首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
This study was undertaken to evaluate the lipidemic response of rice bran and the possible enhancement of its healthful properties by using raw or processed white or brown rice in place of corn starch. All diets contained 10% total dietary fiber, 15% fat, and 0.5% cholesterol. Weanling male golden Syrian hamsters were fed cellulose control (CC), processed corn starch (PCS), cellulose with processed brown rice (CPBR), rice bran (RB), RB with white rice (RBWR), RB with processed white rice (RBPWR), RB with brown rice (RBBR), and RB with processed brown rice (RBPBR) diets. After three weeks, the PCS diet significantly lowered total plasma cholesterol (TC) compared with the CC, CPBR, RBWR, and RBPBR diets. RB and RBBR diets significantly lowered TC and LDL‐C compared with CPBR diet. All the RB‐containing and PCS diets significantly lowered liver cholesterol and liver lipid content. Processing white rice increased TDF content 240% and insoluble dietary fiber (IDF) 360%, whereas soluble dietary fiber (SDF) decreased by 25%. Uncooked brown rice contained 7 times as much TDF as uncooked white rice. Processing brown rice decreased its TDF, IDF and SDF contents by 12, 6, and 42%, respectively. The data suggest that a possible mechanism for cholesterol‐lowering by rice bran, with or without added raw or processed rice (white or brown), is by decreasing lipid digestibility and increasing neutral sterol excretion, whereas cholesterol‐lowering by processed corn starch is mediated through other mechanisms.  相似文献   

2.
A collaborative study was conducted to determine the total dietary fiber (TDF) content of food and food products, using a combination of enzymatic and gravimetric procedures. The method was basically the same as published earlier (J. Assoc. Off. Anal. Chem. (1984) 67, 1044-1052), with changes in the concentration of alcohol and buffers, time of incubation, sample preparation, and some explanatory notes, all with the intent of decreasing the coefficient of variation (CV) of the method. Duplicate blind samples of soy isolate, white wheat flour, rye bread, potatoes, rice, wheat bran, oats, corn bran, and whole wheat flour were analyzed by 9 collaborators. TDF was calculated as the weight of the residue minus the weight of protein and ash. CV values of the data from all laboratories for 7 of the samples ranged from 1.56 to 9.80%. The rice and soy isolate samples had CV values of 53.71% and 66.25%, respectively; however, each sample contained only about 1% TDF. The enzymatic-gravimetric method for determining TDF has been adopted official first action.  相似文献   

3.
The in vitro bile acid binding by rice bran, oat bran, dehulled barley, and β‐glucan enriched barley was determined using a mixture of bile acids at a duodenal physiological pH of 6.3. Six treatments and two blank incubations were conducted testing substrates on an equal protein basis. The relative in vitro bile acid binding of the cereal brans on an equal total dietary fiber (TDF) and insoluble dietary fiber (IDF) basis considering cholestyramine as 100% bound was rice bran 45 and 49%; oat bran 23 and 30%; dehulled barley 33 and 57%; and β‐glucan enriched barley 20 and 40%, respectively. Bile acid bindings on equal protein basis for the respective cereals were 68, 26, 41, and 49%. Bile acid binding by rice bran may account to a great extent for its cholesterol‐lowering properties, while bile acid binding by oat bran suggests that the primary mechanism of cholesterol lowering by oat bran is not due to the bile acid binding by its soluble fiber. Bile acid binding was not proportional to the soluble fiber content of the cereal brans tested. Except for dehulled barley, bile acid binding for rice bran, oat bran, and β‐glucan enriched barley appear to be related to their IDF content. Highest relative bile acid binding values for rice bran and β‐glucan enriched barley were observed on an equal protein basis, whereas highest values for dehulled barley were based on IDF. Data suggest that of all four cereals tested, bile acid binding may be related to IDF or protein anionic, cationic, physical and chemical structure, composition, metabolites, or their interaction with active binding sites.  相似文献   

4.
The effect of different conditions of pea germination on dietary fiber (DF) composition was studied. Insoluble dietary fiber (IDF) and soluble dietary fiber (SDF) were subjected to acid hydrolysis, and the resultant neutral sugars, uronic acids, and Klason lignin were quantified. Germinated peas exhibited significantly higher contents of total dietary fiber (TDF) than the raw sample, due to the increases of both DF fractions. Under darkness conditions, germination exhibited the highest contents of IDF and SDF. Decreasing IDF/SDF ratios showed that the carbohydrate changes did not take place to the same extent during germination, the SDF fraction being the most affected. The detailed chemical composition of fiber fractions reveals increases of cellulose in the IDF of germinated samples, whereas SDF exhibits a decrease of pectic polysaccharides and also increases of polysaccharides rich in glucose and mannose. The DF results were corroborated by a comparative examination of the cell wall carbohydrate composition.  相似文献   

5.
The effect of fermentation on antinutritional factors and also on total dietary fiber (TDF), insoluble (IDF) and soluble (SDF) dietary fiber fractions was studied in beans (Phaseolus vulgaris L.). The processes studied were two types of fermentation (lactic acid and natural), and a portion of the obtained flours were processed by autoclaving. The dietary fiber (DF) content and its components were determined using the enzymatic-gravimetric and enzymatic-chemical methods. The TDF content ranged from 24.5% dry matter (DM) in the raw to 25.2% DM in the processed beans. All the processing treatments significantly decreased the SDF content, and irrelevant changes were noticed in the IDF content of processed beans. Cellulose content of all samples was reduced by the processing treatments. Correspondingly, higher amounts of resistant starch was observed in the processed beans, except in the lactic acid fermented ones. However, the levels of pectic polysaccharides and Klason lignin were higher in the samples fermented by Lactobacillus plantarum. The action of microorganisms was determinant for the different degradation of the bean cell wall, disrupting the protein-carbohydrate integration, thus reducing the solubility of DF.  相似文献   

6.
为明确玉米籽粒营养成分的分布差异及不同部位富集特征,应用快速缓苏、微量着水半湿法分层破胚剥皮技术,结合靶向代谢组学方法,对郑单958玉米不同部位的营养成分及基础代谢物质进行分析与比较。结果表明玉米籽粒不同部位的淀粉、脂肪、矿物元素和膳食纤维等营养物质含量存在显著差异(P<0.05)。该研究中的玉米内皮层可能主要由种皮、糊粉层及部分外胚乳构成,该部位营养成分的种类及含量均较为丰富,其中水溶性膳食纤维含量显著高于其他部位(P<0.05),可作为玉米水溶性膳食纤维的提取分离来源。K、P和Mg元素是玉米中含量最高的矿物元素,主要存在于胚芽中,Fe、Zn、Mn和Cu元素在胚芽和玉米皮层中均有较多分布,精制加工会导致这些矿物元素的损失。玉米胚芽中水解氨基酸种类较其他部位丰富且含量较高(P<0.05),甜味氨基酸占总游离氨基酸含量的24.49%,高于玉米皮层部位、显著高于胚乳部位。研究结果为玉米营养健康食品的创制、玉米精深加工及相关专用装备的研发提供参考。  相似文献   

7.
The in vitro bile acid binding by rice, oat, wheat, and corn brans was determined using a mixture of bile acids normally secreted in human bile at a physiological pH of 6.3. The objective of the study was to relate bile acid binding of cereal brans to health promoting properties. Three experiments were conducted testing substrates on an equal weight (dry matter) basis, an equal total dietary fiber (TDF) basis, and an equal TDF and equal fat basis. Each experiment was repeated to validate the results (for a total of six experiments). The relative in vitro bile acid binding of the cereal brans on an equal TDF basis considering cholestyramine as 100% bound was rice bran 51%, wheat bran 31%, oat bran 26%, and corn bran 5%. The data suggest that cholesterol lowering by rice bran appears to be related to bile acid binding. The primary mechanism of cholesterol lowering by oat bran may not be due to bile acid binding by soluble fiber. Bile acid binding did not appear to be proportional to the soluble fiber content of the cereal brans tested. Bile acid binding by wheat bran may contribute to cancer prevention and other healthful properties.  相似文献   

8.
Onion tissues of three varieties were evaluated for dietary fiber (DF) composition. Insoluble (IDF) and soluble (SDF) dietary fibers were subjected to acid hydrolysis, and the resultant neutral sugars, uronic acids, and Klason lignin were quantified. Brown skin exhibited the highest total dietary fiber (TDF) content (65.8%) on a dry matter basis, followed by top (48.5%) and bottom (38.6%), IDF being the main fraction found. The SDF:IDF ratio decreased from inner to outer tissues. Brown skin and outer leaves byproducts appear to be the most suitable sources of DF that might be used in food product supplementation. The chemical composition reveals that cellulose and pectic polysaccharides were the main components of onion DF in all tissues, although differences between them were noticed. An increase in the uronic acids/neutral sugars ratio from inner to outer tissues was found, suggesting that the galactan side chain shows a DF solubilization role.  相似文献   

9.
The in vitro binding of bile acids of milled wheat bran (MWB) and milled extruded wheat bran (MEB) at five specific mechanical energy (SME) levels of 120 (MEB‐120), 177 (MEB‐177), 234 (MEB‐234), 291 (MEB‐291), and 358 (MEB‐358) Whr/kg on a fat‐free dry weight basis was determined using a mixture of bile acids secreted in human bile at duodenal physiological pH 6.3. Relative to cholestyramine (bile acid binding, cholesterol lowering drug) in vitro bile acid binding capacity on dry matter, total dietary fiber (TDF), and insoluble dietary fiber (IDF) basis was for MWB: 21, 43, 45%; the range for MEB was 18–21%, 34–41%, and 36–43%, respectively. MWB resulted in significantly higher bile acid binding than that of MEB at 120, 234, and 291 Whr/kg on a dry matter, TDF, and IDF basis. These results demonstrate the relative health‐promoting potential of MWB = MEB‐177 = MEB‐358 > MEB‐120 = MEB‐234 = MEB‐291 as indicated by the bile acid binding on a dry matter basis. Data suggest that significant improvement in health‐promoting (cholesterol‐lowering and cancer‐preventing) potential could be obtained in WB by milling (low‐cost processing) the bran to finer particle sizes and extruding (high‐cost technology). Milling WB to small particle size (weighted mean 0.508 mm) increased surface area, in addition it may have induced changes in the physical and chemical characteristics of WB or created new linkages, binding sites of the proteins, starches, and nonstarch polysaccharides, which significantly increased the bile acid binding ability of the MWB.  相似文献   

10.
This study examined the effects of various cereal fibers and various amounts of β-glucan on cholesterol and bile acid metabolism. Hamsters were fed semisynthetic diets containing 0.12% cholesterol, 20% fat, and either 16% total dietary fiber (TDF) from wheat bran (control) or 10% TDF from oat bran, 13% TDF from oat bran concentrate or barley grains, 16% TDF from oat fiber concentrate, barley flakes, or rye bran. After five weeks, plasma total cholesterol and liver cholesterol concentrations were significantly lower (20 and 50%, respectively) only in hamsters fed rye bran. Diets containing any of the oat ingredients or barley had no effect on total cholesterol. Changes in the pattern of biliary bile acids occurred in hamsters fed 16% TDF from barley flakes or 10% TDF from oat bran. Hamsters fed rye bran had a significantly higher fecal bile acid excretion when compared with controls fed wheat bran. Because rye bran caused the most pronounced lowering effect of total cholesterol despite the lowest content of β-glucan and soluble fibers, components other than β-glucan and soluble fibers seem to be involved in its hypocholesterolemic action. Since the effects of the oat and barley ingredients were not solely correlated to the β-glucan content, structural changes occurring during processing and concentrating of the products may have impaired the hypocholesterolemic potential of the β-glucans, and other factors such as solubility and viscosity of the fiber components seem to be involved.  相似文献   

11.
The effects of soaking, cooking, and industrial dehydration treatments on soluble carbohydrates, including raffinose family oligosaccharides (RFOs), and also on total dietary fiber (TDF), insoluble dietary fiber (IDF), and soluble (SDF) dietary fiber fractions were studied in legumes (lentil and chickpea). Ciceritol and stachyose were the main alpha-galactosides for chickpea and lentil, respectively. The processing involved a drastic reduction of soluble carbohydrates of these legumes, 85% in the case of lentil and 57% in the case of chickpea. The processed legume flours presented low residual levels of alpha-galactosides, which are advisable for people with digestive problems. Processing of legumes involved changes in dietary fiber fractions. A general increase of IDF (27-36%) due to the increase of glucose and Klason lignin was observed. However, a different behavior of SDF was exhibited during thermal dehydration, this fraction increasing in the case of chickpea (32%) and decreasing in the case of lentil (27%). This is probably caused by the different structures and compositions of the cell wall networks of the legumes.  相似文献   

12.
Variations in physical and compositional bran characteristics among different sources and classes of wheat and their association with bread‐baking quality of whole grain wheat flour (WWF) were investigated with bran obtained from Quadrumat milling of 12 U.S. wheat varieties and Bühler milling of six Korean wheat varieties. Bran was characterized for composition including protein, fat, ash, dietary fiber, phenolics, and phytate. U.S. soft and club wheat brans were lower in insoluble dietary fiber (IDF) and phytate content (40.7–44.7% and 10.3–17.1 mg of phytate/g of bran, respectively) compared with U.S. hard wheat bran (46.0–51.3% and 16.5–22.2 mg of phytate/g of bran, respectively). Bran of various wheat varieties was blended with a hard red spring wheat flour at a ratio of 1:4 to prepare WWFs for determination of dough properties and bread‐baking quality. WWFs with U.S. hard wheat bran generally exhibited higher dough water absorption and longer dough mixing time, and they produced smaller loaf volume of bread than WWFs of U.S. soft and club wheat bran. WWFs of two U.S. hard wheat varieties (ID3735 and Scarlet) produced much smaller loaves of bread (<573 mL) than those of other U.S. hard wheat varieties (>625 mL). IDF content, phytate content, and water retention capacity of bran exhibited significant relationships with loaf volume of WWF bread, whereas no relationship was observed between protein content of bran and loaf volume of bread. It appears that U.S. soft and club wheat bran, probably owing to relatively low IDF and phytate contents, has smaller negative effects on mixing properties of WWF dough and loaf volume of bread than U.S. hard wheat bran.  相似文献   

13.
The objective of this study was to evaluate the chemical, physicochemical, and functional properties of agrowastes derived from okara ( Glycine max), corn cob ( Zea mays sp.), wheat straw ( Triticum sp.), and rice husk ( Oryza sativa) for potential applications in foods. The fibrous materials (FM) were treated with alkali to yield fibrous residues (FR). Rice husk contained the highest ash content (FM, 8.56%; FR, 9.04%) and lowest lightness in color (FM, 67.63; FR, 63.46), possibly due to the abundance of mineral constituents. Corn cob contained the highest amount of soluble dietary fiber (SDF), whereas okara had the highest total dietary fiber (TDF). The high dietary fiber fractions of corn cob and okara also contributed to the highest water- and oil-holding capacities, emulsifying activities, and emulsion stabilities for both FM and FR samples. These results indicate that these agrowastes could be utilized as functional ingredients in foods.  相似文献   

14.
为探究米根霉发酵米糠的最佳条件,本研究采用过热蒸汽对米糠作稳定化处理,以米根霉为菌种发酵稳定化米糠,以米糠可溶性膳食纤维(SDF)得率为指标,并对此条件下发酵米糠的体外益生活性进行评价。结果表明,过热蒸汽稳定米糠最佳条件为160℃、2 min,此条件下脂肪酶失活率为88.01%;甜香型米根霉发酵米糠的最佳条件为:以甜香型米根霉为发酵菌种,料液比1:2.25、接种量0.7%、发酵温度35℃、发酵时间24 h,此条件下SDF得率为5.83%,比未发酵米糠提高了近一半;与未发酵米糠相比,经甜香型米根霉发酵后的米糠,可有效促进双歧杆菌(对数值6.85)和乳酸杆菌(对数值5.23)的增殖;总短链脂肪酸含量提高37.30%,肠道益生活性显著增强(P<0.05)。本研究结果为改善米糠功能特性提供了依据,对今后米糠在发酵方面的应用具有一定的指导意义。  相似文献   

15.
Brans from rice, oats, corn, and wheat were cooked in a twin-screw extruder at either high or low energy input, and their cholesterol-lowering effects were compared with those of unprocessed brans when fed to four-week-old male golden Syrian hamsters (n = 10 per treatment) for three weeks. Peanut oil was added to oat, corn, and wheat bran during the extrusion process to match the oil content of rice bran. Diets contained 10% total dietary fiber, 10.3% fat, 3% nitrogen, and 0.3% cholesterol. Plasma and liver cholesterol and total liver lipids were significantly lower with low-energy extruded wheat bran compared with unprocessed wheat bran. Extrusion did not alter the hypocholesterolemic effects of rice, oat, or corn brans. Plasma and liver cholesterol levels with corn bran were similar to those with oat bran. Relative cholesterol-lowering effects of the brans, determined with pooled (extruded and unextruded) bran data, were rice bran > oat bran > corn bran > wheat bran. Rice bran diets resulted in significantly lower levels of total plasma cholesterol and very low density lipoprotein cholesterol compared with all other brans. Total liver cholesterol and liver cholesterol concentrations (mg/g) were significantly lower with high-energy extruded rice bran compared with the cellulose control group. Plasma cholesterol and total liver cholesterol values with low-energy extruded wheat bran were similar to those with rice bran (unextruded or extruded) diets. Lowered cholesterol with rice bran diets may result in part from greater lipid and sterol excretion with these diets. Results with low-energy extruded wheat bran suggest that this type of processing may improve the potential for lowering cholesterol with wheat bran products.  相似文献   

16.
The proximate composition of sclerotia of Pleurotus tuber-regium, Polyporus rhinoceros, and Wolfiporia cocos, together with the yield, purity, monosaccharide profile, and microstructure of their insoluble dietary fiber (IDF) and soluble dietary fiber (SDF) fractions prepared from AOAC enzymatic-gravimetric methods were investigated and compared. All three sclerotia were typical carbohydrate rich sclerotia [ranging from 90.5 to 98.1% dry matter (DM)] with an exceptionally low amount of crude lipid content (ranging from 0.02 to 0.14% DM). Besides, all three sclerotia possessed substantial amounts of IDF (ranging from 77.4 to 94.6% DM) with notably high levels of nonstarch polysaccharides (NSP) (89.9-92.2% DM) in which glucose was the predominant sugar residue (90.6-97.2% of NSP DM). On the contrary, both the yield (only ranging from 1.45 to 2.50% DM) and the amount of NSP (ranging from 22.4 to 29.6% DM) of the three sclerotial SDF fractions were very low. Scanning electron micrographs showed fragments of interwoven hyphae and insoluble materials in the three sclerotial IDF fractions, but only an amorphous structure of soluble materials was observed in the SDF fractions. The potential use of these fiber preparations was discussed.  相似文献   

17.
Nutritionists recommend increasing the intake of soluble dietary fiber (SDF), which is very low in most cereal-based products. Conversion of insoluble DF (IDF) into SDF can be achieved by chemical treatments, but this affects the sensorial properties of the products. In this study, the possibility of getting a substantial increase of SDF from cereal products using a tailored preparation of Trichoderma enzymes is reported. Enzymes were produced cultivating Trichoderma using durum wheat fiber (DWF) and barley spent grain (BSG) as unique carbon sources. Many Trichoderma strains were screened, and the hydrolysis conditions able to increase by enzymatic treatment the amount of SDF in DWF and BSG were determined. Results demonstrate in both products that it is possible to triple the amount of SDF without a marked decrease of total DF. The enzymatic treatment also causes the release of hydroxycinnamic acids, mainly ferulic acid, that are linked to the polysaccharides chains. This increases the free phenolic concentration, the water-soluble antioxidant activity, and, in turn, the phenol compounds bioavailability.  相似文献   

18.
Health benefits of consuming whole grains are reduced risk of heart disease, stroke, and cancer. The U.S. Health and Human Services and USDA dietary guidelines recommend consumption of 6–10 oz of grain products daily and one‐half of that amount should contain whole grains. Whole grains contain vitamins, minerals, fiber, and phytonutrients. Bile‐acid‐binding capacity has been related to cholesterol lowering potential of food fractions. Lowered recirculating bile acids results in utilization of cholesterol to synthesize bile acid and reduced fat absorption. Secondary bile acids have been associated with increased risk of cancer. Bile‐acid‐binding potential has been related to lowering the risk of heart disease and that of cancer. It has been reported that bile‐acid‐binding of wheat bran is not related to its total dietary fiber (TDF) content. Whole (W) grain as well as pearled (P) hard red winter wheat (Hrw), hard white winter wheat (Hww), and durum wheat (DU) cooked grains were evaluated for in vitro, bile‐acid‐binding relative to cholestryramine (a cholesterol lowering bile‐acid‐binding drug). On dry matter basis (db) relative bile‐acid‐binding values were 7.7% WHrw; 7.5% WHww; 6.3% PHww; 6.0% PHrw; 5.5% WDU; and 5.4% PDU. On a TDF basis, binding values were 42–57% of that for cholestyramine for the whole and pearled wheat grains tested. Bile‐acid‐binding values (db) for WHrw and WHww were similar and significantly higher than those of PHww, PHrw, WDU and PDU. Similar bile‐acid‐binding of WHww to that of WHrw suggest that the red color commonly associated with whole grain may not necessarily indicate more healthful potential. Data suggest that cooked WHrw and WHww wheat have significantly higher health‐promoting potential than pearled grains. WDU or PDU wheat health‐promoting potential was similar to that of PHww or PHrw. Consumption of products containing WHrw and WHww are recommended.  相似文献   

19.
The metabolic responses to South American foods remain to be determined. Using glycemic index (GI) and insulinemic index (II) values as references for therapeutic potential of foods, this study investigated the glucose responses to a typical Venezuelan corn bread (arepa) and to an arepa supplemented with rice bran. Adding rice bran to the bread increased the content of resistant starch and dietary fiber measured as total, soluble, and insoluble dietary fiber. It also increased the protein content of the arepa. Three meals, white wheat bread, 100% corn meal arepa, and an arepa supplemented with 20% rice bran, were administered within a one‐week period. Available starch in the foods was determined to provide 50 g of available carbohydrate per meal. To calculate the indices, bread was used as the reference. The GI and II of the two arepa meals were significantly smaller than the GI and II of white wheat bread, although the differences between the two types of arepas were not significant. It is concluded that Venezuelan arepas (corn meal bread) may have potential health benefits and that the presence of 20% rice bran in the arepa meal did not produce a significant improvement in the glucose response. Due to the presence of antioxidant elements in the supplemented arepa and its higher protein, dietary fiber, and resistant starch content, it may have a potential preventive effect against the development of other pathologies.  相似文献   

20.
Several oat brans (crunchy oat bran, oat bran alone, and oat breakfast cereal) and wheat brans (wheat bran alone, wheat bran powder, wheat bran with malt flavor, bran breakfast cereal, tablet of bran, and tablet of bran with cellulose) used as dietary fiber supplements by consumers were evaluated as alternative antioxidant sources (i) in the normal human consumer, preventing disease and promoting health, and (ii) in food processing, preserving oxidative alterations. Products containing wheat bran exhibited higher peroxyl radical scavenging effectiveness than those with oat bran. Wheat bran powder was the best hydroxyl radical (OH*) scavenger. In terms of hydrogen peroxide (H2O2) scavenging, wheat bran alone was the most effective, while crunchy oat bran, oat bran alone, and oat breakfast cereal did not scavenge H2O2. The shelf life of fats (obtained by the Rancimat method for butter) increased most in the presence of crunchy oat bran. When the antioxidant activity during 28 days of storage was measured by the linoleic acid assay, all of the oat and wheat bran samples analyzed showed very good antioxidant activities. The Trolox equivalent antioxidant capacity (TEAC) assay was used to provide a ranking order of antioxidant activity. The wheat bran results for TEAC (6 min), in decreasing order, were wheat bran powder > wheat bran with malt flavor > or = wheat bran alone > or = bran breakfast cereal > tablet of bran > tablet of bran with cellulose. The products made with oat bran showed lower TEAC values. In general, avenanthramide showed a higher antioxidant level than each of the following typical cereal components: ferulic acid, gentisic acid, p-hydroxybenzoic acid, protocatechuic acid, syringic acid, vanillic acid, vanillin, and phytic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号