首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The applicability of an expolinear growth equation for describing dry matter yield was investigated in seven field experiments for spring growth of timothy (Phleum pratense L.) and meadow fescue (Festuca pratensis Huds.) under two levels of N application. The equation was expanded by a growth index (GI) correcting for variations in radiation, temperature and plant-available soil moisture, and an ageing function describing the decrease in growth rate caused by advance in phenological development. The field sites covered a wide range of climatic conditions and the yield was recorded at five phenological stages from leaf stage to anthesis. The expansion of the equation appeared to be adequate for a combined analysis of the dry matter yield in meadow fescue and timothy. The estimated maximum growth rate during the linear phase (C m) did not differ significantly between species. C m increased with higher N application. It was concluded that C m of the expanded model represented a potential rate, whereas the relative growth rate of the exponential phase (R m) could not be considered as a potential rate. It varied more among locations and years, e.g. it was strongly affected by the length of the period from growth onset to the start of the linear phase.  相似文献   

2.
Abstract

In semi‐arid regions, soil depth influences soil N uptake, but not ferilizer N uptake. How soil depth interacts with soil and fertilzer N to influence N uptake in humid regions is not known. The objective was to determine the relative importance of soil depth and soil and fertilizer N uptake, by forage grasses. Tall fescue (Festuca arundinacea Schreb.) and switchgrass (Panicum virgatum L.) were grown on soils of varying depths. Nitrogen rates are 0, 90, and 180 kgN/ha of 15N depleted (NH4)SO4 applied in a split application on fescue and in one aplication to switchgrass. Total N and fertilizer N uptake, were regressed against fertilizer N, variables related to soil depth (waterholding capacity (WC), water use (WU), water loss (WL), and total soil N (SN). Soil variables explained 28% of the accoutable variation in total N uptake by first cut fescue but only 10% by second cut fescue. Soil variables explained 11% of the accountable variation in fertilizer N uptake by first cut fescue and none by the seoond. Soil variables explained 40% of the accountable variation in the total N uptake, by switchgrass, but only 10% of the variation in the fertilizer N uptake. Only where soil depth was less than 90 cm did it have a significant effect on the fertilizer N uptake by first cut fescue. Soil depth had no significant effect on the uptake, of fertilizer N by second cut fescue or switchgrass.  相似文献   

3.
Infection with Neotyphodium spp. endophytes increases resistance to drought stress and soil mineral imbalances in tall fescue (Festuca arundinacea Schreb. = Lolium arundinaceum (Schreb.) S. J. Darbysh.) and meadow fescue (Festuca pratensis Huds. = Lolium pratense (Huds.) Darbysh.). We hypothesized that resistance of these grasses to salinity stress may also be attributed to endophyte infection. Two tall fescue genotypes, Fa75 and Fa83, and one meadow fescue genotype, Fp60, infected (E+) with their endophytic fungi, Neotyphodium coenophialum (Glenn, Bacon and Hanlin) and N. uncinatum (Glenn, Bacon and Hanlin), respectively, and their noninfected counterparts (E–) were cultured in nutrient solution at three salinity levels of 0, 85, and 170 mM NaCl. Except for genotype Fa75, E+ plants exhibited higher leaf survival rates than E– clones at a high salinity level (170 mM). Root dry matter was higher in E+ than in E– plants, but shoot dry matter was not affected by endophyte infection. This resulted in a lower shoot‐to‐root ratio in E+ plants (1.63) compared with E– plants (2.40). Sodium (Na+) and chloride (Cl) concentrations were greater in roots of E– than in E+ clones. In shoots, Na+ and Cl concentrations were not affected by the endophyte. In contrast, E+ plants accumulated more potassium (K+), which resulted in a greater K+ : Na+ ratio in shoots of E+ than in those of E– plants. Our results show that endophyte infection reduced Na+ and Cl concentrations in tall fescue and meadow fescue roots but increased K+ concentrations in the shoots. Based on these results, we conclude that endophyte‐infected grasses may thrive better in salinity‐stress environments.  相似文献   

4.
Cold hardiness is important for alfalfa (Medicago sativa L.) grown in northeast China. We investigated overwintering for three alfalfa grown alone or mix-sowed with meadow fescue. During the overwinter stage of the year from October 2013 to April 2014, five physiological and biochemical indexes and overwintering rate were investigated under natural conditions. The results showed that no matter either singly sowed or mix-sowed plants, physiological traits such as soluble sugar, soluble protein, and free proline of the alfalfa roots increased as the temperature decreased at the end of autumn, and decreased when the air temperature increased in the spring. The malondialdehyde content and peroxidase activity of all the treatments showed the trend of up–down–up during the whole overwintering stage. Investigation of the overwintering rate and using the membership function method combined with correlation analyses revealed that the order of the cold resistance of the selected alfalfa cultivars was as follows: Gongnong1?+?meadow fescue?>?Gongnong1?>?Wega7F?+?meadow fescue?>?Wega7F?>?WL319HQ?+?meadow fescue?>?WL319HQ. These results indicated that the cold resistance of alfalfa mix-sowed with the meadow fescue was higher than that of alfalfa that was singly sown.  相似文献   

5.
Abstract

Soil solution P level is believed to be important in determining P uptake rates from soil. The objective of this research was to investigate the relation between initial P concentration in the soil solution and P flux into the root. Millet (Panicum milaceum) was grown on five soils each of which was adjusted to six Cli levels by addition of P. Millet was also grown in solution culture and P influx vs. P concentration in solution measured. There was a curvilinear relation between P influx and relative yield of the Cli levels on each soil (R2=0.74). A P influx of at least 16 pmoles cm‐1 sec‐1 was needed to obtain 90% of maximum yield. However, yield response was not correlated with Cli, indicating Cli was not a suitable indicator of P availability on these soils. Influx of P on soils with Cli less than 6 μM was greater than occurred at similar P concentrations in solution culture indicating P influx was increased by the effect of the root on the soil.  相似文献   

6.
ABSTRACT

Organic amendments in the soil perform better than synthetic fertilizers in regards to soil fertility and sustainable crop productivity. Experiments were conducted to compare the effects of organic and synthetic fertilizers on soil fertility and wheat (Triticum aestivum L.) productivity. Soil fertility and protein contents of wheat grains (13.2% and 13.3% during 2005–06 and 2006–07, respectively) were improved by organic amendments. However, synthetic fertilizer (at the rate of 150, 100, and 60 kg ha?1 N, P2O5, and K2O, respectively) applications resulted in the maximum grain yield (4.05 and 4.46 t ha?1 during 2005–06 and 2006–07, respectively). The observed and simulated soil organic carbon (SOC) reasonably agreed during RothC model validation (R 2 = 0.99). Economic analysis showed the maximum net profit and relative increase in income ($729 US ha?1 and 309%, respectively) from inorganic treatment. Application of synthetic fertilizers increased grain yield and farm profit while organic manure enhanced grain quality. The RothC model had potential for determining the SOC in organic farming under arid environment.  相似文献   

7.
为探究南方红壤区经长期水土流失治理小流域的水沙特征,该研究收集长汀县朱溪河小流域2017—2020年降雨及洪水水沙数据,通过冗余分析、多元逐步回归方程、含沙量-流量滞回曲线等方法进行分析。结果显示:(1)流域年洪水径流深和泥沙量分别为282.30~892.50 mm和35.80~179.50 t/km2,洪水事件的产沙模数集中在0~20.0 t/km2,但总泥沙量由大于5.0 t/km2的少数事件决定;(2)降雨量、30 mim的最大雨强和降雨侵蚀力是影响洪水径流泥沙的主要降雨特征,对径流、泥沙变化的解释度分别为68.99%和49.28%,通过主要径流特征估算泥沙量、平均含沙量和最大含沙量,拟合优度达0.624~0.870;(3)洪水事件共出现6种含沙量-流量滞回关系,其中线型出现频率(55%)最高,该类事件中含沙量随流量的变化具有分阶段特征,临界含沙量约为0.1 g/L。经过长期的水土流失治理,红壤区小流域的洪水泥沙量普遍较低,且主要受径流量影响,洪水事件的滞回关系表明流域的泥沙供应通常处于持续少量的状态,研究结果有助于揭示红壤区土壤侵蚀的发展趋势。  相似文献   

8.
ABSTRACT

The Solvita Soil Labile Amino-Nitrogen (SLAN) and Soil CO2-Burst (SSCB) tests are used in soil health assessments. Field experiments were conducted from 2014–2016 in Connecticut, USA to: (1) determine if SLAN and SSCB concentrations are correlated for a sandy loam soil under predominately Kentucky bluegrass (Poa pratensis L.) and tall fescue [Schedonorus arundinaceus (Schreb.) Dumort.] turfgrass lawns, and (2) compare the response of SSCB–C and SLAN–N concentrations in relation to varying rates of an organic fertilizer. Concentrations of SLAN–N were positively and significantly (P < .001) correlated with concentrations of SSCB–C for all years, both species, and combinations of years and species (r = 0.477 to 0.754). The response of SSCB–C and SLAN–N concentrations to organic fertilizer rates were positively linear and significant (P < .01) in all cases but one (2014 tall fescue SSCB–C concentrations). Rates of change across fertilizer rates were generally greater for SLAN–N concentrations. There was greater variation within the SSCB test than within the SLAN test. The results suggest that the SLAN and SSCB tests are well-correlated and both may be able to provide an estimate of a turfgrass soil’s N mineralization potential.  相似文献   

9.
大豆幼苗光合特性对锰营养的响应   总被引:2,自引:0,他引:2  
采用溶液培养方法,设Mn2+浓度为0、0.05、0.50、5、30、50.mg/L,探讨了2种大豆品种(浙春2号、东北大豆854-11)的幼苗光合特性对不同锰浓度的响应。结果表明,低锰浓度提高了大豆叶片的初始荧光(Fo)、最大荧光(Fm)、PSⅡ原初光能转化效率(Fv/Fm)、潜在光化学活性(Fv/Fo)和光化学猝灭系数(qP),高锰降低了Fo、Fm、Fv/Fm、Fv/Fo、qP。随着锰营养的增加,非光化学猝灭系数(qN)增大。适量的锰浓度显著提高了大豆的净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs),降低了气孔阻力(Rs)和细胞间CO2浓度(Ci),随着锰浓度的逐渐增大,降低了Pn、Tr、Gs,提高了Rs、Ci。0.50.mg/L下的锰浓度有最大的Fo,5.mg/L下的锰浓度有最大的Fm、qP、Fv/Fm、Fv/Fo,表明0.505~mg/L的锰浓度有利于大豆的光合作用。在50.mg/L的锰浓度下,两个大豆品种有最大的qN、Rs、Ci和最小的Tr、Pn,此时两个品种大豆耗散了过剩的激发能,降低了大豆叶片的光合速率,对大豆已产生了一定的伤害。两个品种大豆光合特性对锰的响应存在着基因型差异,浙春2号较东北大豆耐锰胁迫。  相似文献   

10.
Abstract

The effects of combining the Bray 1 extracting solution with ammonium chloride (NH4C1) for simultaneous extraction of P and K were studied in several experiments. For pooled data from the experiments in which the Bray 1 solution containing 0.5 mol L‐1 NH4C1 was used, the relationship between the amounts of P and K extracted by the combined solution (PC and KC)and the amounts extracted separately by Bray 1 (PR) and 1 N neutral NH4OAc (KR) are given by PC = 2 + 0.906 PR, r = 0.988 and Kc = 14 + 1.033 KR, r = 0.944. Variations were observed in different experiments when the concentration of NH4C1 and the conditions of the experiment were varied.  相似文献   

11.
Abstract

In determining the soil and ecosystem carbon balance, it is necessary to distinguish between autotrophic respiration and heterotrophic respiration. We attempted to measure the contribution of CO2 emissions from plant roots (RRHI), from soil organic matter (RSOM), and from litter (RL) to CO2 emissions from the forest floor (soil respiration; RS) in a deciduous forest of oak (Quercus serrata Thunb.) and hornbeams (Carpinus laxiflora Sieb. et Zucc. Bl., Carpinus tschonoskii Maxim. and Carpinus japonica Bl.) on Andosols in Japan, using a 13C natural abundance technique. The 13C natural abundances of roots (δRHI), litter (δL) and SOM (δSOM) in the surface soil were ?28.9, ?30.1 and ?24.3‰, respectively. This means that the differences between δSOM and δRHI are large enough to calculate the contributions of RRHI, RSOM and RL to RS based on the mass balance of the CO2 isotope ratios. RRHI and RSOM had close relationships with soil temperature, and RL was influenced by soil temperature and moisture. In summer, under high soil temperatures, RRHI and RSOM were the predominant sources of RS and the proportion of RRHI to RSOM to RL was 51:44:5. In winter, RL was predominant and the proportion of RRHI to RSOM to RL was 20:11:69. The estimated annual emissions of RRHI, RSOM and RL were 1.45, 2.10 and 1.30 Mg C ha?1, respectively; thus, the proportion of RRHI to RSOM to RL was 30:43:27 on a whole-year basis.  相似文献   

12.
Seasonally flooded várzea forests of Western Amazonia are one of the most productive and biodiverse wetland forests in the world.However,data on their soil CO2emissions,soil organic matter decomposition rates,and soil C stocks are scarce.This is a concern because hydrological changes are predicted to lead to increases in the height,extent,and duration of seasonal floods,which are likely to have a significant effect on soil C stocks and fluxes.However,with no empirical data,the impact of altered flood regimes on várzea soil C cycles remains uncertain.This study quantified the effects of maximum annual flood height and soil moisture on soil CO2efflux rate(Rs)and soil organic matter decomposition rate(k)in the várzea forests of Pacaya Samiria National Reserve,Peru.The study was conducted between May and August 2017.The results showed that Rs(10.6–182.7 mg C m-2h-1)and k(0.016–0.078)varied between and within sites,and were considerably lower than the values reported for other tropical forests.In addition,Rswas negatively affected by flood height(P<0.01)and soil moisture(P<0.001),and it decreased with decreasing river levels post flooding(P<0.001).In contrast,k was not affected by any of the above-mentioned factors.Soil moisture was the dominant factor influencing Rs,and it was significantly affected by maximum flood height,even after the floods had subsided(P<0.001).Consequently,we concluded that larger floods will likely lead to reduced Rs,whilst k could remain unchanged but with decomposition processes becoming more anaerobic.  相似文献   

13.
Abstract

Fertilization and harvest frequency affect yield and quality of forages. The purposes of this experiment were to determine (i) the effects of fertilization and frequent harvesting on yield and quality of tall fescue (Festuca arundinacea Schreb.) and smooth bromegrass (Bromus inermis Leyss.) and (ii) the efficiency of N in animal waste as compared with inorganic N fertilizer for forage production of these cool season grasses. ‘Fawn’ tall fescue and ‘Southland’ smooth bromegrass were grown in the greenhouse on Pullman clay loam topsoil (fine, mixed thermic Torrertic Paleustoll) under eleven fertilizer treatments and two harvest regimes. Nitrogen fertilizer increased yields, N and K concentrations and K/(Ca + Mg) ratios and decreased P, Ca, and Mg concentrations. Phosphorus and K fertilizers did not affect yields but applied P increased P and tended to decrease N and Ca concentrations. Applied K tended to increase Ca concentrations. Recovery of N from feedlot manure ranged from 0.8 to 14%, whereas, recovery from NH4NO3 averaged 64%. Harvesting at 3‐week rather than at 6‐week intervals reduced yields 25%; however, N and P removal were higher under the 3‐week harvest regime. Even though forage production was reduced under heavy utilization, the grasses required more N fertilizer under heavy than under lighter utilization. The two grasses produced similar yields under the 3‐week cutting regime and at N rates through 340 kg/ha under the 6‐week cutting regime. Tall fescue yields were higher with the higher N rates under the 6‐week cutting regime. Smooth bromegrass forage was higher than tall fescue forage in N, K, and Ca, whereas tall fescue forage was higher in P and Mg.  相似文献   

14.
Abstract

Nitrogen fixation was simulated for a leafless variety (Delta) of pea (Pisum sativum L.) in central Sweden. It is assumed that N2 fixation is basically proportional to root biomass, but limited by high root N or low substrate carbon concentrations. Input data on root carbon and nitrogen were estimated from observations of above-ground biomass and nitrogen. The simulated N2 fixation was compared with estimated values from observations using the 15N labelling technique. Test data were taken from pea monocultures and pea-oat mixtures with varying pea biomass levels during 1999. Simulated within-season accumulated N2 fixation correlated to the estimated N2 fixation with a correlation coefficient (R 2) of 0.74. For seasonal simulations, the predictability was higher (R 2=0.93). Two alternative non-dynamic models, estimating seasonal N2 fixation as proportional to above-ground biomass and above-ground N, respectively, gave lower predictability (R 2=0.83 and 0.80, respectively). The models were also applied to a second year (1998) and two other sites by comparison with accumulated N2 fixation estimated by the Difference method. A halved specific N2 fixation rate (expressed per unit of root biomass) in 1999, compared with 1998, corresponded to essentially dryer and warmer soil conditions during 1999. It was indicated that the variations in soil moisture were more important than soil temperature. It was concluded that the abiotic responses might be of great importance for modelling N2 fixation rate under different soil conditions.  相似文献   

15.
Siratro (Macroptilium atropurpureum (DC) Urb.) is a vigorous perennial forage legume with good potential for improving pastures in the extensive neotropical regions of the world. It is well adapted to a wide range of soil and climatic conditions. The objective of these studies was to determine effects of Glomus fasciculatum colonization, rigorous defoliation, and soil fertility treatments to a Psammentic Paleustalf (Eufaula) soil on growth, regrowth, nodulation, and nitrogenase activity (C2H2 red.) of Siratro inoculated with Rhizobium leguminosarum Frank. Top growth increased significantly with soil K and P amendment and with mycorrhiza colonization. Nodulation and nitrogenase activity were correlated with highly significant increases from G. fasciculatum, P treatments and K additions to 300 mg K kg‐1 soil. Growth and peduncles of nonclipped plants increased about 4 fold from 90 to 225 day age with mature seed yield increasing about 10 fold; nodule mass and nitrogenase activity levels approximately doubled. Regrowth response of plants defoliated at 45 day intervals, following their initial 90 day age, was somewhat constant between clippings for magnitude of regrowth 12.3–13.8g, development in number of peduncles 4.0–6.8, seed yield 1.4–2.6g, nodulation 2.9–3.7g, and nitrogenase activity 73.9–95.8μ mol C2H4g‐1 nodule. Multiple regression for nitrogenase = 0.55 g top wt. + 0.63 g nodule wt. + 1.91 day age ‐ 0.07 peduncle no., R2 = 0.85 and C.V. = 14.3%. Favorable tripartite symbiosis with both effective Rhizobium and endophyte mycorrhiza were essential for high levels of symbiotic nitrogen fixation.  相似文献   

16.
Abstract

Recent interest in soil tillage, cropping systems, and residue management has focused on low‐input sustainable agriculture. This study was carried out to evaluate the effects of various management systems on aspartase activity in soils. This enzyme [L‐aspartate ammonia‐lyase, EC 4.3.1.1] catalyzes the hydrolysis of L‐aspartate to fumarate and NH3. It may play a significant role in the mineralization of organic N in soils. The management systems consisted of three cropping systems [continuous corn (Zea mays L.) (CCCC); corn‐soybean [Glycine max (L.) Merr.]‐corn‐soybean (CSCS); and corn‐oat (Avena sativa L.)‐meadow‐meadow (COMM) {meadow was a mixture of alfalfa (Medicago sativa L.) and red clover (Trifolium pratense L.)] at three long‐term field experiments initiated in 1954, 1957, and 1978 in Iowa and sampled in June 1987. The plots received 0 or 180 (or 200) kg ha?1 before corn and an annual application of 20 kg P and 56 kg K ha?1. The tillage systems (no‐tillage, chisel plow, and moldboard plow) were initiated in 1981 in Wisconsin and sampled in May 1991. The crop residue treatments were: bare, normal, mulch, and double (2×) mulch. The residue in the study was corn stalks. Results showed that, in general, crop rotation in combination with N fertilizer treatments affected aspartase activity in the following order: COMM>CSCS>CCCC. Because of nitrification of the NH4 + or NH4 +‐forming fertilizers, which resulted in decreasing the pH values, N fertilizer application, in general, decreased the aspartase activity in soils in the order: CCCC>CSCS>COMM. The effect of tillage and residue management practices on aspartase activity in soils showed a very wide variation. The trend was as follows: no‐till/2× mulch>chisel plow/mulch>moldboard plow/mulch>no‐till normal>chisel plow/normal>no‐till bare>moldboard plow/normal. Aspartase activity decreased with increasing depth in the plow layer (0–15 cm) of the no‐till/2× mulch. The decreased activity was accompanied by decreasing organic C and pH with depth. Statistical analyses using pooled data (28 samples) showed that aspartase activity was significantly, linearly correlated with organic C (r=0.78***) and exponentially with soil pH (r=0.53**). The variation in the patterns and magnitudes of activity distribution among the profiles of the four replicated plots was probably due to the spatial variability in soils.  相似文献   

17.
Abstract

The Cushman and Barber mechanistic model was used to help elucidate the mechanisms that govern the uptake of sulfur (S) by plants. Sulfur uptake predicted by the model was compared to measured S uptake by wheat (Triticum aestivum [L]) grown on Gallion very fine sandy loam (Typic Hapludalf), Mhoon silty clay loam (Typic Fluvaquenf), and a Norwood silt loam (Typic Udifluvent) under glasshouse conditions. Predicted S uptake was significantly correlated with observed uptake r2=0.85. However, the model over predicted S uptake by a factor of 10.4. The assumption that the maximum ion Influx rate (Imax ) for roots growing in soils is the same as the Imax measured in solution cultures experiments may not be appropriate. Better agreement between observed and predicted S uptake values was achieved by using an estimated Imax obtained from soil studies (Is ). Using Is , predicted vs observed S uptake had a slope of 1.5 and r2=0.93. The model predicted that when S concentration in soil solution (Clo ) at the root surface (ro ) was about 2mM or higher, this high Clo will trigger a higher ion Influx rate of about 2.6 nmol/m2sec. Plants grown on soils with Clo less than 1 mM at ro will show a lower ion Influx rate of about 0.8 nmol/m2sec, suggesting that S uptake by wheat plants is biphasic and depends on Clo at ro .  相似文献   

18.
19.
全球气候变化背景下,青藏高原高寒草甸灌丛化已经成为青藏高原植被景观的主要变化趋势。为了更好地认识和理解灌丛化与高寒草甸生态系统的关系,以青藏高原东缘川西锦鸡儿(Caragana Erinacea Kom)和金露梅(Potentilla Fruticosa)灌丛化高寒草甸为对象,采用环刀浸泡法和双环入渗法研究了其在未灌丛化、轻度灌丛化、中度灌丛化和重度灌丛化阶段土壤持水和入渗能力特征。结果表明:(1)2种灌丛化草甸土壤容重在中度灌丛化阶段最低,总孔隙度在中度灌丛化阶段最高。(2)随着灌丛化程度的增加,2种灌丛化草甸土壤含水量呈增加趋势,表现为在重度灌丛化阶段最高;土壤毛管持水量、田间持水量和最大持水量呈抛物线变化趋势,在中度灌丛化阶段最大。(3)2种灌丛化草甸土壤的初渗率、稳渗率和入渗速度随灌丛化程度的增加总体表现为增加趋势,其中在中度和重度灌丛化阶段显著高于未灌丛化阶段。(4)相关性分析表明,灌丛化草甸土壤的入渗指标与土壤含水量、非毛管孔隙度有显著相关关系。因此,高寒草甸灌丛化过程中,土壤水力性质的改变通常发生在中度和重度灌丛化阶段。  相似文献   

20.
[目的]探究科尔沁沙坨地—草甸地土壤温度与冻结深度的变化规律,为合理指导该区农工生产和建设提供支持。[方法]基于2007—2015年冻融期人工观测数据,对比分析科尔沁沙坨地与草甸地冻融期多年土壤温度与最大冻结深度变化规律。[结果]研究区100cm处沙坨地与草甸地多年土壤温度的标准差变化规律基本一致,草甸地要小于沙坨地,但融解后期由于草甸地融解期历时较长,其标准差大于沙坨地;同时考虑土壤温度和土壤水分对最大冻结深度的影响时,沙坨地在200cm处和草甸地在140cm处的R2分别为0.959和0.788。[结论]研究区内沙坨地先冻结与先融解,沙坨地最大冻结深度较草甸地深,同时考虑土壤温度与土壤水分的最大冻结深度的拟合优度最好,沙坨地与草甸地中最大冻结深度与土壤温度和土壤水分均呈负相关关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号