首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 329 毫秒
1.
以辽河流域典型种植区为研究区域,对其地下水硝态氮含量进行分析,为合理施肥及有效防控种植区地下水硝态氮含量超标提供理论依据。结果表明,辽河流域不同典型种植区地下水硝态氮含量差异明显,具体表现为花卉种植区(37.4 mg/L)玉米种植区(22.3mg/L)蔬菜种植区(21.9 mg/L)水稻种植区(19.2 mg/L),各典型种植区地下水硝态氮含量除水稻种植区外都超标,但水稻种植区地下水硝态氮含量变异系数较大,有超标的风险;地下水硝态氮含量超标率差异也较明显,其中玉米种植区超标率为12.5%~87.5%,水稻种植区为9.4%~75.5%,蔬菜种植区为17.9%~58.9%,花卉种植区为21.4%~96.0%。另外,对于同一井深,不同种植区地下水硝态氮含量总体均表现为雨季前雨季后。  相似文献   

2.
辽河流域典型种植区地下水硝态氮含量特征分析   总被引:2,自引:0,他引:2  
以辽河流域典型种植区为研究区域,对其地下水硝态氮含量进行分析,为合理施肥及有效防控种植区地下水硝态氮含量超标提供理论依据。结果表明,辽河流域不同典型种植区地下水硝态氮含量差异明显,具体表现为花卉种植区(37.4 mg/L)玉米种植区(22.3 mg/L)蔬菜种植区(21.9 mg/L)水稻种植区(19.2 mg/L),各典型种植区地下水硝态氮含量除水稻种植区外都超标,但水稻种植区地下水硝态氮含量变异系数较大,有超标的风险;地下水硝态氮含量超标率差异也较明显,其中玉米种植区超标率为12.5%~87.5%,水稻种植区为9.4%~75.5%,蔬菜种植区为17.9%~58.9%,花卉种植区为21.4%~96.0%。另外,对于同一井深,不同种植区地下水硝态氮含量总体均表现为雨季前雨季后。  相似文献   

3.
以辽河流域典型种植区为研究区域,对其地下水硝态氮含量进行分析,为合理施肥及有效防控种植区地下水硝态氮含量超标提供理论依据结果表明,辽河流域不同典型种植区地下水硝态氮含最差异明显,具体表现为花卉种植区(37.4 mg/L)>玉米种植区(22.3mg/L)>蔬菜种植区(21.9 mg/L)>水稻种植区(19.2 mg/L),各典型种植区地下水硝态氮含量除水稻种植区外都超标,但水稻种植区地下水硝态氮含量变异系数较大,有超标的风险;地下水硝态氮含量超标率差异也较明显,其中玉米种植区超标率为12.5%~87.5%,水稻种植区为9.4% ~75.5%,蔬菜种植区为17.9%~58.9%,花卉种植区为21.4%~96.0%另外,对于同一井深,不同种植区地下水硝态氮含量总体均表现为雨季前>雨季后.  相似文献   

4.
河北省环渤海地区地下水硝态氮含量现状及其成因分析   总被引:5,自引:0,他引:5  
采用野外调查采样与室内分析相结合的方法,对河北省环渤海地区地下水硝态氮的含量现状及影响因素进行研究,并分析了其成因。结果表明:河北省环渤海地区地下水硝态氮含量总体达到国家饮用水Ⅲ类标准,但地区空间变异较大,以秦皇岛地区形势最为严峻。在各种影响因素中,农田利用类型对环渤海地区地下水硝态氮含量影响较大,各类型用地的影响顺序为粮田〉菜地〉稻鱼〉果园,其中硝态氮含量高的样本主要集中在春玉米类农田利用类型上;地貌类型中丘陵对该地区地下水硝态氮含量影响较大;随着水体深度的增加,地下水硝态氮含量呈明显下降趋势。农田污染是导致环渤海地区地下水硝态氮含量升高的主要成因,需要有针对性地进行区域治理。  相似文献   

5.
[目的]调查河北省地下水硝酸盐含量变化。[方法]2006~2010年连续5年在河北省11个地区采集2 550个地下水样品,用紫外可见光光度计测定硝态氮含量。[结果]河北省地下水硝态氮含量变幅为0~203.06 mg/L,平均为8.02 mg/L。以不同作物种植类型的地下水硝态氮含量超标率(〉10 mg/L)比较,春玉米〉菜地〉小麦玉米〉其他〉果树〉棉花。地下水硝态氮平均含量以及超标率随着地下水埋深加深而明显降低,埋深大于100 m地下水最好,30~100 m次之,最差的是地下水埋深小于30 m。[结论]按照我国饮用水标准,河北省地下水硝态氮超标率为9.37%,地下水硝态氮含量低于5 mg/L的优良饮用水占总样品的57.69%,基本符合我国饮用水质量标准(Ⅲ类≤20 mg/L)。  相似文献   

6.
不同施肥模式对玉米产量及土壤硝态氮的影响   总被引:4,自引:2,他引:2  
研究了大田条件下习惯施肥、施缓控释肥、优化施肥和秸秆还田4种不同施肥模式对玉米产量及土壤硝态氮的影响。结果表明,一次性施入缓控释肥的玉米产量比习惯施肥增产2.67%。氮肥用量与收获后土壤剖面硝态氮累积量呈正相关,施氮量越多,土壤硝态氮在100cm土层范围内的累积量也越大。0~100cm土壤剖面硝态氮的累积量,不同处理表现为:缓控释肥<优化施肥<秸秆还田<习惯施肥;与习惯施肥相比,缓控释肥、优化施肥、秸秆还田处理0~100cm土层中硝态氮积累量分别下降了48.0%、46.5%、40.7%,从而降低了农田地下水硝态氮污染的风险。综合玉米产量、硝态氮积累量,认为在施氮192kg/hm2条件下,施用缓释肥料既可保证产量又能降低浅层地下水硝态氮污染的风险。  相似文献   

7.
小麦-玉米轮作区地下水硝态氮含量的研究   总被引:1,自引:0,他引:1  
孙世卫 《安徽农业科学》2007,35(35):11525-11526
[目的]为确定河北省地下水硝态氮污染情况。[方法]选择山前平原的小麦-玉米轮作区为主要调查区域,采集120个地下水样,测定其硝态氮含量并分析其分布特征及污染原因。[结果]120个样点地下水均检测到硝态氮,平均硝态氮含量为4.03mg/L。山前平原区浅层地下水总体质量较好,无大面积污染。地下水埋深及施氮量对地下水硝态氮含量都有明显的影响。各样点间硝态氮含量变异很大,含量最高的样点在新乐县(23.94mg/L),含量最低的样点在辛集市(0.09mg/L)。新乐县有部分样点硝态氮污染明显,正定、栾城两县都有一定浓度的硝态氮积累,这表明农田面源污染对地下水质有较大威胁。[结论]该研究为河北平原地区的饮水安全以及农业面源污染的治理提供了科学依据。  相似文献   

8.
研究了宁夏地区不同作物种植体系下地下水中的硝态氮含量状况及其影响因素,同时对宁夏地区的地下水水质进行评价.结果表明,不同作物种植体系下地下水中硝态氮含量具有明显差异,其中果园>温室菜>葡萄地>林地>小麦玉米>水稻>盐碱地,地下水中硝态氮的总体平均含量都低于20mg/L,均达到Ⅲ类水质标准.果园所对应地下水的硝态氮含量最大,平均为7.94mg/L,盐碱地所对应地下水的硝态氮含量最小,平均为0.74 mg/L.综上,宁夏地区地下水情况比较乐观,但个别地区已接近污染警戒,如果不采取合理的预防措施,情形将趋向恶化.地下水中硝态氮含量随埋深的变化,有可能受土壤地质层或地下水补给途径的影响,没有呈现明显的规律性,这也可能与样点的选取和样点多少有关.  相似文献   

9.
河北省蔬菜高产区化肥施用对地下水硝态氮含量的影响   总被引:5,自引:1,他引:4  
采用野外调查采样与室内分析相结合的方法,对河北省蔬菜高产区中的7个县区进行了地下水硝酸盐含量监测,并研究了过量施肥对地下水硝酸盐含量的影响。结果表明:2005~2007年河北省蔬菜高产区地下水硝态氮平均值在5.18~7.54mg/L之间,符合世界卫生组织的饮用水水质标准(〈10mg/L),但呈上升趋势。不同深度的地下水硝态氮含量差异明显,总体趋势是随着水体深度的增加,硝态氮含量呈明显的下降趋势。地下水硝态氮污染主要集中在≤30m的水体层。从土壤硝态氮含量与地下水硝态氮含量的相关性来看,两者呈正相关,即地下水硝态氮含量随土壤硝态氮的上升而上升,表明蔬菜高产区过量施肥会对土壤中的硝态氮经过雨水或灌溉水向下淋洗,个别地区已经造成了较为严重的地下水硝酸盐污染。  相似文献   

10.
地下水中硝态氮自然衰减的实验研究   总被引:1,自引:0,他引:1  
段磊  王文科  孙亚乔 《安徽农业科学》2011,(19):11750-11751
[目的]研究地下水中硝态氮的自然衰减。[方法]以黄土、粉质粘土、细砂和粉砂为模拟含水层介质,通过密封浸泡实验研究了不同环境条件下地下水中硝态氮的自然衰减过程。[结果]化学还原和生物反硝化作用是硝态氮总量减少的重要途径,其中以化学还原为主,生物反硝化为辅;在原生态环境(不加化学试剂)条件下,硝态氮总量减少率为25.70%~39.90%,即地下水的自净能力较差,造成了硝态氮的积累;在强化化学还原作用条件下,地下水中硝态氮总量的减少率是原生态环境下的2倍以上。[结论]该研究为地下水氮污染防治提供了理论基础和技术支持。  相似文献   

11.
不同有机肥用量对土壤硝态氮含量及氮素利用率的影响   总被引:1,自引:0,他引:1  
为了研究有机肥用量对农田土壤硝态氮迁移累积的影响,合理使用有机肥,减少有机肥对环境的污染,在山东省曹县潮土小麦玉米轮作区进行大田试验,研究了自然降雨条件下不同牛粪有机肥用量对小麦玉米轮作农田土壤硝态氮纵向分布、作物产量、氮素利用率的影响。结果表明:0~100 cm各土层硝态氮含量及累积量随着有机肥用量的增加而增加,且用量为每年每666.7m~2施3 000 kg以上时土壤硝态氮含量显著增加;在小麦生育期和玉米苗期土壤硝态氮含量随着土层深度的增加基本呈先降低后升高的趋势,尤其在初夏小麦成熟期60~100 cm土壤中硝态氮累积量高于表层土,表明该时期土壤硝态氮向土壤深处迁移累积,对雨季地下水污染带来潜在的危害;小麦、玉米产量与牛粪有机肥用量之间分别呈二次函数关系和线性关系,牛粪有机肥用量为每年每666.7m2施3 000 kg(折纯氮45 kg)时小麦和青贮玉米的总产量最高,该用量下,小麦、玉米的氮素利用率分别为52%和50%。综合分析,推荐牛粪有机肥用量为每年每666.7m~2施3 000 kg,既保证小麦、青贮玉米的产量又能降低施肥给环境带来的污染风险。  相似文献   

12.
为深入研究波涌灌施肥方式对地下水硝态氮运移的影响,通过肥液(硝酸钾溶液)室内入渗试验,模拟研究了地下水位坪深150 cm条件下,施肥方式对肥液间歇人渗地下水水质的影响规律.结果表明:不同施肥片式地下水中硝态氮浓度具有相似的变化规律,不同施肥方式地下水硝态氮浓度随地下水深度的增加而增加;地下水硝态氮浓度随入渗时间的延长而增大;地下水硝态氮浓度的增加幅度随入渗时间的延长而减小,即入渗结束的增加量>再分布1d的>再分布5d的;地下水硝态氮浓度增加量与地下水深度之间呈负指数函数关系:不同施肥方式在入渗结束、再分布1d、再分布5d后的地下水中硝态氮浓度增量由大到小的顺序为:表施>深施>灌施>不施肥.灌施时,地下水硝态氮的增加量比表施和深施小,说明灌施肥有利于提高氮肥利用效率,减轻氮肥对地下水的污染,生产中应提倡这一节肥施肥方式.  相似文献   

13.
巢湖流域地下水硝态氮的分布及其影响因素研究   总被引:3,自引:0,他引:3  
为了探讨巢湖流域地下水硝态氮的空间分布规律,2009年11月至12月在巢湖流域采集了253个地下水样品,分析了其硝态氮含量。结果表明,巢湖流域地下水硝态氮含量平均值为7.13 mg/L,超标率(10 mg/L≤NO-3 N<20 mg/L)和严重超标率(NO-3 N≥20 mg/L)分别为15.81%和7.11%。不同土地类型的地下水硝态氮含量存在一定差异,其中村庄>菜地>果园>旱地>城镇>水稻-油菜(或小麦)轮作田>单季水稻田>养殖场。巢湖流域绿色水稻产区地下水硝态氮含量比非绿色水稻产区低。农田地下水硝态氮含量与化肥氮施用量、人口密度和耕地面积比例呈正相关。农田地下水硝态氮含量具有随地下水位的下降而降低的趋势,但两者之间没有显著相关性。当化肥氮的年施用量超过100 kg/hm2或地下水位低于9 m时,地下水硝态氮含量存在超标的潜在危险。  相似文献   

14.
地下水硝态氮污染现状及研究进展   总被引:5,自引:0,他引:5  
地下水是重要的饮用水资源,与人民身体健康及生活质量密切相关.近年来,地下水硝态氮污染问题日益严重,逐渐引起全世界各国的关注,硝态氮成为进入地下水最频繁的污染物质,对此我国和欧美等国均进行了大量的监测调查.结果表明,化学氮肥的施用是造成地下水硝态氮污染的最主要原因.我国不同类型农田氮肥施用对种植区地下水硝态氮污染影响情况有所不同,蔬菜田氮肥施用量很大,其种植区地下水硝态氮污染情况最严重,超标率要明显高于粮田种植区和水稻田种植区.而近年由于氮肥施用过量及施肥方式不当等原因,粮田和稻田的地下水污染情况也不容忽视,即使现在没有发生污染,耕地土层中因降雨、灌溉水淋溶而积累的硝态氮仍是地下水体的潜在威胁.目前,我国对地下水硝态氮污染制定了明确的评价监测标准和检验方法标准,但仍缺乏完善的系统研究和行政管理,广大科学工作者仍需努力.  相似文献   

15.
为研究焉耆盆地绿洲区水体硝态氮的污染现状,通过野外采样及室内分析,对绿洲区地表水(65个)、不同埋深地下水(281个)的硝态氮含量进行测定,并利用统计分析的方法进行了对比分析。结果表明,绿洲区水体硝态氮含量总体水平较低,为2.69mg/L,水质状况良好,但不同水体类型、区域之间硝态氮含量差异明显;河流、水库等水质良好,农田排渠硝态氮含量明显高于其余地表水样;地下水硝态氮含量与埋深呈负相关关系,平均含量:包气带水手压井水农田灌溉水饮用水。手压井硝态氮含量城镇明显低于灌区;农田灌溉水方面,粮食种植区明显低于蔬菜、瓜果种植区,表明氮肥及其施用水平与地下水硝态氮含量密切相关。近年氮肥施用量的增加、利用率偏低是焉耆盆地绿洲区水体硝态氮污染的主要原因。  相似文献   

16.
引黄灌区设施菜田硝态氮淋失的季节性特征   总被引:4,自引:2,他引:2  
以宁夏引黄灌区设施菜田番茄-黄瓜轮作体系为研究对象,采用田间定位试验与实地观测相结合的研究方法,对设施菜田硝态氮淋洗的季节特征及其环境因子和施肥管理对硝态氮淋洗的影响进行研究。研究结果表明:硝态氮淋失呈现明显的季节变化,峰值出现在7月夏季休闲期,黄瓜季(秋冬茬)淋洗显著高于番茄季(冬春季),常规施肥周年硝态氮淋洗量平均为185.7 kg·hm-2,优化施肥和调节碳氮比两处理硝态氮淋洗量比常规处理分别降低了10.6%和8.3%。设施菜田硝态氮淋失与浅层地下水位、土壤温度、土壤水分等环境因子季节性变化关系密切,浅层地下水位与硝态氮的淋失量呈极显著负相关,浅层地下水位埋深越浅,硝态氮淋失量越大;土壤水分和温度与硝态氮的淋失量呈显著正相关,随着土壤表层温度和含水量升高,硝态氮淋失增多。  相似文献   

17.
川中小流域地下水硝态氮的时空变化特征   总被引:5,自引:5,他引:5  
通过2002年4月至2003年4月对川中丘陵区小流域地下水中氮素各种形态的监测分析,研究了该流域地下水硝态氮的时空变化特征。结果表明,川中小流域地下水硝态氮污染特征与流域降水的季节变化趋势基本一致,其污染强度约从6月开始上升,一直持续到10月,集中在降雨丰富的时段。夏季3个月(6月—8月)是地下水硝态氮污染的高发季节,这与年雨量的60%集中于该季节而降水多以暴雨形式出现有关。小流域地下水硝态氮污染强度中以小流域上部为最高,明显高于该流域的中下部。小流域上部的塘边井样点地下水硝态氮浓度平均达11.26mg·L-1,最高值达14.23mg·L-1,超过WHO所规定的生活饮用水NO-3-N浓度上限的42.3%;小流域中下部地下水硝态氮的污染水平相对较小,以张飞井为最低,平均浓度仅为1.03mg·L-1。小流域地下水中氮素存在形态以NO3--N为主,平均占97.6%,最高达99.4%。  相似文献   

18.
采用微区试验、淋溶试验和田间试验,研究了玉米专用复混肥硝态氮淋溶情况。结果表明:合理施用具有一定缓效性的复混肥能够减少硝态氮的淋失,显著降低40cm以下土壤的硝态氮含量,提高氮素利用率。但是当复混肥用量为750kg/hm^2时,土壤下层的硝态氮含量明显增加。回归方程结果显示,该玉米专用复混肥施用量为562.3kg/hm^2时,玉米产量能达到最高。  相似文献   

19.
[目的]研究焉耆盆地绿洲区水体硝态氮污染现状及地下水空间分布规律.[方法]2014 ~2015年通过野外采样及室内化验,利用紫外可见分光光度法测定地表水(80个)、不同埋深地下水(284个)水体硝酸盐含量,并运用统计分析及克里金(Kriging)法研究盆地现状硝态氮量及空间分布.[结果]除包气带水体外,绿洲区水体硝态氮量水平总体较低,但不同类型、区域水体间差异性明显,变异性较高.主要河流与农田排渠均受到人为因素干扰,部分农田排渠硝态氮量已超过10.0 mg/L.地下水硝态氮量与埋深密切相关,包气带水>手压井>灌溉井>自来水井,随着埋深的增加,硝态氮量呈减小的趋势.氮素进入田间后,富集于耕作层等包气带土层,为进入地下水的起点.普通克里金插值(Or-Kriging)结果显示,部分典型灌区地下水已接近甚至超过国际(WHO)地下水安全允许浓度(硝态氮量>10.0 mg/L),较高的区域多分布于典型灌区.[结论]集约化种植氮肥施用量的增加、利用率偏低是焉耆盆地绿洲区水体硝态氮量升高的主要原因,包气带中积累过多的氮素是水体污染的潜在风险.  相似文献   

20.
密云水库上游流域地下水中氮素污染特征及影响因素   总被引:2,自引:1,他引:1  
为分析密云水库上游流域地下水中氮素的污染情况,于2014年7月和2015年1月进行了地下水样品的采集,应用域法和地质统计学方法等多元统计方法识别流域地下水中不同形态氮的时空分布特征,并解析土地利用类型、地下水埋深以及地表水对地下水中氮素的影响。结果表明:区域地下水的氮素污染不容乐观,29.73%的样品中硝态氮含量超标(10 mg·L-1≤NO_3~-≤20mg·L~(-1)),27.03%的样品出现严重超标(NO_3~--N≥20 mg·L~(-1))。从空间来看,地下水氮素具有空间自相关性,其中氨氮空间变异的随机性较大,硝态氮最小,硝态氮的污染主要发生在城镇人口密集区域;从时间来看,硝态氮污染呈逐年升高趋势,硝态氮的超标样品百分比从2008年的2.30%增长为2015年的25.71%,且年内变化表现为丰水期高于枯水期。各种土地利用类型中,城镇的氮污染最严重;硝态氮、亚硝态氮的含量随地下水埋深增加呈减小趋势;地下水氮污染浓度与流向有一定的联系,从上游至下游呈升高的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号