首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Variation at 14 microsatellite loci was surveyed in 26 chum salmon Oncorhynchus keta populations from Japan, one population from West Kamchatka and three populations from North America to determine population structure. Microsatellites were then applied to estimate stock composition of chum salmon in mixed-stock fisheries. The genetic differentiation index (F st) over all populations and loci was 0.031, with individual locus values ranging from 0.010 to 0.081. Seven regional populations were observed in Japanese chum salmon, with late-run populations from the Pacific Coast of Honshu the most distinct. Japanese populations displayed greater genetic diversity than did those in North America. Transplantation history in some Japanese river populations influenced their present genetic characteristics. Analysis of simulated mixtures from fishery sampling suggested that accurate and precise regional estimates of stock composition should be produced when the microsatellites were used to estimate stock compositions. Stock compositions for a 2005 sample of maturing, migrating chum salmon off the north-west coast of Hokkaido near the border of the Sea of Japan and the Sea of Okhotsk indicated that this region may be a migration corridor for Hokkaido populations from the Sea of Japan coast. Microsatellites have the ability to provide fine-scale resolution of stock composition in Japanese coastal fisheries.  相似文献   

2.
Hatcheries release >4.5 billion juvenile Pacific salmon (Oncorhynchus spp.) into the North Pacific Ocean annually, raising concerns about competition with wild salmon populations. We used retrospective scale analysis to investigate how the growth of chum salmon (Oketa) from western Alaska is affected by the abundance of chum salmon from Japanese hatcheries and wild pink salmon (Ogorbuscha) from the Russian Far East. Over nearly five decades, the growth of Kuskokwim River chum salmon was negatively correlated with the abundance of Japanese hatchery chum salmon after accounting for the effects of sex and spring/summer sea‐surface temperature in the Bering Sea. An effect of wild eastern Kamchatka pink salmon abundance on the growth of Kuskokwim River salmon was detectable but modest compared to the intraspecific competitive effect. A decrease in Japanese hatchery chum salmon releases in 2011–2013 was not associated with increased growth of Bering Sea chum salmon. However, the abundance of wild chum salmon from the Russian Far East increased during that time, possibly obscuring reduced competition with hatchery chum salmon. Our results support previous evidence that chum salmon are affected by intraspecific competition, and to a lesser extent interspecific competition, in the North Pacific, underscoring that the effects of salmon hatchery production transcend national boundaries.  相似文献   

3.
Relationships between the vertical distribution and thermal habitat, and body size of chum salmon Oncorhynchus keta were studied in the Bering Sea in summer using trawl surveys at various depths. Chum salmon abundance decreased with increasing depth, but the patterns of decrease differed between size groups. The abundance of small salmon fell rapidly with depth, whereas that of large salmon decreased gradually to 40 m depth, and abruptly below that. The average fork length of chum salmon collected from each trawl correlated positively with trawl net depth and negatively with water temperature. Since the optimal temperature for growth decreases with body size in this species, the observed body size‐related vertical habitat use by chum salmon may indicate size‐dependent thermal preferences.  相似文献   

4.
Using a salmon migration model based on the assumption that swimming orientation is temperature dependent, we investigated the determining factors of the migration of juvenile and immature chum salmon (Oncorhynchus keta) in the North Pacific. We compared the predictions of the model with catch data of immature and juvenile chum salmon collected by Japanese research vessels from 1972 to 1999. The salmon migration model reproduced the observed distributions of immature chum salmon and indicates that passive transport by wind‐driven and geostrophic currents plays an important role in the eastward migration of Asian salmon. These factors result in a non‐symmetric distribution of Asian and North American chum salmon in the open ocean. The directional swimming component contributes to the northward migration in summer. The model results indicate that during the first winter Asian chum salmon swim northward against the southward wind‐driven currents to stay in the western North Pacific. This suggests that Asian chum salmon require more energy to migrate than other stocks during the first winter of their ocean life.  相似文献   

5.
Based on generalized linear models, interspecific interactions were identified between chum and pink salmon. In addition, the effects of sea surface temperature and location on the variability of catch per unit effort (CPUE) of chum salmon from gill‐net surveys carried out between 1972 and 2010 were investigated. In the optimal model, interspecific interactions between CPUEs of chum and pink salmon on a year scale were positive for approximately half of all years in the central Bering Sea. In addition, interspecific interactions on a multi‐year scale were positive in even‐numbered years. The effects of location on the CPUE of chum salmon were significant variables in the optimal model. The CPUEs of chum salmon located near the continental shelf in the Bering Sea were higher than those of other locations. This study provides new evidence of positive interspecific interactions between the CPUEs of chum and pink salmon. The results also suggest that the standardized CPUE of chum salmon from the gill‐net surveys reflects relative chum salmon abundance in the North Pacific Ocean in the following year.  相似文献   

6.
Spatiotemporal changes in growth patterns of chum salmon Oncorhynchus keta that returned to the Ishikari (Japan) and Namdae (Korea) rivers in 1984–1998 were investigated using scale analysis. Juvenile chum salmon from both populations left coastal marine areas after spring at a size of over 8 cm fork length (FL). In summer, juvenile salmon from the Namdae River entered the Okhotsk Sea at a larger FL than did Ishikari River juveniles. There were no significant differences in annual growth between populations of 1-, 2-, and 4-year-old fish. For 3-year-old fish, however, Namdae River salmon had significantly higher synchronous and sympatric growth than did Ishikari River salmon. Mean FL of adults was also larger in Namdae River salmon than in Ishikari River salmon. Analysis of covariance (ANCOVA) results showed (1) negative linear relations between FL and catch, (2) homogeneous slopes of those relations at regional and species levels, and (3) nonhomogeneous slopes at the population level, indicating that density-dependent effects on growth were most significant at this level. We concluded that growth of chum salmon was concurrently influenced by stronger effects of intrapopulation competition and weaker effects of inter- and intraspecific interactions in the Bering Sea.  相似文献   

7.
Ecosystem‐based fisheries management requires the development of physical and biological time series that index ocean productivity for stock assessment and recruitment forecasts for commercially important species. As recruitment in marine fish is related to ocean condition, we developed proxies for ocean conditions based on sea surface temperature (SST) and biometric measurements of chum salmon (Oncorhynchus keta) captured in the walleye pollock (Gadus chalcogrammus) fishery in the eastern Bering Sea in three periods (July 16–30, September 1–15 and September 16–30). The main purpose of this paper was to evaluate Pacific salmon (Oncorhynchus spp.) growth as a possible indicator of ocean conditions that, in turn, may affect age‐1 walleye pollock recruitment. Marine growth rates of Pacific salmon are the result of a complex interplay of physical, biological and population‐based factors that fish experience as they range through oceanic habitats. These growth rates can, therefore, be viewed as indicators of recent ocean productivity. Thus, our hypothesis was that estimated intra‐annual growth in body weight of immature and maturing age‐4 male and female chum salmon may be used as a biological indicator of variations in rearing conditions also experienced by age‐0 walleye pollock; consequently, they may be used to predict the recruitment to age‐1 in walleye pollock. Summer SSTs and chum salmon growth at the end of July and September explained the largest amount of variability in walleye pollock recruitment indicating that physical and biological indices of ocean productivity can index fish recruitment.  相似文献   

8.
Using path analyses, we investigated relationships between size at release from hatcheries, the early marine growth of juveniles, and adult return rates for chum salmon from five river stocks of Hokkaido, Japan, in relation to sea surface temperature during ocean residence. Marine growth was estimated using scales collected from 11 760 adults of age 0.3 (1980–2004). The growth and survival of each stock appeared to have a different suite of regulatory processes. Interannual variability in return rates was mainly regulated by size at release in two stocks from the Sea of Okhotsk. A similar relationship was found in one stock from the Sea of Japan, but growth during coastal residency also affected their return rates. In two stocks from the Pacific coast of Hokkaido, variability in return rates was not related to size at release or to the coastal growth of juveniles, but with offshore growth in the Sea of Okhotsk, the nursery area for juveniles after leaving Japanese coastal waters. Whereas coastal growth tended to be negatively correlated with size at release in some stocks, offshore growth was positively associated with the August–November sea surface temperature in all stocks. This study confirmed that mortality of juvenile salmon occurred in two phases, during the coastal residency and the late period of the growing season, but the relative importance of both phases varied by stock and region, which probably regulated year‐class strength of Hokkaido chum salmon.  相似文献   

9.
In 2003, the Alaska walleye pollock industry reported product quality issues attributed to an unspecified parasite in fish muscle. Using molecular and histological methods, we identified the parasite in Bering Sea pollock as Ichthyophonus. Infected pollock were identified throughout the study area, and prevalence was greater in adults than in juveniles. This study not only provides the first documented report of Ichthyophonus in any fish species captured in the Bering Sea, but also reveals that the parasite has been present in this region for nearly 20 years and is not a recent introduction. Sequence analysis of 18S rDNA from Ichthyophonus in pollock revealed that consensus sequences were identical to published parasite sequences from Pacific herring and Yukon River Chinook salmon. Results from this study suggest potential for Ichthyophonus exposures from infected pollock via two trophic pathways; feeding on whole fish as prey and scavenging on industry‐discharged offal. Considering the notable Ichthyophonus levels in pollock, the low host specificity of the parasite and the role of this host as a central prey item in the Bering Sea, pollock likely serve as a key Ichthyophonus reservoir for other susceptible hosts in the North Pacific.  相似文献   

10.
Horizontal ocean transport can influence the dynamics of higher‐trophic‐level species in coastal ecosystems by altering either physical oceanographic conditions or the advection of food resources into coastal areas. In this study, we investigated whether variability in two North Pacific Current (NPC) indices was associated with changes in productivity of North American Pacific salmon stocks. Specifically, we used Bayesian hierarchical models to estimate the effects of the north‐south location of the NPC bifurcation (BI) and the NPC strength, indexed by the North Pacific Gyre Oscillation (NPGO), on the productivity of 163 pink, chum, and sockeye salmon stocks. We found that for salmon stocks located in Washington (WA) and British Columbia (BC), both the BI and NPGO had significant positive effects on productivity, indicating that a northward‐shifted bifurcation and a stronger NPC are associated with increased salmon productivity. For the WA and BC regions, the estimated NPGO effect was over two times larger than the BI effect for pink and chum salmon, whereas for sockeye salmon the BI effect was 2.4 times higher than the NPGO. In contrast to WA and BC stocks, we found weak effects of both horizontal ocean transport processes on the productivity of salmon stocks in Alaska. Our results indicated that horizontal transport pathways might strongly influence population dynamics of Pacific salmon in the southern part of their North American ranges, but not the northern part, suggesting that different environmental pathways may underlie changes in salmon productivity in northern and southern areas for the species under consideration.  相似文献   

11.
The survival of two Atlantic salmon stocks that inhabit rivers confluent with the North Sea was examined in respect to historical distributions of sea surface water temperatures. The rivers Figgjo and North Esk are relatively small salmon rivers in southern Norway and eastern Scotland, respectively. Wild salmon smolts have been tagged in these rivers since 1965. Tag returns were used to evaluate the survival of salmon in the North Sea. Survival rates of one-sea-winter (1SW) and 2SW fish were correlated within stocks, as well as between stocks. Survival rates were compared with the areal extent of thermal habitat in the north-eastern Atlantic Ocean. A positive correlation was found between the area of 8–10°C water in May and the survival of salmon. A reciprocal negative correlation was also found between survival and 5–7°C water in the same month. An analysis of sea surface temperature distributions for periods of good vs. poor salmon survival showed that when cool surface waters dominate the Norwegian coast and North Sea during May, salmon survival has been poor. Conversely, when the 8°C isotherm has extended northward along the Norwegian coast during May, survival has been good. The effect of water temperature distributions on the growth of postsmolts and other survival factors are discussed.  相似文献   

12.
Eight temperature-recording data storage tags were recovered from three salmonids in Alaska (pink and coho salmon and steelhead trout) and five chum salmon in Japan after 21–117 days, containing the first long-term records of ambient temperature from Pacific salmonids migrating at sea. Temperature data imply diel patterns of descents to deeper, cooler water and ascents to the surface. Fish were found at higher average temperatures at night, with narrower temperature ranges and fewer descents than during the day. Fish tagged in the Gulf of Alaska were at higher temperatures on average (10–12°C) than chum salmon tagged in the Bering Sea (8–10°C). Chum salmon were also found at a wider range of temperatures (−1–22°C vs 5–15°C). This is probably related both to the different oceanographic regions through which the fish migrated, as well as species differences in thermal range and vertical movements. Proportions of time that individual fish spent at different temperatures seemed to vary among oceanographic regions. Steelhead trout may descend to moderate depths (50 m) and not be limited to the top few metres, as had been believed. Japanese chum salmon may seek deep, cold waters as they encounter warm surface temperatures on their homeward migrations. Temperature data from all fish showed an initial period (4–21 days) of day and night temperatures near those of sea surface temperatures, suggesting a period of recuperation from tagging trauma. A period of tagging recuperation suggests that vertical movement data from short-term ultrasonic telemetry studies may not represent normal behaviour of fish. The considerable diurnal and shorter-term variation in ambient temperatures suggests that offshore ocean distribution may be linked more to prey distribution and foraging than to sea surface temperatures.  相似文献   

13.
The abundance and stomach contents of salmonids (Oncorhynchus spp.) and the biomass of prey organisms were examined in the central subarctic Pacific and Bering Sea in the summer of 1991 and 1992. Salmonids were caught by surface longline using the same level of fishing effort. Chum (O. keta) and pink (O. gorbuscha) salmon were the predominant species, representing 44% and 36% sof the total catch (n = 1275) in 1991. In 1992, chum salmon composed 85% of the total catch (n = 603), but the catch of pink salmon decreased to 1% of the total catch due to the odd/even year fluctuation of Asian pink salmon abundance in the study area. It was found that chum salmon changed their dominant diet from gelatinous zooplankton (pteropods, appendicular-ians, jellyfishes, chaetognaths, polychaetes and unidentified materials) in 1991, when pink salmon were abundant, to a diet of crustaceans (euphausiids, cope-pods, amphipods, ostracods, mysids and decapods) in 1992, when pink salmon were less abundant. Local crustacean biomass (wet weight; mg m-3) had significant negative correlation with the CPUE (catch number per 30 hachi) of pink salmon in 1991 (r = -0.586; P = 0.026) and that of chum salmon in 1992 (r =–0.616; P = 0.014). There may be a limitation in the available prey resource for production of salmonids.  相似文献   

14.
Plasma somatolactin (SL) concentrations were examined in chum salmon in relation to gonadal maturation; immature salmon in the Bering Sea at various stages of maturation, and mature salmon during upstream migration caught at the ocean, bay and river. Plasma SL concentrations as well as plasma prolactin (PRL) and growth hormone (GH) levels in the immature fish caught in the Bering Sea were maintained essentially at similar levels. Plasma SL in mature salmon increased significantly from the fish in the ocean to the fish in the river in both sexes. Although all the fish had fully developed gonads, females completed ovulation while still in the bay, whereas final spermeation in males was achieved after entry into the river. Thus, no clear correlation was seen between plasma SL levels and final gonadal maturation. On the other hand, plasma PRL concentrations in both male and female fish were higher in the fish in the river than those in the ocean and bay, and plasma GH levels were higher in both sexes in the fish in the bay and river than those in the ocean. Plasma levels of triglycerides, glucose, free fatty acids and ionized sodium and calcium were also examined. Significant-negative correlations were seen between plasma SL and plasma ionized calcium in mature male salmon, and between plasma SL and plasma triglycerides in mature female salmon. Although our findings do not rule out the possibility of the involvement of SL in final maturation, the results indicate that SL seems to be involved at least in energy and/or calcium metabolism during the spawning migration.  相似文献   

15.
Information on the annual variability in abundance and growth of juvenile groundfish can be useful for predicting fisheries stocks, but is often poorly known owing to difficulties in sampling fish in their first year of life. In the Western Gulf of Alaska (WGoA) and Eastern Bering Sea (EBS) ecosystems, three species of puffin (tufted and horned puffin, Fratercula cirrhata, Fratercula corniculata, and rhinoceros auklet, Cerorhinca monocerata, Alcidae), regularly prey upon (i.e., “sample”) age-0 groundfish, including walleye pollock (Gadus chalcogramma, Gadidae) and Pacific cod (Gadus microcephalus, Gadidae). Here, we test the hypothesis that integrating puffin dietary data with walleye pollock stock assessment data provides information useful for fisheries management, including indices of interannual variation in age-0 abundance and growth. To test this hypothesis, we conducted cross-correlation and regression analyses of puffin-based indices and spawning stock biomass (SSB) for the WGoA and EBS walleye pollock stocks. For the WGoA, SSB leads the abundance of age-0 fish in the puffin diet, indicating that puffins sample the downstream production of the WGoA spawning stock. By contrast, the abundance and growth of age-0 fish sampled by puffins lead SSB for the EBS stock by 1–3 years, indicating that the puffin diet proxies incoming year class strength for this stock. Our study indicates connectivity between the WGoA and EBS walleye pollock stocks. Integration of non-traditional data sources, such as seabird diet data, with stock assessment data appears useful to inform information gaps important for managing US fisheries in the North Pacific.  相似文献   

16.
Concern about impacts of climate change in the Bering Sea prompted several research programs to elucidate mechanistic links between climate and ecosystem responses. Following a detailed literature review, Hunt et al. (2011) (Deep‐Sea Res. II, 49, 2002, 5821) developed a conceptual framework, the Oscillating Control Hypothesis (OCH), linking climate‐related changes in physical oceanographic conditions to stock recruitment using walleye pollock (Theragra chalcogramma) as a model. The OCH conceptual model treats zooplankton as a single box, with reduced zooplankton production during cold conditions, producing bottom‐up control of apex predators and elevated zooplankton production during warm periods leading to top‐down control by apex predators. A recent warming trend followed by rapid cooling on the Bering Sea shelf permitted testing of the OCH. During warm years (2003–06), euphausiid and Calanus marshallae populations declined, post‐larval pollock diets shifted from a mixture of large zooplankton and small copepods to almost exclusively small copepods, and juvenile pollock dominated the diets of large predators. With cooling from 2006–09, populations of large zooplankton increased, post‐larval pollock consumed greater proportions of C. marshallae and other large zooplankton, and juvenile pollock virtually disappeared from the diets of large pollock and salmon. These shifts in energy flow were accompanied by large declines in pollock stocks attributed to poor recruitment between 2001 and 2005. Observations presented here indicate the need for revision of the OCH to account for shifts in energy flow through differing food‐web pathways due to warming and cooling on the southeastern Bering Sea shelf.  相似文献   

17.
Linear discriminant analysis (LDA) based on scale patterns was used to develop a methodology of estimating regional origins of chum salmon. Age-4 fish were sampled in 2004–2006 from 12 river stocks of the Okhotsk and Sea of Japan (SJ) regions from Hokkaido to Honshu. The scale radius at the first annulus of each fish was separated into i intervals and the radius of each interval was divided by the number of scale circuli within the interval to quantify scale patterns. The i variables and five other morphometric measurements were used in a stepwise LDA to classify the following regional groups: Hokkaido and Honshu (I), Okhotsk and SJ (II), Okhotsk, Hokkaido SJ and Honshu SJ (III). Percentages of correctly classified fish (hit rates) improved with increased i but tended to be close to asymptotic values in all cases. Hit rates for each river stock in case (I) ranged from 74.3% to 100% (mean 97.2%), estimated by direct maximum likelihood methods using predictor variable sets from the best models for LDAs. Hit rates were lower in cases (II) and (III). This study demonstrated that scale patterns are useful for classifying the origins of chum salmon, at least between Hokkaido and Honshu.  相似文献   

18.
Immunocytochemical techniques using an antiserum to cod somatolactin (SL) demonstrated the presence of SL cells in the intermediate lobe of the pituitary in Oncorhynchus tshawytscha. The cells were small in yearling fish. Two groups of maturing fish were studied. In the spring run salmon collected in April and May during the upstream migration, the SL cells appeared stimulated. In September, during spawning, SL cell stimulation was maximal with indices of hypertrophy and degranulation often more marked in females than in males. In the other group, salmon of the fall run collected in the Pacific Ocean in August had well developed gonads, large gonadotropes and abundant SL cells. In spawning salmon (September) the SL cells were stimulated, mainly in females. However, the final stimulation was less intense than in spring run spawning fish. The SL cells were smaller, without evident granule release, but still abundant in spent salmon of the fall run caught at the end of November. Various factors (time spent in rivers before spawning, starvation, decalcification, stress, hypothalamic influences) were considered which might explain differences between spring and fall run salmon. These observations suggest that SL may play a role in the control of gonadal maturation in chinook salmon as it may also do in sockeye and chum salmon previously studied, and that SL cells may be sensitive to the ambient salinity.  相似文献   

19.
The introduction of 200 n.m. exclusive economic zones (EEZs) in the late 1970s required increased collaboration among neighbouring coastal states to manage transboundary and straddling fish stocks. The established agreements ranged from bilateral to multilateral, including high‐seas components, as appropriate. However, the 1982 United Nations Convention on the Law of the Sea does not specify how quotas of stocks crossing EEZs should be allocated, nor was it written for topical scenarios, such as climate change with poleward distribution shifts that differ across species. The productive Northeast Atlantic is a hot spot for such shifts, implying that scientific knowledge about zonal distribution is crucial in quota negotiations. This diverges from earlier, although still valid, agreements that were predominately based on political decisions or historical distribution of catches. The bilateral allocations for Barents Sea and North Sea cod remain robust after 40 years, but the management situation for widely distributed stocks, as Northeast Atlantic mackerel and Norwegian spring‐spawning herring, appears challenging, with no recent overall agreements. Contrarily, quotas of Northern hake are, so far, unilaterally set by the EU despite the stock's expansion beyond EU waters into the northern North Sea. Negotiations following the introduction of EEZs were undertaken at the end of the last cooler Atlantic Multidecadal Oscillation (AMO) period, that is, with stock distributions generally in a southerly mode. Hence, today's lack of management consensus for several widely distributed fish stocks typically relates to more northerly distributions attributed to the global anthropogenic signal accelerating the spatial effect of the current warmer AMO.  相似文献   

20.
Abstract. To estimate the proportion of escaped fanned Atlantic salmon. Salmo salar L., at the feeding grounds in the north-east Atlantic Ocean, samples of salmon caught with long-lines north of the Faroe Islands were examined. Identification of reared fish was carried out using scale analysis. The proportion of fanned fish was estimated to range from 25 to 48% in the different samples, suggesting that high numbers of escaped farmed salmon occur in the Norwegian Sea. The farmed fish were significantly smaller in size than the wild salmon. Although it is suggested that most of the farmed fish are of Norwegian origin, farmed fish of Scottish, Faroese and Irish origin are also believed to be present. If not accounted for, high numbers of reared salmon in fisheries and stocks will seriously affect the assessments of fisheries and stocks of wild salmon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号