首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mammalian hippocampal formation appears to play a major role in the generation of internal representations of spatial relationships. In rats, this role is reflected in the spatially selective discharge of hippocampal pyramidal cells. The principal metric for coding spatial relationships might be the organism's own movements in space, that is, the spatial relationship between two locations is coded in terms of the movements executed in getting from one to the other. Thus, information from the motor programming systems (or "motor set") may contribute to coding of spatial location by hippocampal neurons. Spatially selective discharge of hippocampal neurons was abolished under conditions of restraint in which the animal had learned that locomotion was impossible. Therefore, hippocampal neuronal activity may reflect the association of movements with their spatial consequences.  相似文献   

2.
目的观察灯盏花素对大鼠脑缺血再灌后海马CA1区神经元内游离钙离子浓度的影响。方法采用钙离子成像系统检测海马CA1区神经元内钙离子浓度。实验分为(1)正常组:大鼠不做任何处理,直接断头取脑分离出神经元,观察神经元内钙离子浓度;(2)再灌注组:制作大鼠的全脑缺血模型,并以再灌后分1.5、3.0、4.5、6.0 h 4个时间点进行观察;(3)灯盏花素组:在制作全脑缺血模型前15 min腹腔注射灯盏花素50 mg/kg,并以再灌后分1.5、3.0、4.5、6.0 h 4个时间点进行观察。每组(时间点)均检测11个神经元。结果再灌注组再灌后1.5、3.0、4.5 h时间点与正常组比较,Ca2 浓度升高(P<0.05或P<0.01);再灌后6.0 h神经元内游离Ca2 浓度与正常组比较,差异无统计学意义。灯盏花素组再灌后1.5、4.5 h时间点Ca2 浓度比再灌组相同时间点低(P<0.01);而再灌后3.0、6.0 h Ca2 浓度与再灌组相应时间点比较,差异无统计学意义。结论全脑缺血前给予灯盏花素可降低全脑缺血再灌后大鼠海马CA1区神经元内游离Ca2 浓度。  相似文献   

3.
4.
To elucidate mechanisms that control and execute activity-dependent synaptic plasticity, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPA-Rs) with an electrophysiological tag were expressed in rat hippocampal neurons. Long-term potentiation (LTP) or increased activity of the calcium/calmodulin-dependent protein kinase II (CaMKII) induced delivery of tagged AMPA-Rs into synapses. This effect was not diminished by mutating the CaMKII phosphorylation site on the GluR1 AMPA-R subunit, but was blocked by mutating a predicted PDZ domain interaction site. These results show that LTP and CaMKII activity drive AMPA-Rs to synapses by a mechanism that requires the association between GluR1 and a PDZ domain protein.  相似文献   

5.
6.
Pak DT  Sheng M 《Science (New York, N.Y.)》2003,302(5649):1368-1373
Synaptic plasticity involves the reorganization of synapses at the protein and the morphological levels. Here, we report activity-dependent remodeling of synapses by serum-inducible kinase (SNK). SNK was induced in hippocampal neurons by synaptic activity and was targeted to dendritic spines. SNK bound to and phosphorylated spine-associated Rap guanosine triphosphatase activating protein (SPAR), a postsynaptic actin regulatory protein, leading to degradation of SPAR. Induction of SNK in hippocampal neurons eliminated SPAR protein, depleted postsynaptic density-95 and Bassoon clusters, and caused loss of mature dendritic spines. These results implicate SNK as a mediator of activity-dependent change in the molecular composition and morphology of synapses.  相似文献   

7.
The most common inherited [correct] form of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting adult motor neurons, is caused by dominant mutations in the ubiquitously expressed Cu-Zn superoxide dismutase (SOD1). In chimeric mice that are mixtures of normal and SOD1 mutant-expressing cells, toxicity to motor neurons is shown to require damage from mutant SOD1 acting within nonneuronal cells. Normal motor neurons in SOD1 mutant chimeras develop aspects of ALS pathology. Most important, nonneuronal cells that do not express mutant SOD1 delay degeneration and significantly extend survival of mutant-expressing motor neurons.  相似文献   

8.
为筛选具有诊断标记的布鲁氏菌病疫苗菌株,本研究利用同源重组和负筛选技术,构建了流产布鲁氏菌株2 308的ATP/GTP结合蛋白基因缺失株BDA14,并通过菌落染色和凝集特性,培养传代,小鼠接种试验及怀孕羊攻毒试验对其生物学特性、安全性和免疫效果进行了研究.结果表明:1)缺失菌株BDA14为粗糙型菌株,体外培养传代表型不发生改变;2)缺失菌株BDA14在小鼠体内的毒力与亲本菌株2308相比显著降低,且不产生针对OPS(O-antigen)的抗体;3)缺失菌株BDA14可提供与疫苗株RB51相当的攻毒保护力;4)缺失菌株BDA14对怀孕靶动物的安全性显著提高,接种怀孕羊不引起流产.说明ATP/GTP结合蛋白基因缺失株BDA14作为安全、有效且能鉴别诊断的疫苗菌株有明显优势.  相似文献   

9.
Pattern completion, the ability to retrieve complete memories on the basis of incomplete sets of cues, is a crucial function of biological memory systems. The extensive recurrent connectivity of the CA3 area of hippocampus has led to suggestions that it might provide this function. We have tested this hypothesis by generating and analyzing a genetically engineered mouse strain in which the N-methyl-D-asparate (NMDA) receptor gene is ablated specifically in the CA3 pyramidal cells of adult mice. The mutant mice normally acquired and retrieved spatial reference memory in the Morris water maze, but they were impaired in retrieving this memory when presented with a fraction of the original cues. Similarly, hippocampal CA1 pyramidal cells in mutant mice displayed normal place-related activity in a full-cue environment but showed a reduction in activity upon partial cue removal. These results provide direct evidence for CA3 NMDA receptor involvement in associative memory recall.  相似文献   

10.
Allergic contact dermatitis affects about 5% of men and 11% of women in industrialized countries and is one of the leading causes for occupational diseases. In an animal model for cutaneous contact hypersensitivity, we show that mice lacking both known cannabinoid receptors display exacerbated allergic inflammation. In contrast, fatty acid amide hydrolase-deficient mice, which have increased levels of the endocannabinoid anandamide, displayed reduced allergic responses in the skin. Cannabinoid receptor antagonists exacerbated allergic inflammation, whereas receptor agonists attenuated inflammation. These results demonstrate a protective role of the endocannabinoid system in contact allergy in the skin and suggest a target for therapeutic intervention.  相似文献   

11.
目的:通过对新生啮齿类海马神经元的分离和培养,尝试建立一个简单、稳定、高效的啮齿类海马神经元原代培养方法,为脊髓损伤的相关分子机制研究提供目的细胞。方法:取新生SD乳鼠的海马组织,通过低浓度胰酶消化制成细胞悬液、4h差速贴壁后使用无血清Neurobasal培养基培养,倒置显微镜观察细胞生长状态,免疫荧光对海马神经元相关微管蛋白-2(MAP2)行特异性染色,结合DAPI核染色鉴定神经元。结果:该方法培养的海马神经元生长状态良好,纯度较高。结论:采用低浓度胰酶消化,差速贴壁及无血清培养啮齿类海马神经元符合体外细胞实验要求,为进一步研究提供良好的目的细胞。  相似文献   

12.
Experience can alter synaptic connectivity throughout life, but the degree of plasticity present at each age is regulated by mechanisms that remain largely unknown. Here, we demonstrate that Paired-immunoglobulin-like receptor B (PirB), a major histocompatibility complex class I (MHCI) receptor, is expressed in subsets of neurons throughout the brain. Neuronal PirB protein is associated with synapses and forms complexes with the phosphatases Shp-1 and Shp-2. Soluble PirB fusion protein binds to cortical neurons in an MHCI-dependent manner. In mutant mice lacking functional PirB, cortical ocular-dominance plasticity is more robust at all ages. Thus, an MHCI receptor is expressed in central nervous system neurons and functions to limit the extent of experience-dependent plasticity in the visual cortex throughout life. PirB is also expressed in many other regions of the central nervous system, suggesting that it may function broadly to stabilize neural circuits.  相似文献   

13.
Alzheimer's disease is characterized by widespread deposition of amyloid in the central nervous system. The 4-kilodalton amyloid beta protein is derived from a larger amyloid precursor protein and forms amyloid deposits in the brain by an unknown pathological mechanism. Except for aged nonhuman primates, there is no animal model for Alzheimer's disease. Transgenic mice expressing amyloid beta protein in the brain could provide such a model. To investigate this possibility, the 4-kilodalton human amyloid beta protein was expressed under the control of the promoter of the human amyloid precursor protein in two lines of transgenic mice. Amyloid beta protein accumulated in the dendrites of some but not all hippocampal neurons in 1-year-old transgenic mice. Aggregates of the amyloid beta protein formed amyloid-like fibrils that are similar in appearance to those in the brains of patients with Alzheimer's disease.  相似文献   

14.
Spatially resolved measurements of intracellular free calcium and of the changes produced by excitatory amino acids were made in neurons isolated from adult mammalian brain. Extremely long-lasting (minutes) Ca2+ gradients were induced in the apical dendrites of hippocampal CA1 neurons after brief (1 to 3 seconds), local application of either glutamate or N-methyl-D-aspartate (NMDA). These gradients reflect the continuous flux of Ca2+ into the dendrite. The sustained gradients, but not the immediate transient response to the agonists, were prevented by prior treatment with the protein kinase C inhibitor sphingosine. Expression of the long-lasting Ca2+ gradients generally required a priming or conditioning stimulus with the excitatory agonist. The findings demonstrate a coupling between NMDA receptor activation and long-lasting intracellular Ca2+ elevation that could contribute to certain use-dependent modifications of synaptic responses in hippocampal CA1 neurons.  相似文献   

15.
Voltage-dependent Ca2+ channels (VDCCs) are modulators of synaptic plasticity, oscillatory behavior, and rhythmic firing in brain regions such as the hippocampus. The distribution and lateral mobility of VDCCs on CA1 hippocampal neurons have been determined with biologically active fluorescent and biotinylated derivatives of the selective probe omega-conotoxin in conjunction with circular dityndallism, digital fluorescence imaging, and photobleach recovery microscopy. On noninnervated cell bodies, VDCCs were found to be organized in multiple clusters, whereas after innervation the VDCCs were concentrated and immobilized at synaptic contact sites. On dendrites, VDCC distribution was punctate and was interrupted by extensive bare regions or abruptly terminated. More than 85% of the dendritic VDCCs were found to be immobile by fluorescence photobleach recovery. Thus, before synaptic contact, specific mechanisms target, segregate, and immobilize VDCCs to neuronal cell bodies and to specialized dendritic sites. Regulation of this distribution may be critical in determining the firing activity and integrative properties of hippocampal CA1 neurons.  相似文献   

16.
Pertussis toxin (PTX) is a major virulence factor in whooping cough and can elicit protective antibodies. Amino acid residues 8 to 15 of PTX subunit S1 are important for the adenosine diphosphate-ribosyltransferase activity associated with the pathobiological effects of PTX. Furthermore, this region contains at least a portion of an epitope that elicits both toxin-neutralizing and protective antibody responses in mice. The gene encoding the S1 subunit was subjected to site-specific mutagenesis in this critical region. A mutant containing a single amino acid substitution (Arg9----Lys) had reduced enzymatic activity (approximately 0.02% of control) while retaining the protective epitope. This analog S1 molecule may provide the basis for a genetically detoxified PTX with potential for use as a component of an acellular vaccine against whooping cough.  相似文献   

17.
探讨不同浓度蝉蜕水提取物对小鼠D-氨基半乳糖(D-GalN)急性肝损伤的保护作用。将60只小鼠随机分为空白对照组、D-GalN模型组(模型组)、联苯双酯滴丸组、蝉蜕水提取物低、中、高3个剂量组,共6组。每组小鼠均按每千克体重剂量灌胃给药,连续给药13 d,末次给药12 h后,按600 mg/kg腹腔注射10%D-GalN诱导急性肝损伤模型。造模24 h后,计算小鼠肝指数,测定血清中谷丙转氨酶(ALT)、谷草转氨酶(AST)活性及心肌组织、肝组织中超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量,HE染色观察肝组织病理学变化。结果表明,与空白对照组比较,模型组小鼠肝脏指数及血清ALT、AST活性升高(P0.01),肝脏、心肌组织中SOD活性降低,MDA含量增高(P0.01),肝组织炎症坏死广泛。与模型组比较,蝉蜕水提取物的低、中、高剂量组及联苯双酯组小鼠肝脏指数及血清ALT、AST活性降低(P0.01或P0.05),肝脏、心肌组织中SOD活性升高,MDA含量降低(P0.01或P0.05),肝组织损伤程度显著改善。蝉蜕水提取物对D-GalN诱导的小鼠急性肝损伤有一定的保护作用。  相似文献   

18.
Activity shapes the structure of neurons and their circuits. Two-photon imaging of CA1 neurons expressing enhanced green fluorescent protein in developing hippocampal slices from rat brains was used to characterize dendritic morphogenesis in response to synaptic activity. High-frequency focal synaptic stimulation induced a period (longer than 30 minutes) of enhanced growth of small filopodia-like protrusions (typically less than 5 micrometers long). Synaptically evoked growth was long-lasting and localized to dendritic regions close (less than 50 micrometers) to the stimulating electrode and was prevented by blockade of N-methyl-D-aspartate receptors. Thus, synaptic activation can produce rapid input-specific changes in dendritic structure. Such persistent structural changes could contribute to the development of neural circuitry.  相似文献   

19.
Plasticity of hippocampal circuitry in Alzheimer's disease   总被引:19,自引:0,他引:19  
Two markers of neuronal plasticity were used to compare the response of the human central nervous system to neuronal loss resulting from Alzheimer's disease with the response of rats to a similar neuronal loss induced by lesions. In rats that had received lesions of the entorhinal cortex, axon sprouting of commissural and associational fibers into the denervated molecular layer of the dentate gyrus was paralleled by a spread in the distribution of tritiated kainic acid-binding sites. A similar expansion of kainic acid receptor distribution was observed in hippocampal samples obtained postmortem from patients with Alzheimer's disease. An enhancement of acetylcholinesterase activity in the dentate gyrus molecular layer, indicative of septal afferent sprouting, was also observed in those patients with a minimal loss of cholinergic neurons. These results are evidence that the central nervous system is capable of a plastic response in Alzheimer's disease. Adaptive growth responses occur along with the degenerative events.  相似文献   

20.
The mouse vomeronasal organ (VNO) is thought to mediate social behaviors and neuroendocrine changes elicited by pheromonal cues. The molecular mechanisms underlying the sensory response to pheromones and the behavioral repertoire induced through the VNO are not fully characterized. Using the tools of mouse genetics and multielectrode recording, we demonstrate that the sensory activation of VNO neurons requires TRP2, a putative ion channel of the transient receptor potential family that is expressed exclusively in these neurons. Moreover, we show that male mice deficient in TRP2 expression fail to display male-male aggression, and they initiate sexual and courtship behaviors toward both males and females. Our study suggests that, in the mouse, sensory activation of the VNO is essential for sex discrimination of conspecifics and thus ensures gender-specific behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号