wt. soil–1 h–1] in samples from the recently amended site, whereas it was consumed at high rates (up to 431 pmol CH4 g dry wt. soil–1 h–1) in samples from the plot that had received the highest N amendment 27 years before sampling. Although no significant differences were found between N treatments, in the oldest plots there was a correlation between consumption of atmospheric CH4 and the total C content at a depth of 7.5–15 cm in the mineral soil (r 2=0.74). This indicates that in the long-term, increased C retention in forest soils following N amendment could lead to increased CH4 oxidation. Received: 3 September 1997  相似文献   

18.
Methane oxidising activity and community structure of 11, specifically targeted, methanotrophic species have been examined in an arable soil. Soils were sampled from three different field plots, receiving no fertilisation (C), compost (G) and mineral fertiliser (M), respectively. Incubation experiments were carried out with and without pre-incubation at elevated CH4 mixing ratios (100 ml CH4 l−1) and with and without ammonium (100 mg N kg−1) pre-incubation. Four months after fertilisation, plots C, G and M did not show significant differences in physicochemical properties and CH4 oxidising activity. The total number of methanotrophs (determined as the sum the 11 specifically targeted methanotrophs) in the fresh soils was 17.0×106, 13.7×106 and 15.5×106 cells g−1 for treatment C, G and M, respectively. This corresponded to 0.11 to 0.32% of the total bacterial number. The CH4 oxidising activity increased 105-fold (20–26 mg CH4 g−1 h−1), the total number of methanotrophs doubled (28–76×106 cells g−1) and the methanotrophic diversity markedly increased in treatments with a pre-incubation at elevated CH4 concentrations. In all soils and treatments, type II methanotrophs (62–91%) outnumbered type I methanotrophs (9–38%). Methylocystis and Methylosinus species were always most abundant. After pre-incubation with ammonium, CH4 oxidation was completely inhibited; however, no change in the methanotrophic community structure could be detected.  相似文献   

19.
 We hypothesized that the integration of trees and shrubs in agricultural landscapes can reduce NO3 leaching and increase utilization of subsoil N. A field survey was conducted on 14 farms on acid soils in the subhumid highlands of Kenya, where there is little use of fertilizers, to determine the effect of vegetation types (VT) on soil NH4 + and NO3 to 4 m depth. The VT included maize (Zea mays) with poor growth and good growth, Markhamia lutea trees scattered in maize, natural weed fallow, banana (Musa spp.), hedgerow, and eucalyptus woodlot. The effect of VT on NH4 + was small (<1 mg N kg–1). NO3 within a VT was about constant with depth below 0.25 m, but subsoil NO3 varied greatly among VT. Mean NO3 -N concentrations at 0.5–4 m depth were low beneath hedgerow and woodlot (<0.2 mg kg–1), intermediate beneath weed fallow (0.2–0.7 mg kg–1), banana (0.5–1.0 mg kg–1) and markhamia (0.5–1.6 mg kg–1), and high beneath both poor (1.0–2.1 mg kg–1) and good (1.9–3.1 mg kg–1) maize. Subsoil NO3 (0.5–4 m) was agronomically significant after maize harvest with 37 kg N ha–1 m–1 depth of subsoil beneath good maize and 27 kg N ha–1 m–1 depth beneath poor maize. In contrast, subsoil NO3 was only 2 kg N ha–1 m–1 depth beneath woodlot and hedgerow. These results demonstrate that the integration of perennial vegetation and the rotation of annual and perennial crops can tighten N cycling in agricultural landscapes. Received: 8 July 1999  相似文献   

20.
 The effects on soil condition of increasing periods under intensive cultivation for vegetable production on a Typic Haplohumult were compared with those of pastoral management using soil biological, physical and chemical indices of soil quality. The majority of the soils studied had reasonably high pH, exchangeable cation and extractable P levels reflecting the high fertilizer rates applied to dairy pasture and more particularly vegetable-producing soils. Soil organic C (Corg) content under long-term pasture (>60 years) was in the range of 55 g C kg–1 to 65 g C kg–1. With increasing periods under vegetable production soil organic matter declined until a new equilibrium level was attained at about 15–20 g C kg–1 after 60–80 years. The loss of soil organic matter resulted in a linear decline in microbial biomass C (Cmic) and basal respiratory rate. The microbial quotient (Cmic/Corg) decreased from 2.3% to 1.1% as soil organic matter content declined from 65 g C kg–1 to 15 g C kg–1 but the microbial metabolic quotient (basal respiration/Cmic ratio) remained unaffected. With decreasing soil organic matter content, the decline in arginine ammonification rate, fluorescein diacetate hydrolytic activity, earthworm numbers, soil aggregate stability and total clod porosity was curvilinear and little affected until soil organic C content fell below about 45 g C kg–1. Soils with an organic C content above 45 g C kg–1 had been under pasture for at least 30 years. At the same Corg content, soil biological activity and soil physical conditions were markedly improved when soils were under grass rather than vegetables. It was concluded that for soils under continuous vegetable production, practices that add organic residues to the soil should be promoted and that extending routine soil testing procedures to include key physical and biological properties will be an important future step in promoting sustainable management practices in the area. Received: 18 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号