首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uptake and metabolism of propanil were measured in both susceptible (S) and resistant (R) biotypes of Jungle-rice, Echinochloa colona (L.) link at different growth stages. Results showed that there was no significant difference in uptake between S and R biotypes of E. colona at any given growth stage, but that uptake was significantly reduced at older plant growth stages in all biotypes studied. Metabolism of propanil was more rapid in R biotypes than in S biotypes at all growth stages studied. Specific and total aryl acylamidase activity, responsible for the first stage of propanil metabolism, was higher in R biotypes than in S at all growth stages, but declined to about 50% of the maximum at older growth stages, confirming the importance of this enzyme in conferring resistance to this herbicide. The area of necrosis that developed around a single drop of propanil deposited on the adaxial leaf surface was used to assess the degree of propanil resistance; it was found that resistance increased at older E. colona growth stages in contrast to the rate of propanil metabolism and amidase activity. Treatment of leaves with the amidase inhibitors, carbaryl or piperophos, simultaneously with propanil, caused a decrease in resistance at growth stages where amidase activity was greatest. This treatment was less effective at older growth stages. These results show that, in E. colona, propanil metabolism is important for conferring resistance in younger plants (four-six-leaf stage). It is suggested that restricted uptake confers resistance in older plants.  相似文献   

2.
Bispyribac-sodium {sodium 2,6-bis[(4,6-dimethoxy-2-pyrimidinyl)oxy] benzoate} has recently been introduced to California where it effectively controls Echinochloa spp. in rice ( Oryza sativa L.). However, biotypes of early watergrass ( Echinochloa oryzoides (Ard.) Fritsch) and late watergrass ( E. phyllopogon (Stapf ) Koss.) have evolved resistance to this herbicide. In 2001 and 2002, greenhouse and field experiments evaluated interactions between thiobencarb { S -[(4-chlorophenyl) methyl] diethylcarbamothioate} and bispyribac-sodium on resistant (R) and susceptible (S) late watergrass in California rice. Synergism was assessed using Colby's test and regression analysis. In the greenhouse, thiobencarb at 4480 and 5333 g ai ha−1 synergistically reduced bispyribac-sodium GR50 values on the R and S biotypes by 50–70% without increasing toxicity to rice. Synergism was also observed on S late watergrass in the field when 10 g ai ha−1 bispyribac-sodium was mixed with 1120–2240 g ai ha−1 thiobencarb. These effects could be related to interactions between thiocarbamates and enzymes in Phase I reactions of herbicide metabolism. This synergism results in better control at lower rates allowing a reduction in weed control costs, the herbicide load on the environment and a lower selection pressure towards resistant weed biotypes.  相似文献   

3.
Experiments were conducted to (i) evaluate the efficacy of propanil formulations available in Sri Lanka in controlling Echinochloa crus‐galli; (ii) study the seedling growth of propanil‐resistant (R) and ‐susceptible (S) biotypes of the weed under different temperatures; (iii) quantify the level of resistance in R biotypes and; (iv) to suggest alternative control measures for R biotypes. Field studies showed that retail propanil formulations (36% a.i., EC) applied at 2.7 kg a.i. ha?1 gave less than 30% control of E. crus‐galli collected from several locations of the north dry zone of Sri Lanka. Chemical analysis revealed that there was no adulteration of propanil formulations at the retailer level. Growth studies conducted in controlled environments indicated that per cent germination and seedling growth of R and S biotypes were similar at the day/night temperature regimes imposed. However, per cent germination for plants grown under a 34/31°C (day/night) regime was 27–29% higher compared to those grown at 28/24°C. At the higher temperature regime, R and S biotypes reached the 2–3 leaf stage five days earlier, and the 4–5 leaf stage seven days earlier. The ED50 values from the dose–response experiments indicated that the R biotype was four times more resistant to propanil than susceptible ones. The resistance index (RI) did not vary significantly under different temperature regimes. Quinclorac (25% a.i., SC) applied at 200 g a.i. ha?1 and bispyribac‐sodium (10% a.i., SC) applied at 30 g a.i. ha?1 (recommended dosages) successfully controlled propanil‐resistant biotypes of E. crus‐galli. Conversely, oxadiazon and propanil (8% and 23% a.i., EC, respectively) applied at 280 + 805 g a.i. ha?1 did not result in satisfactory control.  相似文献   

4.
Pre-emergence activity of pendimethalin on propanil-resistant jungle rice (Echinochloa colona) was demonstrated in glasshouse trials. Both susceptible and resistant populations, collected from Costa Rica, were controlled by 1·25 kg ha-1, the usual application rate used in the field where Rottboellia cochinchinensis is also a problem. When applied post-emergence, propanil performance was improved by the addition of low doses of pendimethalin to the herbicide mixture. A propanil-resistant selection was controlled by 0·23 kg ha-1 pendi-methalin+0·54 kg ha-1 propanil at the one-to-two leaf stage, and 0·23 kg ha-1 pendimethalin+1·08 kg propanil at the three-to-four leaf stage compared to 1·08 kg and 2·16 kg ha-1 respectively when propanil was applied alone. This suggests that pendimethalin improves post-emergence control in the field compared to the standard propanil treatment and can provide residual pre-emergence control of late-germinating individuals, so reducing the propanil selection pressure. For effective jungle rice control, growers apply propanil (3·84 kg ha-1) at 10 and 20 days after planting (DAP) followed by one application of fenoxaprop-P-ethyl (0·045 kg ha-1) at 35 DAP. Field experiments, conducted in dry-seeded upland rice in southern Costa Rica, demonstrated that under high jungle-rice population pressure, one application of pendimethalin at 1·5 kg ha-1 provided an effective replacement for propanil, resulting in reduced weed-control costs. ©1997 SCI  相似文献   

5.
The resistance mechanism of Leptochloa chinensis Nees to propanil was investigated, based on propanil metabolism, aryl acylamidase activity, and chlorophyll fluorescence at the 8 week growth stage of L. chinensis. The concentration of propanil in the leaf and culm extracts of the resistant (R) and susceptible (S) biotypes, as measured by gas chromatography (GC), was found to increase after propanil treatment. The concentration of propanil in the leaf and culm extracts of the S biotype at 72 h was 1.55 and 0.49 µg mL?1, respectively. However, a lower concentration of propanil was observed in the R biotype, as compared to that in the S biotype. The residue of 3,4‐dichloroaniline, as measured by GC, was detected only in the leaf extracts of the R biotype. In contrast, no residue of 3,4‐dichloroaniline was observed in the S biotype. The level of aryl acylamidase in the leaf tissue extracts of the R biotype was ~140% higher than that in the S biotype. The fluorescence studies showed that propanil inhibited the quantum efficiency of the photosystem II in both the R and S biotypes after 2 h of incubation time. However, when the leaf disks were transferred and incubated in deionized water for 48 h, the quantum efficiency increased in the R biotype but decreased in the S biotype. These results suggest that propanil metabolism, enhanced by aryl acylamidase activity, is the most likely factor contributing towards the mechanism of propanil resistance in L. chinensis plants at the 8 week growth stage.  相似文献   

6.
Pot experiments were conducted to evaluate the level of imazamox tolerance in five red rice ( Oryza sativa L.) and four barnyardgrass (three Echinochloa crus-galli (L.) Beauv. and one Echinochloa oryzoides (Ard.) Fritch) morphologically distinct biotypes collected from rice fields in northern Greece. The susceptibility of barnyardgrass biotypes to propanil was also studied. Red rice biotypes were not controlled by imazamox applied at 40 g ha−1. In contrast, 80 g imazamox ha−1 provided 56–84% red rice control (averaged across shoot number and fresh weight reduction). Not all barnyardgrass biotypes were susceptible to imazamox applied postemergence. However, propanil applied at 2.6 kg ha −1 controlled the E. crus-galli biotypes well, but propanil applied at rates of 2.6 and 5.2 kg ha −1 was not effective in reducing the shoot number and fresh weight of the E. oryzoides biotype. Propanil applied at 10.4 kg ha −1 reduced the shoot number and fresh weight of this biotype by 78 and 85%, respectively. In most cases, a linear equation ( y  = % of control, x  = g ha−1) provided the best fit for regressions between red rice or barnyardgrass shoot number or fresh weight and imazamox rates. The results of this study suggest that postemergence application of imazamox is not effective against all red rice and barnyardgrass biotypes found in the rice fields of Greece and that significant variability regarding herbicide efficacy among biotypes might exist.  相似文献   

7.
The effect of the mono-oxygenase inhibitors tridiphane, piperonyl butoxide and prochloraz on propanil uptake, metabolism and phytotoxicity was measured in a resistant (R) biotype of Echinochloa colona. The uptake of propanil was not significantly affected by any of the three mono-oxygenase inhibitors. The first metabolite of propanil metabolism, 3,4-dichloroaniline, was found to accumulate to higher levels in E. colona treated with each of the mono-oxygenase inhibitors mixed with formulated propanil, compared to propanil applied alone. Accumulation of further metabolites of propanil (glucosyl-3,4-dichloroaniline and bound products) was reduced in the presence of mono-oxygenase inhibitors, compared with propanil application alone. Leaf damage caused by a single drop of propanil compared to propanil+mono-oxygenase inhibitor was used to assess the degree of propanil tolerance in E. colona biotypes. Leaf damage was significantly greater in propanil+mono-oxygenase inhibitor treatments. No leaf damage was observed in mono-oxygenase inhibitor treatments alone at the concentrations used. Peroxidase activity was measured in crude extracts of the R-biotype of E. colona using 3,4-dichloroaniline as substrate, in the presence and absence of mono-oxygenase inhibitors and the specific peroxidase inhibitor salicylhydroxamic acid. Peroxidase activity was inhibited by all three mono-oxygenase inhibitors at 10 μM and by salicylhydroxamic acid at 1 μM . Glucosyl-3,4-dichloroaniline was found not to be a substrate for peroxidase activity. These results suggest that the incorporation of 3,4-dichloroaniline into bound residues involves peroxidase activity which can be inhibited by mono-oxygenase inhibitors. When peroxidase activity is inhibited, the precursor metabolite 3,4-dichloroaniline accumulates, and propanil resistance in E. colona is reduced, possibly as a consequence of phytotoxicity of this metabolite and/or product inhibition of the first step in propanil metabolism, responsible for the formation of 3,4-dichloroaniline. Glasshouse trials have demonstrated that the application of mono-oxygenase inhibitors, (particularly tridiphane which is also known to inhibit glutathione transferase activity) with propanil offers a promising approach to the control of propanil resistant biotypes of Jungle-Rice. © 1997 SCI.  相似文献   

8.
Summary A biotype of Conyza albida resistant to imazapyr was discovered on a farm in the province of Seville, Spain, on land that had been continuously treated with this herbicide. This is the first reported occurrence of target site resistance to acetolactate synthase (ALS)-inhibiting herbicides in C. albida . In order to characterize this resistant biotype, dose–response experiments, absorption and translocation assays, metabolism studies, ALS activity assays and control with alternative herbicides were performed. Dose–response experiments revealed a marked difference between resistant (R) and susceptible (S) biotypes with a resistance factor [ED50(R)/ED50(S)] of 300. Cross-resistance existed with amidosulfuron, imazethapyr and nicosulfuron. Control of both biotypes using alternative herbicides was good using chlorsulfuron, triasulfuron, diuron, simazine, glyphosate and glufosinate. The rest of the herbicides tested did not provide good control for either biotype. There were no differences in absorption and translocation between the two biotypes, the maximum absorption reached about 15%, and most of the radioactivity taken up remained in the treated leaf. The metabolism pattern was similar and revealed that both biotypes may form polar metabolites with similar retention time (Rf). The effect of several ALS inhibitors on ALS (target site) activity measured in leaf extracts from both biotypes was investigated. Only with imazapyr and imazethapyr did the R biotype show a higher level of resistance than the S biotype [I50 (R)/I50(S) value of 4.0 and 3.7 respectively]. These data suggest that the resistance to imazapyr found in the R biotype of C. albida results primarily from an altered target site.  相似文献   

9.
Two populations of Echinochloa crus-galli (R and I) exhibited resistance to quinclorac. Another population (X) exhibited resistance to quinclorac and atrazine. The R and I populations were collected from monocultures of rice in southern Spain. The X population was collected from maize fields subjected to the application of atrazine over several years. The susceptible (S) population of the same genus was collected from locations which had never been treated with herbicides. The quinclorac ED50 value (dose causing 50% reduction in shoot fresh weight) for the R and I biotypes were 26- and 6-fold greater than for the S biotype. The X biotype was 10 times more tolerant to quinclorac than the S biotype and also showed cross-resistance to atrazine, being 82-fold more resistant to atrazine than the R, I and S biotypes. Chlorophyll fluorescence and Hill reaction analysis supported the view that the mechanism of resistance to atrazine in the X biotype was modification of the target site, the DI protein. Quinclorac at 20 mg litre-1 did not inhibit photosynthetic electron transport in any of the test biotypes. The quinclorac I50 values (herbicide dose needed for 50% Hill reaction reduction) of the S population was over 50000-fold higher than the atrazine I50 value for the same S population, indicating that quinclorac is not a PS II inhibiting herbicide. Propanil at doses greater than 0·5 kg ha-1 controlled all the biotypes. © 1997 SCI  相似文献   

10.
Two major weeds in rice in the Philippines, Sphenochlea zeylanica Gaertn. and Echinochloa crus‐galli (L.) Beauv., are controlled with chemical and cultural methods. In the 1980s, after >10 years of continuous use of 2,4‐D, S. zeylanica evolved resistance to the chemical in those rice fields that had been treated with 2,4‐D once or twice every cropping season. In the 1990s, E. crus‐galli evolved resistance to butachlor and propanil in rice monocrop areas where both herbicides were used continuously for 7–9 years. Rice farmers continue to use 2,4‐D, butachlor and propanil extensively and are often unaware of herbicide resistance or the potential for cross‐resistance, its causes or its implications. In order to control herbicide‐resistant E. crus‐galli, farmers are shifting to locally available herbicides with different modes of action, such as bispyribac, an acetolactate synthase inhibitor, and cyhalofop, an acetyl coenzyme A carboxylase inhibitor. Follow‐up manual weeding or rotary weeding after herbicide spraying, a common farmers’ practice, removes the susceptible and resistant biotypes and could help to delay or prevent the evolution of resistance. Although the resistance mechanisms of both weeds are not determined yet, they could be related to enhanced degradation that is similar to the mechanisms that are shown by the resistant biotypes in other countries.  相似文献   

11.
Twenty-two cotton varieties were screened for resistance to cotton leaf curl disease (CLCuD), a disease of viral origin, using three procedures: field evaluation, whitefly transmission assay and graft inoculation. Viral infection of cotton varieties was determined by visual symptom assessment as well as dot-blot and multiplex PCR diagnostic techniques. Crosses were made between the most susceptible variety (S-12) and highly resistant varieties (CP-15/2, LRA-5166 and CIM-443). All F1 plants of these crosses were resistant, showing dominant expression of the resistance as well as the absence of extrachromosomal inheritance. The F2 plants of the crosses CP-15/2 × S12, LRA-5166 × S-12 and CIM-443 × S12 exhibited a ratio of 13 resistant (symptomless) to three susceptible (with symptoms). Screening of the F2 generation for virus infection by multiplex PCR further subdivided the resistant class into those exhibiting a high level of resistance (HR; PCR-negative) and those exhibiting resistance (R; symptomless, yet showing virus replication by PCR analysis). Hence, the final ratio was 3:10:3 (HR:resistant:susceptible). The F3 progeny of susceptible F2 plants segregated for resistance, indicating the probable presence of a suppressor gene ( S ). These findings are consistent with three genes being involved in G. hirsutum resistance to CLCuD, two for resistance ( R 1CLCuDhir and R 2CLCuDhir ) and a suppressor of resistance ( S CLCuDhir ).  相似文献   

12.
我国南方稻区稗草对二氯喹啉酸的抗药性测定   总被引:8,自引:0,他引:8  
用琼脂法对2000年和2001年采收的29个稗草生态型对二氯喹啉酸的抗性水平进行了测定。结果表明:广东花都稗草对二氯喹啉酸最为敏感,其抑制中浓度IC50是0.148 0 mg/L;湖南安乡稗草对二氯喹啉酸的抗性极为明显,2000年和2001年样本IC50值分别是7.458和13.80 mg/L,其相对抗性比分别为50.4和93.2;2000年采收的湖南常德稗草也对二氯喹啉酸表现出高抗,其相对抗性比值是4.47,黄梅、汉寿、常德(b)、高桥4地稗草也表现出抗性,其相对抗性比值分别为2.37、3.12、2.44和2.20;其他22个稗草生态型对二氯喹啉酸仍未表现出抗性。  相似文献   

13.
14.
Two Alisma plantago‐aquatica biotypes resistant to bensulfuron‐methyl were detected in rice paddy fields in Portugal’s Mondego (biotype T) and Tagus and Sorraia (biotype Q) River valleys. The fields had been treated with bensulfuron‐methyl‐based herbicide mixtures for 4–6 years. In order to characterize the resistant (R) biotypes, dose–response experiments, absorption and translocation assays, metabolism studies and acetolactate synthase (ALS) activity assays were performed. There were marked differences between R and susceptible (S) biotypes, with a resistance index (ED50R/S) of 500 and 6.25 for biotypes Q and T respectively. Cross‐resistance to azimsulfuron, cinosulfuron and ethoxysulfuron, but not to metsulfuron‐methyl, imazethapyr, bentazone, propanil and MCPA was demonstrated. No differences in the absorption and translocation of 14C‐bensulfuron‐methyl were found between the biotypes studied. Maximum absorption attained 1.12, 2.02 and 2.56 nmol g−1 dry weight after 96 h incubation with herbicide, for S, Q and T biotypes respectively. Most of the radioactivity taken up by the roots was translocated to shoots. Bensulfuron‐methyl metabolism in shoots was similar in all biotypes. The R biotypes displayed a higher level of ALS activity than the S biotype, both in the presence and absence of herbicide and the resistance indices (IC50R/S) were 20 197 and 10 for biotypes Q and T respectively. These data confirm for the first time that resistance to bensulfuron‐methyl in A. plantago‐aquatica is target‐site‐based. In practice, to control target site R biotypes, it would be preferable to use mixtures of ALS inhibitors with herbicides with other modes of action.  相似文献   

15.
Barnyardgrass (Echinochloa crus-galli (L.) Beauv.), an annual species of the family Poaceae, is a major weed problem in rice-producing countries throughout the globe. Synthetic herbicides can effectively control this grass in rice paddies, but the development of resistant biotypes after the continuous use of the same active ingredients has led to low herbicide efficacy and yield losses. In this review, a summary of resistant-barnyardgrass cases in global rice production is reported based on data from the International Herbicide-Resistant Weed Database. The first case of resistant barnyardgrass in rice paddies was to the photosystem-II inhibitor propanil in the late 1980s. Eighty-five (85) out of 116 cases in the period from 1986 to 2022 refer to resistant barnyardgrass (E. crus-galli var. crus-galli, E. crus-galli var. formosensis and E. crus-galli var. zelayensis) in 16 countries. Barnyardgrass has been found resistant to acetolactate synthase (ALS) inhibitors (34 cases), acetyl-CoA carboxylase (ACCase) inhibitors (23 cases), photosystem-II inhibitors (11 cases), auxin mimics/cellulose biosynthesis inhibitors (9 cases), very long chain fatty acid inhibitors (6 cases), and microtubule assembly inhibitors (1 case). The majority of all resistance cases reported to the active ingredients penoxsulam, bispyribac-sodium, and imazamox (ALS inhibitors), cyhalofop-butyl and fenoxaprop-ethyl (ACCase inhibitors), propanil (photosystem-II inhibitors), and quinclorac (auxin mimics/cellulose biosynthesis inhibitors). Although target-site resistance with specific mutations has been identified, non-target site resistance mainly through herbicide detoxification is also of great concern increasing the chance of multiple herbicide resistance evolution. Rotation of herbicides should be adopted concerning the modes of action used as well as the application methods to mitigate resistance evolution of this weed in rice paddies.  相似文献   

16.
Aryl acylamidase (aryl-acylamine amidohydrolase, EC 3.5.1.13) activity has been measured in crude extracts from leaves of propanil-susceptible (S) and propanil-resistant (R) biotypes of the grass weed. Echinochloa colona (L.) Link from Columbia. Both specific and total amidase activity increased with plant age up to 15 days (four-leaf stage), then decreased beyond 20 days to about 50% of the maximum at 36 days in both R and S E. colona biotypes. Specific activity with propanil in the R biotype was about 80% of that obtained for rice (Oryza sativa L.), compared to 25% in the susceptible biotype. The specific activity of the propanil amidase was three-fold higher in the R biotype than in the S. Partially purified amidase extracts from rice and both S and R biotypes of E. colona were compared biochemically. Both rice and E. colona amidases had a pH optimum of 7.5 and native relative molecular masses, estimated by gel filtration, of 179 000 and 181 000, respectively. Out of six substrates tested, three produced appreciable activity (propanil, 4-chloroacetanilide and acetanilide) in both rice and E. colona. Michaelis constants showed that the rice amidase had a higher affinity for propanil (0.36 mM) than had the E. colona enzyme (1.1 mM). Carbamates and organo-phosphorus pesticides were shown to inhibit amidase activity in partially purified rice and E. colona extracts. Additional preliminary data have implicated peroxidase in the next step of propanil metabolism in vitro. These data demonstrate that increased aryl acylamidase activity contributes to resistance to the herbicide propanil in E. colona weeds. Also, a biochemical comparison of purified aryl acylamidases from S and R biotypes of E. colona is presented for the first time.  相似文献   

17.
BACKGROUND: Quinclorac (3,7-dichloro-quinoline-carboxylic acid) is a selective herbicide widely used to control annual grasses and certain broadleaf weeds. Echinochloa phyllopogon (Stapf) Koss. is the most noxious grass weed in California rice fields and has evolved resistance to multiple herbicides with different modes of action. A quinclorac-resistant (R) E. phyllopogon biotype found in a Sacramento Valley rice field where quinclorac has never been applied was investigated. RESULTS: Resistant to susceptible (S) GR50 (herbicide rate for 50% growth reduction) ratios ranged from 6 to 17. The cytochrome P450 inhibitor malathion (200 mg L−1) caused R plants to become as quinclorac susceptible as S plants. Quinclorac rapidly (6 HAT) stimulated ethylene formation in S plants, but only marginally in R plants. Malathion pretreatment did not reduce ethylene formation by quinclorac-treated S and R plants. Activity of β-cyanoalanine synthase (β-CAS) in tissue extracts was 2-3-fold greater in R than in S plants, and incubation of shoot extracts with 1 mM malathion reduced β-CAS activity by 40% in both biotypes. CONCLUSION: Resistance to quinclorac in R E. phyllopogon involved at least two mechanisms: (a) insensitivity along the response pathway whereby quinclorac induces ethylene production; (b) enhanced β-CAS activity, which should enable greater HCN detoxification following quinclorac stimulation of ethylene biosynthesis. This unveils new resistance mechanisms for this multiple-resistant biotype widely spread throughout California rice fields. Copyright © 2011 Society of Chemical Industry  相似文献   

18.
Herbicide resistance poses a substantial threat to the agricultural industry throughout the world and during the past decade several reports regarding herbicide resistance have been published. Raphanus raphanistrum L., from two wheat farms located in the winter rainfall region of South Africa, showed indications of resistance to chlorsulfuron. Seeds from these suspected resistant biotypes as well as seeds from a susceptible biotype were collected and transported to the ARC-Small Grain Institute for herbicide resistance studies. Herbicides registered for R. raphanistrum control, i.e. chlorsulfuron, MCPA and bromoxynil, were used in this study. Significant differences in the degree of control were found between the susceptible and two resistant biotypes, when treated with chlorsulfuron. The LD50 values for the resistant biotypes (WR 1 & WR 2) were 45 and 11.3 g a.i. ha–1, respectively, whereas the LD50 value for the susceptible biotype was 5.6 g a.i. ha–1. The almost eightfold difference between the susceptible and resistant biotype (WR 1), indicated that resistance has developed to chlorsulfuron. Only twofold resistance was established between the other resistant biotype (WR 2) and the susceptible biotype. Significant differences between herbicide rates were also established with the MCPA and bromoxynil experiments. No significant difference could, however, be found between the susceptible and resistant biotypes when treated with MCPA and bromoxynil, indicating the importance of different modes of action of herbicide as a strategy to prevent herbicide resistance.  相似文献   

19.
The metabolism, uptake and translocation of paraquat in resistant (R) and susceptible (S) biotypes of Crassocephalum crepidioides (Benth.) S. Moore (redflower ragleaf) at the 10-leaf stage was investigated. A study on the properties of leaf surface was carried out to examine the relationship between leaf surface characters and paraquat absorption. The extractable paraquat was not metabolized by the leaf tissue of either the resistant or susceptible biotypes. Differential metabolism, therefore, does not appear to play a role in the mechanism of resistance. Both biotypes did not show any significant difference in the amount of cuticle and trichome densities. Furthermore, both biotypes are identical in the structure of stomata, trichomes and epicuticular wax. The results of the leaf surface studies are in agreement with the findings of the uptake study. Both biotypes demonstrated no significant difference in absorption between the resistant and susceptible biotypes. However, 10% of the absorbed 14C-paraquat into the S biotype was translocated basipetally, but not in the R biotype. The results of this study suggest that in C. crepidioides , differential translocation may contribute to the mechanism of resistance at the 10-leaf stage.  相似文献   

20.
Propanil-resistant barnyardgrass populations, previously verified in Arkansas rice fields and in greenhouse tests, were examined in the laboratory to ascertain if the resistance mechanism in this weed biotype was herbicide metabolism. Propanil-resistant barnyardgrass was controlled >95% in the greenhouse when carbaryl (an aryl acylamidase inhibitor) was applied two days prior to propanil. Laboratory studies with 14C-radiolabelled propanil indicated that the herbicide was hydrolysed in propanil-resistant barnyardgrass and rice to form 3,4-dichloroaniline, but no detectable hydrolysis occurred in susceptible barnyardgrass. Two additional polar metabolites were detected in propanil-resistant barnyardgrass and rice and tentatively identified by thin layer chromatography. Overall, metabolites in the resistant barnyardgrass had Rf values similar to those in rice, indicating similar metabolism for both species. These data, coupled with data from a previous report on the resistant biotype showing no differential absorption/translocation or molecular modification of the herbicide binding site in the resistant biotype, indicate that the resistance mechanism is metabolic degradation of propanil. © of SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号