首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Relay strip intercropping of soybean has been widely developed in the southwest of China to secure China's soybean production. However, due to the shading from maize, soybean plants are thin and have a poor root system. Uniconazole is a plant-growth retardant that could enhance root vigor; increase root length, root volume, and root dry weight; and affect nitrogen (N) metabolism. To understand the effects of uniconazole on the root growth and N-transfer metabolism of soybean seedlings under relay strip intercropping, the changes in some morphological characteristics of root, dry-matter weight, root vigor, nitrate (NO3 ?)-N, ammonium (NH4 +)-N, and amino acid of xylem sap after seed treatment with uniconazole powder (0, 2, 4, and 8 mg kg?1 seed) were investigated. Main root length, total lateral root lengths, first lateral root numbers, root nodule numbers, root vigor together with bleeding sap, bleeding sap–top ratio, root dry weight, and root/shoot ratio were increased, indicating uniconazole improved soybean root system in relay strip intercropping. Uniconazole powder treatment could increase NO3 ?-N, NH4 +-N, and total amino acid of xylem sap, to increase the potential of leaf and root N reduction and assimilation, and increase of leaf and root N contents. Thus, results suggested that uniconazole treatment can improve root growth and N transfer mechanism of soybean to support its further growth.  相似文献   

3.
Tropical legume cover crops are important components in cropping systems because of their role in improving soil quality. Information is limited on the influence of nitrogen (N) fertilization on growth of tropical legume cover crops grown on Oxisols. A greenhouse experiment was conducted to evaluate the influence of N fertilization with or without rhizobial inoculation on growth and shoot efficiency index of 10 important tropical cover crops. Nitrogen treatment were (i) 0 mg N kg?1 (control or N0), (ii) 0 mg N kg?1 + inoculation with Bradyrhizobial strains (N1), (iii) 100 mg N kg?1 + inoculation with Bradyrhizobial strains (N2), and (iv) 200 mg N kg?1 of soil (N3). The N?×?cover crops interactions were significant for shoot dry weight, root dry weight, maximal root length, and specific root length, indicating that cover crop performance varied with varying N rates and inoculation treatments. Shoot dry weight is considered an important growth trait in cover crops and, overall, maximal shoot dry weight was produced at 100 mg N kg?1 + inoculation treatment. Based on shoot dry-weight efficiency index, cover crops were classified as efficient, moderately efficient, and inefficient in N-use efficiency. Overall, the efficient cover crops were lablab, gray velvet bean, jack bean, and black velvet bean and inefficient cover crops were pueraria, calopo, crotalaria, smooth crotalaria, and showy crotalaria. Pigeonpea was classified as moderately efficient in producing shoot dry weight.  相似文献   

4.
Fertilization with nitrogen (N) or phosphorus (P) can improve plant growth in saline soils. This study was undertaken to determine wheat (Triticum aestivum L; cv Krichauff) response to the combined application of N and P fertilizers in the sandy loam under saline conditions. Salinity was induced using sodium (Na+) and calcium (Ca2+) salts to achieve four levels of electrical conductivity in the extract of the saturated soil paste (ECe), 2.2, 6.7, 9.2 and 11.8?dS?m?1, while maintaining a low sodium adsorption ratio (SAR; ≤1). Nitrogen was applied as Ca(NO3)2?·?4H2O at 50 (N50), 100 (N100) and 200 (N200)?mg?N?kg?1 soil. Phosphorus was applied at 0 (P0), 30 (P30) and 60 (P60)?mg?kg?1?soil in the form of KH2PO4. Results showed that increasing soil salinity had no effect on shoot N or P concentrations, but increased shoot Na+ and chlorine ion (Cl?) concentrations and reduced dry weights of shoot and root in all treatments of N and P. At each salinity and P level, increasing application of N reduced dry weight of shoot. At each salinity and N level P fertilization increased dry weights of shoot and root and shoot P concentration. Addition of greater than N50 contributed to the soil salinity limiting plant growth, but increasing P addition up to 60?mg?P?kg?1 soil reduced Cl? absorption and enhanced the plant salt tolerance and thus plant growth. The positive effect of the combined addition of N and P on wheat growth in the saline sandy loam is noticeable, but only to a certain level of soil salinity beyond which salinity effect is dominant.  相似文献   

5.
The morphology and length of roots and shoots of tomato (Lycopersicon esculentum Mill.) seedlings grown on a nutrient medium for fourteen days in a controlled environment chamber were apparently not affected, whereas the dry matter content of roots was significantly enhanced when 200 mg L?1 of humic acid (HA) isolated from either a non-amended soil or a sewage-sludge-amended soil was present in the nutrient medium. In contrast, the HA-like fraction isolated directly from the sewage sludge caused, under the same conditions, extensive alterations of tomato morphology and a significant reduction of the length and dry weight of both shoots and roots. The presence in the nutrient medium of the herbicides alachlor or imazethapyr at concentrations of 1 and 0.01 mg L?1, respectively, caused a marked decrease of tomato root and shoot length and dry weight. Differently, the herbicide rimsulfuron at a concentration of 0.01 mg L?1 produced a slight decrease in shoot and root length and a slight increase in their dry weight. A combination of 200 mg L?1 soil HA and each of the herbicides alachlor, rimsulfuron and imazethapyr at concentrations of 1, 0.01 and 0.01 mg L?1, respectively, in the nutrient medium attenuated the growth depression of tomato shoots and roots observed in the presence of the herbicide alone. However, the simultaneous presence of sewage sludge HA and any herbicide in the nutrient solution caused negative synergistic effects on tomato growth. The volume of nutrient solution and the amount of electrolytes taken up by tomato plants during the growth experiments correlated highly significantly with the total plant dry weight. Tomato seedlings induced a pH decrease in the nutrient medium in all treatments except in those where sludge-HA was present, either alone or in combination with any herbicide.  相似文献   

6.
Boron (B) toxicity is a considerable mineral nutritional problem for crop production in arid and semi-arid regions worldwide. The effect of mannitol (M) in wheat seedlings that are tolerant and sensitive to excessive B was studied to reduce B toxicity symptoms. Plants were grown in a peat with different concentrations of boric acid (0, 30, 45, 60 mg kg?1) and treated additionally with M (0, 1, 5, 10 g kg?1). Seedlings grown for 8 weeks were harvested for root length, shoot length, and dry-weight measurements and analyzed for B content of leaves. Compared with control groups (no boric acid treatment), B toxicity caused reductions in root length, shoot length, and dry weight of both wheat cultivars. Significant increases on growth parameters were observed under B treatments, the greatest with 1 g kg?1 M application in a tolerant bread cultivar. On the other hand, 10 g kg?1 M application under 60 mg kg?1 B treatment gave also good results on root length in a sensitive durum cultivar. Significant decreases in leaf B content were observed under B treatments with all M applications in both wheat cultivars, the greatest with 5 g kg?1 M application. The results suggest that M applications may have a possible role in overcoming in B toxicity in wheat grown in the field.  相似文献   

7.
Silicon(Si) offers beneficial effect on plants under cadmium(Cd) stress such as promoting plant growth and increasing resistance to heavy metal toxicity. In this study, a pot experiment was performed to study the role of Si in alleviating Cd toxicity in tobacco(Nicotiana tabacum L.) plants on a yellow soil taken from Guiyang, China. Nine treatments consisting of three concentrations of Cd(0, 1, and 5 mg kg~(-1)) together with three Si levels(0, 1, and 4 g kg~(-1)) were established. Plant growth parameters, Cd concentration,and the malondialdehyde(MDA), chlorophyll, and carotenoid contents were determined 100 d after transplanting of tobacco seedlings.Application of exogenous Si enhanced the growth of tobacco plants under Cd stress. When 5 mg kg~(-1) Cd was added, Si addition at 1 and 4 g kg~(-1) increased root, stem, and leaf biomass by 26.1%–43.3%, 33.7%–43.8%, and 50.8%–69.9%, respectively, compared to Si addition at 0 g kg~(-1). With Si application, the transfer factor of Cd in tobacco from root to shoot under both 1 and 5 mg kg~(-1) Cd treatments decreased by 21%. The MDA contents in the Si-treated tobacco plants declined by 5.5%–17.1% compared to those in the non-Si-treated plants, indicating a higher Cd tolerance. Silicon application also increased the chlorophyll and carotenoid contents by 33.9%–41% and 25.8%–47.3% compared to the Cd only treatments. Therefore, it could be concluded that Si application can alleviate Cd toxicity to tobacco by decreasing Cd partitioning in the shoots and MDA levels and by increasing chlorophyll and carotenoid contents, thereby contributing to lowering the potential health risks of Cd contamination.  相似文献   

8.
ABSTRACT

Elsholtzia splendens Naki has been identified as a copper (Cu) geobotanical indicator. In this study, the effects of Cu supply levels (control, 100, 200, 400, 600, 800, 1000, 1200 mg kg1) on the growth and Cu accumulation in E. splendens were studied in one pot experiment. The results showed that no reduction in shoot height and dry weight was noted when the plants were grown at Cu supply levels up to 1000 mg kg?1 in soil. Slight stimulation on shoot growth was noted at Cu levels ≥ 100 mg kg?1. Copper concentration in shoots and roots increased with increasing Cu levels, and reached a maximum of 1751 and 9.45 mg kg?1 (DW) at 1200 mg Cu kg?1. The amount of Cu accumulated in the roots and shoots were 313 and 22 μ g plant?1 at external Cu levels of 1000 and 800 mg kg?1, respectively. The shoot/root Cu ratios ranged from 0.005 to 0.008 and more than 92% of the total Cu taken up by E. splendens was accumulated in roots. Furthermore, Cu concentrations in roots and shoots were significant and positively correlated with total soil Cu, water, ammonium nitrate (NH4NO3), ammonium (NH4)-acetate, and ethylenediaminetetraacetic acid (EDTA) extractable Cu. These results indicate that E. splendens can considered as a Cu tolerant and accumulated plant, and root is the major part for accumulation of Cu in E. splendens.  相似文献   

9.
Upland rice is an important crop in South America, including Brazil. Nutrient interactions are important in determining crop yields. A greenhouse experiment was conducted to evaluate interaction among nitrogen (N), phosphorus (P), and potassium (K) in upland rice production. The treatments applied to upland rice grown on an Oxisol were three levels of N (N0, N150 and N300 mg kg?1), three levels of P (P0, P100 and P200 mg kg?1) and three levels of K (K0, K100 and K200 mg kg?1). These treatments were tested in a 3 × 3 × 3 factorial arrangement. Grain yield, shoot dry weight, plant height, root dry weight, maximum root length, panicle number, 1000-grain weight, and grain harvest index were significantly influenced by N, P, and K treatments. The treatment that did not receive P fertilization did not produce panicle or grain. Hence, P was most yield-limiting nutrient compared to two other nutrients. At the N0P0K0 treatment, rice did not produce grains, indicating severe deficiency of these nutrients in Brazilian Oxisols. Maximum grain yield was obtained with the N300P200K200 treatment. Grain yield had significant positive association with plant height, shoot dry weight, root dry weight, maximum root length, 1000-grain weight, panicle number, and grain harvest index. Among these growth and yield components, shoot dry weight had the highest positive association with grain yield and root length minimum positive association with grain yield. Hence, adopting adequate soil and crop management practices can improve growth and yield components and increase grain yield of upland rice.  相似文献   

10.
Root proliferation and greater uptake per unit of root in the nutrient‐rich zones are often considered to be compensatory responses. This study aimed to examine the influence of plant phosphorus (P) status and P distribution in the root zone on root P acquisition and root and shoot growth of wheat (Triticum aestivum L.) in a split‐root soil culture. One compartment (A) was supplied with either 4 or 14 mg P (kg soil)–1, whereas the adjoining compartment (B) had 4 mg P kg–1 with a vertical high‐P strip (44 mg kg–1) at 90–110 mm from the plant. Three weeks after growing in the split‐root system, plants with 4 mg P kg–1 (low‐P plants) started to show stimulatory root growth in the high‐P strip. Two weeks later, root dry weight and length density in the high‐P strip were significantly greater for the low‐P plants than for the plants with 14 mg P (kg soil)–1. However, after 8 weeks of growth in the split‐root system, the two P treatments of compartment A had similar root growth in the high‐P strip of compartment B. The study also showed that shoot P concentrations in the low‐P plants were 0.6–0.8 mg g–1 compared with 1.7–1.9 mg g–1 in the 14 mg P kg–1 plants after 3 and 5 weeks of growth, but were similar (1.1–1.4 mg g–1) between the two plants by week 8. The low‐P plants had lower root P concentration in both compartments than those with 14 mg P kg–1 throughout the three harvests. The findings may indicate that root proliferation and P acquisition under heterogeneous conditions are influenced by shoot P status (internal) and soil P distribution (external). There were no differences in the total root and shoot dry weight between the two P treatments at weeks 3 and 5 because enhanced root growth and P uptake in the high‐P strip by the low‐P plants were compensated by reduced root growth elsewhere. In contrast, total plant growth and total root and shoot P contents were greater in the 14 mg P kg1 soil than in the low‐P soil at week 8. The two P treatments did not affect the ratio of root to shoot dry weight with time. The results suggest that root proliferation and greater P uptake in the P‐enriched zone may meet the demand for P by P‐deficient plants only for a limited period of time.  相似文献   

11.
ABSTRACT

Effects of application of zinc (Zn) (0, 1, 5, 10 mg kg?1 soil) and phosphorus (P) (0, 10, 50, 100 mg kg?1 soil) on growth and cadmium (Cd) accumulations in shoots and roots of winter wheat (Triticum aestivum L.) seedlings were investigated in a pot experiment. All soils were supplied with a constant concentration of Cd (6 mg kg?1 soil). Phosphorus application resulted in a pronounced increase in shoot and root biomass. Effects of Zn on plant growth were not as marked as those of P. High Zn (10 mg kg?1) decreased the biomass of both shoots and roots; this result may be ascribed to Zn toxicity. Phosphorus and Zn showed complicated interactions in uptake by plants within the ranges of P and Zn levels used. Cadmium in shoots decreased significantly with increasing Zn (P < 0.001) except at P addition of 10 mg kg?1. In contrast, root Cd concentrations increased significantly except at Zn addition of 5 mg kg?1 (P < 0.001). These results indicated that Zn might inhibit Cd translocation from roots to shoots. Cadmium concentrations increased in shoots (P < 0.001) but decreased in roots (P < 0.001) with increasing P supply. The interactions between Zn and P had a significant effect on Cd accumulation in both shoots (p = 0.002) and roots (P < 0.001).  相似文献   

12.
The plant root system is an important organ which supplies water and nutrients to growing plants. Information is limited on influence of nitrogen fertilization on upland rice root growth. A greenhouse experiment was conducted to evaluate influence of nitrogen (N) fertilization on growth of root system of 20 upland rice genotypes. The N rate used was 0 mg kg?1(low) and 300 mg kg?1(high) of soil. Nitrogen X genotype interactions for root length and root dry weight were highly significant (P < 0.01), indicating that differences among genotypes were not consistent at two N rates. Overall, greater root length, root dry weight and tops-roots ration were obtained at an N fertilization rate of 300 mg kg?1compared with the 0 mg N kg?1soil. However, genotypes differ significantly in root length, root dry weight and top-root ratio. Nitrogen fertilization produced fine roots and more root hairs compared with absence of N fertilizer treatment. Based on root dry weight efficiency index (RDWEI) for N use efficiency, 70% genotypes were classified as efficient, 15% were classified as moderately efficient and 15% were classified as inefficient. Root dry weight efficiency index trait can be incorporated in upland rice for improving water and nutrient efficiency in favor of higher yields.  相似文献   

13.
ABSTRACT

Silicon (Si) provides extra strength to plants against lodging. A hydroponic study was conducted to compare Si requirements of three high yielding, nitrogen (N) responsive, coarse varieties of rice (KSK-133, PK-3717-12, and IRRI-6) with four low yielding, lodging susceptible, fine varieties of rice (BAS-191, BAS-385, BAS-370, and PK-3300). Two-week-old uniform seedlings were grown in half strength Johnson's nutrient solution containing 0, 25, 75, and 150 mg Si kg? 1 as sodium silicate. The plants were allowed to grow for 45 days after transplanting. Silicon application significantly (P ≤ 0.01) increased root and shoot dry matter production in all the rice varieties. The maximum shoot dry matter production occurred at 75 mg Si kg?1 and decreased uniformly in all the rice varieties at 150 mg Si kg? 1. However, growth response to Si application varied significantly (P ≤ 0.01) among various rice varieties. Root: shoot growth ratio, varying from 0.11 to 0.15, did not follow any trend. Different rice varieties and Si addition had a significant (P ≤ 0.01) main and interactive effect on concentration and total uptake of Si in rice root and shoot. Relative increases in Si content, both in shoot and root, were gradual and several fold with increasing rates of Si application. The effect was more pronounced in Basmati varieties (BAS-198, BAS-385, and BAS-370) than other varieties. A 0.91 mg Si g? 1 plant tissue was optimum for growth of KSK-133 (coarse), which was significantly higher than the optimum level, 0.62 mg Si g? 1 plant tissue, for Bas-370 (fine). However, further verification of the results is warranted under field situation.  相似文献   

14.
Lead (Pb) is one of the most dangerous contaminants that has been released into the environment over many years by anthropogenic activities. In the present study, the effect of zeolite on the Pb toxicity, growth, nodulation, and chemical composition of soybean (Glycine max L. var. Williams) was evaluated. Treatments consisted of factorial combination of three levels of zeolite (0, 2, and 5 g kg?1) and three levels of Pb (0, 10, and 25 mg kg?1) with three replicates in a completely randomized design. Lead application decreased shoot and root dry weights. Without any use of Pb, addition of zeolite increased shoot dry weight, iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) concentrations and the number and dry weight of root nodules. Moreover, the greatest value for these parameters was obtained by greatest level of zeolite application (5 g zeolite kg?1 soil). It is suggested that zeolite has positive effects on growth and chemical composition of soybean and reduces Pb toxicity in plant parts.  相似文献   

15.
To study the effect of nitrogen and salinity on growth and chemical composition of pistachio seedlings (cv. ‘Badami’), a greenhouse experiment was conducted. Treatments consisted of four salinity levels [0, 800, 1600, and 2400 mg sodium chloride (NaCl) kg?1 soil], and four nitrogen (N) levels (0, 60, 120, and 180 mg kg?1 soil as urea). Treatments were arranged in a factorial manner in a completely randomized design with three replications. The highest level of nitrogen and salinity decreased leaf and root dry weights. Nitrogen application significantly increased the concentration of shoot N and salinity suppressed shoot N concentration. Salinity and nitrogen fertilization increased shoot and root sodium (Na), calcium (Ca), and magnesium (Mg) concentrations. Nitrogen application increased proline concentration and reducing sugar content. Although salinity levels increased proline concentration a specific trend on reducing sugars content was not observed.  相似文献   

16.
The effects of five salinity levels and four Cu levels on growth and chemical composition of Badami pistachio seedlings were studied under greenhouse conditions in a completely randomized design with three replications. Growth parameters were determined on the 24th week after planting. Total elemental uptake amounts in shoot and root of plant were measured. Results showed that salinity decreased leaf area, stem height, and shoot and root dry weights. Application of 2.5 and 5 mg copper (Cu) kg?1 soil significantly increased root dry weight, whereas it had no significant effects on shoot dry weight and leaf area. Application of 7.5 mg Cu kg?1 soil had a negative effect on stem height. Salinity declined shoot and root total Cu and phosphorus (P) uptake amounts but increased shoot and root total sodium (Na) and chlorine (Cl) uptake amounts. Copper increased shoot and root total Cu uptake amounts, root total P uptake, and shoot total Na uptake but decreased shoot total Cl uptake.  相似文献   

17.
The effects of super absorbent polymers (SAPs) on growth characteristics and seedlings survival of Artemisia sieberi (under two soil textures, three irrigation levels and seven hydrogel compositions with three replications) were investigated. The studied traits were shoot height, shoot dry weight, root dry weight, ratio of root/shoot, root length, root perimeter, root area and root volume. SAPs successfully enhanced growth capability of A. sieberi in two soil textures compared to the controls. Ideally, 5 g kg?1 Aquasorb? (SNF Company, France) with 100% irrigation and 10 g kg?1 Stockosorb® (Evonik Corporation, Germany) with 75% irrigation in a sandy loam texture and 10 g kg?1 Boloorab A? (Boloorab Company, Iran) with 75% irrigation in a loamy texture significantly affected all traits, resulting in 100% survival for A. sieberi seedlings. Aquasorb? and Stockosorb® showed the best results in the sandy loam texture and preferable outputs were obtained by Boloorab A? application in the loamy texture. In other words, because of the basic differentiation among soils in terms of mineralogy, temperature and moisture content, different SAPs should be applied. Production of dense root network and root aggregation stimulated by SAPs increased root contact with moisture. Therefore, improving the growth and survival of the plants is accessible using SAPs under water stress condition.  相似文献   

18.
In this study, effects of foliar application (with constant 0.2% concentration) of chemical NPK (N20:P10:K20) and organic fertilizers of Biomin (an organic aminochelate fertilizer), Humifolin (a humic acid based fertilizer), Biomin?+?Humifolin, a synthetic macro-micro mixture, soil application of NPK (600?mg.kg?1 of the N20:P10:K20 formulation), and a no fertilizer control were evaluated on growth and quality of chili pepper (Capsicum annuum var annuum) seedlings under greenhouse conditions with cool temperature of 15?±?3?°C. The results showed that most growth and quality traits were best improved by foliar application of Biomin aminochelate followed by Humifolin fertilizer. Higher values for leaf area, leaf number, chlorophyl index, root and shoot biomass, and leaf concentration of soluble sugars, N, K, Ca, and Zn, were attributed to foliar application of Biomin and Humifolin. The mixture of Biomin?+?Humifolin had reduced values of those parameters indicating possible negative interaction when these two organic fertilizers are mixed.  相似文献   

19.
Thirteen acid soils were collected from typical volcanic regions in Japan (S content: 0.9–4.1, mean = 2.2g kg?1; pH (H2O): 2.81–3.93, mean = 3.33), as well as nine reference soils (S: 0.6–1.7, mean= 1.1 gkg?1; pH(H2O): 4.10–4.74, mean = 4.47). Humic acids were extracted from the soils separately with 0.1 M NaOH and precipitated by acidification (pH = 2, HCl). After purification, the humic acids were subjected to colorimetric analysis using a DTNB reagent [5,5′-dithiobis(2–nitrobenzoic acid] for the active -SH group. Since humic acids have significant absorption at 4I2 nm, the coloured compound (5–mercapto-2–nitrobenzoic acid) was separated from the humic acids by ultrafiltration or solvent extraction prior to the colorimetric measurement. Humic acids also caused discoloration of the coloured compound when they coexisted in the reaction solutions. Thus, the reproducible determination of -SH was accomplished by employing a standard addition technique (-SH standard: cysteine). Although -SH contents obtained by the ultrafiltration method were considerably higher than those by the solvent-extraction method, probably due to the denaturation of humic acids by the higher buffer concentration used in the ultrafiltration method, they correlated well with each other. The humic acids from acid soils contained apparently higher concentrations of -SH (120–510, mean = 270mg S kg?1 by the ultrafiltration method; 8–110, mean = 38mg S kg?1 by the solvent-extraction method) compared to those from reference soils [20–260, mean = 90mg S kg?1 by the former; not detectable (<5)-34, mean = 11 mg S kg?1 by the latter]. This -SH enrichment in the humic acids from acid soils may result from the degradation and subsequent humification of S-rich debris of plants and micro-organisms and/or direct incorporation of volcanic acid gas (H2S) into the humic acids.  相似文献   

20.
Heavy metal uptake, translocation and partitioning differ greatly among plant cultivars and plant parts. A pot experiment was conducted to determine the effect of cadmium (Cd) levels (0, 45 and 90 mg kg?1 soil) on dry matter yield, and concentration, uptake and translocation of Cd, Fe, Zn, Mn and Cu in seven rice cultivars. Application of 45 mg Cd kg?1 soil decreased root and shoot dry weight. On average, shoot and root Cd concentrations and uptake increased in all cultivars, but micronutrients uptake decreased following the application of 45 mg Cd kg?1. No significant differences were observed between 45 and 90 mg kg?1 Cd levels. On average, Cd treatments resulted in a decrease in Zn, Fe and Mn concentrations in shoots and Zn, Cu and Mn concentrations in roots. Differences were observed in Cd and micronutrient concentrations and uptake among rice cultivars. Translocation factor, defined as the shoot/root concentration ratio indicated that Cu and Fe contents in roots were higher than in shoots. The Mn concentration was much higher in shoots. Zinc concentrations were almost similar in the two organs of rice at 0 and 45 mg Cd kg?1. A higher Cd level, however, led to a decrease in the Zn concentration in shoots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号