首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Propanil-resistant barnyardgrass populations, previously verified in Arkansas rice fields and in greenhouse tests, were examined in the laboratory to ascertain if the resistance mechanism in this weed biotype was herbicide metabolism. Propanil-resistant barnyardgrass was controlled >95% in the greenhouse when carbaryl (an aryl acylamidase inhibitor) was applied two days prior to propanil. Laboratory studies with 14C-radiolabelled propanil indicated that the herbicide was hydrolysed in propanil-resistant barnyardgrass and rice to form 3,4-dichloroaniline, but no detectable hydrolysis occurred in susceptible barnyardgrass. Two additional polar metabolites were detected in propanil-resistant barnyardgrass and rice and tentatively identified by thin layer chromatography. Overall, metabolites in the resistant barnyardgrass had Rf values similar to those in rice, indicating similar metabolism for both species. These data, coupled with data from a previous report on the resistant biotype showing no differential absorption/translocation or molecular modification of the herbicide binding site in the resistant biotype, indicate that the resistance mechanism is metabolic degradation of propanil. © of SCI.  相似文献   

2.
The intensive use of the acetolactate synthase (ALS)‐inhibiting herbicides, imazethapyr, penoxsulam and bispyribac‐sodium, in imidazolinone‐resistant (Clearfield) rice increases the risk of the evolution of ALS‐resistant barnyardgrass. In 2009, imazethapyr failed to control barnyardgrass that was collected from a field in Arkansas, USA, following the failure of the herbicide in 2008. A greenhouse experiment was conducted to confirm and document the level of resistance of the biotype against three ALS‐inhibiting herbicides that currently are labeled in rice. The level of control of the resistant biotype at the labeled rate of bispyribac‐sodium of 35 g ai ha?1 was 10%, penoxsulam at 22 g ai ha?1 was 0% and imazethapyr at 70 g ai ha?1 was 25%. The level of mortality of the susceptible biotype was 100% with all the herbicides at the labeled rate. The dose needed to kill 50% of the resistant plants was 49 g ha?1 of bispyribac‐sodium, 254 g ha?1 of penoxsulam and 170 g ha?1 of imazethapyr. For the susceptible biotype, bispyribac‐sodium at 6 g ha?1, penoxsulam at 10 g ha?1 and imazethapyr at 12 g ha?1 killed 50% of the treated plants. Based on these findings, it was confirmed that a barnyardgrass population has evolved cross‐resistance to three ALS‐inhibiting herbicides in rice culture in Arkansas. Furthermore, an experiment was conducted to determine if the ALS‐resistant biotype could be controlled using other mechanisms of action. The results indicated that propanil, a photosystem II inhibitor, and quinclorac, a synthetic auxin, failed to control the resistant biotype at the labeled rates, whereas all the other evaluated herbicides provided effective control of both biotypes.  相似文献   

3.
为明确广东省稻菜轮作区中牛筋草对10种常用除草剂的抗性水平及抗性分子机制,采用整株生物测定法测定广东省稻菜轮作区内8个牛筋草种群P1~P8对草甘膦、草铵膦和乙酰辅酶A羧化酶(acetyl-CoA carboxylase,ACCase)抑制剂类等10种除草剂的抗性水平,并进一步分析P1和P8种群相关靶标酶基因5-烯醇丙酮酰莽草酸-3-磷酸合酶(5-enolpyruvyl-shikimate-3-phosphate synthase,EPSPS)、谷氨酰胺合成酶(glutamine synthetase,GS)和ACCase的部分功能区序列特征。结果显示,牛筋草P1~P8种群对草甘膦抗性指数为敏感种群的5.9倍~17.7倍,其中P8种群对草甘膦的抗性水平最高;8个种群对草铵膦也产生了不同程度的抗性,抗性指数为敏感种群的2.3倍~14.2倍,其中P1种群抗性最高。牛筋草P1和P8种群均对ACCase抑制剂类除草剂精喹禾灵、氰氟草酯和噁唑酰草胺产生了交互抗性;P1种群ACCase基因在第2 041位氨基酸处发生突变,该突变在牛筋草种群中首次发现;而P8种群ACCase基因则在第2 027位氨基...  相似文献   

4.
We are examining the interaction of compounds with the herbicide propanil to find synergistic or additive actions that can increase efficacy against propanil-resistant barnyardgrass [Echinochloa crus-galli] (R-BYG) without substantial injury to rice. Field tests (herbicidal injury) and laboratory tests (chlorophyll quantification in excised leaves; measurement of chlorophyll fluorescence to determine PSII inhibition) have been conducted on R-BYG and rice tissue exposed to various rates of propanil and additive. Important synergistic interactions on R-BYG in laboratory and field tests were found with propanil plus either the herbicides anilophos or piperophos, or the insecticide carbaryl. In laboratory tests, the insecticide methiocarb and PPG-124 (p-chlorophenyl N-methylcarbamate) were highly effective synergists with propanil on R-BYG. Other important interactions occurred with certain concentrations/application rates when propanil was combined with the herbicides quinclorac, thiobencarb, molinate, or pendimethalin (field tests). Combinations of these or other chemicals with propanil may provide additive or synergistic action useful to control R-BYG without increasing rice injury. Such mixtures might also prevent or delay the development of propanil resistance in this weed species.  相似文献   

5.
Two major weeds in rice in the Philippines, Sphenochlea zeylanica Gaertn. and Echinochloa crus‐galli (L.) Beauv., are controlled with chemical and cultural methods. In the 1980s, after >10 years of continuous use of 2,4‐D, S. zeylanica evolved resistance to the chemical in those rice fields that had been treated with 2,4‐D once or twice every cropping season. In the 1990s, E. crus‐galli evolved resistance to butachlor and propanil in rice monocrop areas where both herbicides were used continuously for 7–9 years. Rice farmers continue to use 2,4‐D, butachlor and propanil extensively and are often unaware of herbicide resistance or the potential for cross‐resistance, its causes or its implications. In order to control herbicide‐resistant E. crus‐galli, farmers are shifting to locally available herbicides with different modes of action, such as bispyribac, an acetolactate synthase inhibitor, and cyhalofop, an acetyl coenzyme A carboxylase inhibitor. Follow‐up manual weeding or rotary weeding after herbicide spraying, a common farmers’ practice, removes the susceptible and resistant biotypes and could help to delay or prevent the evolution of resistance. Although the resistance mechanisms of both weeds are not determined yet, they could be related to enhanced degradation that is similar to the mechanisms that are shown by the resistant biotypes in other countries.  相似文献   

6.
A Collavo  M Sattin 《Weed Research》2014,54(4):325-334
In Europe, glyphosate‐resistant weeds have so far only been reported in perennial crops. Following farmers' complaints of poor herbicide efficacy, resistance to glyphosate as well as to ACCase and ALS inhibitors was investigated in 11 populations of Lolium spp. collected from annual arable cropping systems in central Italy. Field histories highlighted that farmers had relied heavily on glyphosate, often at low rates, as well as in a non‐registered crop. The research aimed at elucidating the resistance status, including multiple resistance, of Lolium spp. populations through glasshouse screenings and an outdoor dose–response experiment. Target‐site resistance mechanism was also investigated for the substitutions already reported for EPSPs, ALS and ACCase genes. Three different resistant patterns were identified: glyphosate resistant only, multiple resistant to glyphosate and ACCase inhibitors and multiple resistant to glyphosate and ALS inhibitors. Amino acid substitutions were found at position 106 of the EPSPs gene, at position 1781, 2088 and 2096 of the ACCase gene and at position 197 and 574 of the ALS gene. Not all populations displayed amino acid substitutions, suggesting the presence of non‐target‐site‐mediated resistance mechanisms. After 39 years of commercial availability of glyphosate, this is the first report of multiple resistance involving glyphosate selected in annual arable crops in Europe. Management implications and options are discussed.  相似文献   

7.
Timely detection of herbicide resistance at an early stage of crop cultivation is essential to help farmers find alternative solutions to manage herbicide resistance in their fields. In this study, maximum quantum yield of PS II [Fv/Fm = (FmFo)/Fm] was measured at the 4–5 leaf stage to discriminate between herbicide‐resistant and susceptible biotypes of Echinochloa species. The differences in Fv/Fm between herbicide‐resistant and susceptible Echinochloa spp. were consistent with the whole‐plant assay based on I50 (herbicide doses causing a 50% inhibition of Fv/Fm) and GR50 (herbicide doses causing a 50% reduction in plant fresh weight) values and R/S ratios (herbicide resistance index), regardless of the mode of action of the tested herbicides. A PS II inhibitor caused the fastest inhibition of Fv/Fm, compared with ACCase and ALS inhibitors, after herbicide treatment. The required time for discrimination between herbicide‐resistant and susceptible Echinochloa spp. was 64 h after PS II inhibitor treatment, much shorter than those of ACCase and ALS inhibitor‐treated plants, which required 168 and 192 h respectively. The leaf chlorophyll fluorescence assay provided reliable diagnostics of herbicide resistance in Echinochloa spp. with significant time savings and convenient measurement in field conditions compared with the conventional whole‐plant assay.  相似文献   

8.
Two Alisma plantago‐aquatica biotypes resistant to bensulfuron‐methyl were detected in rice paddy fields in Portugal’s Mondego (biotype T) and Tagus and Sorraia (biotype Q) River valleys. The fields had been treated with bensulfuron‐methyl‐based herbicide mixtures for 4–6 years. In order to characterize the resistant (R) biotypes, dose–response experiments, absorption and translocation assays, metabolism studies and acetolactate synthase (ALS) activity assays were performed. There were marked differences between R and susceptible (S) biotypes, with a resistance index (ED50R/S) of 500 and 6.25 for biotypes Q and T respectively. Cross‐resistance to azimsulfuron, cinosulfuron and ethoxysulfuron, but not to metsulfuron‐methyl, imazethapyr, bentazone, propanil and MCPA was demonstrated. No differences in the absorption and translocation of 14C‐bensulfuron‐methyl were found between the biotypes studied. Maximum absorption attained 1.12, 2.02 and 2.56 nmol g−1 dry weight after 96 h incubation with herbicide, for S, Q and T biotypes respectively. Most of the radioactivity taken up by the roots was translocated to shoots. Bensulfuron‐methyl metabolism in shoots was similar in all biotypes. The R biotypes displayed a higher level of ALS activity than the S biotype, both in the presence and absence of herbicide and the resistance indices (IC50R/S) were 20 197 and 10 for biotypes Q and T respectively. These data confirm for the first time that resistance to bensulfuron‐methyl in A. plantago‐aquatica is target‐site‐based. In practice, to control target site R biotypes, it would be preferable to use mixtures of ALS inhibitors with herbicides with other modes of action.  相似文献   

9.
Lolium rigidum (annual or rigid ryegrass) is a widespread annual weed in cropping systems of southern Australia, and herbicide resistance in L. rigidum is a common problem in this region. In 2010, a random survey was conducted across the grain belt of Western Australia to determine the frequency of herbicide‐resistant L. rigidum populations and to compare this with the results of previous surveys in 1998 and 2003. During the survey, 466 cropping fields were visited, with a total of 362 L. rigidum populations collected. Screening of these populations with the herbicides commonly used for control of L. rigidum revealed that resistance to the ACCase‐ and ALS‐inhibiting herbicides was common, with 96% of populations having plants resistant to the ACCase herbicide diclofop‐methyl and 98% having plants resistant to the ALS herbicide sulfometuron. Resistance to another ACCase herbicide, clethodim, is increasing, with 65% of populations now containing resistant plants. Resistance to other herbicide modes of action was significantly lower, with 27% of populations containing plants with resistance to the pre‐emergent herbicide trifluralin, and glyphosate, atrazine and paraquat providing good control of most of the populations screened in this survey. Ninety five per cent of L. rigidum populations contained plants with resistance to at least two herbicide modes of action. These results demonstrate that resistance levels have increased dramatically for the ACCase‐ and ALS‐inhibiting herbicides since the last survey in 2003 (>95% vs. 70–90%); therefore, the use of a wide range of integrated weed management options are required to sustain these cropping systems in the future.  相似文献   

10.
Resistance to acetyl-coenzyme A carboxylase (ACCase) inhibitors has developed in at least 10 grass weed species in recent years. In most instances, resistance is conferred by an ACCase alteration in the resistant biotypes that reduces sensitivity to aryloxyphenoxypropionate (AOPP) and cyclohexanedione (CHD) herbicides. Analysis of ACCase from many of these resistant weed biotypes suggests the presence of different mutations, each conferring a different pattern and level of resistance to various AOPP and CHD herbicides. In all cases analyzed to date, resistance is controlled by a single dominant or semi-dominant nuclear gene. In several weed biotypes, resistance is conferred by enhanced herbicide detoxification, primarily through elevated expression or activity of cytochrome P450 monooxygenase(s). This mechanism can confer cross-resistance to herbicides from other chemical classes with different modes of action. Finally, multiple herbicide resistance, i.e. the acquisition of several different resistance mechanisms, has been reported in some weed biotypes. ©1997 SCI  相似文献   

11.
为明确广东省水稻田杂草稗Echinochloa crus-galli对五氟磺草胺的抗性现状及其可能的抗性机理,采用整株剂量反应法测定不同地区稗种群对五氟磺草胺的抗性水平,对不同稗种群的乙酰乳酸合成酶(acetolactate synthase,ALS)基因片段进行扩增测序,分析细胞色素P450酶(cytochrome P450 monooxygenase,P450)和谷胱甘肽-S-转移酶(glutathione-S-transferase,GST)抑制剂胡椒基丁醚(piperonylbutoxide,PBO)和4-氯-7-硝基-2,1,3-苯并氧杂噁二唑(4-chloro-7-nitro-1,2,3-benzoxadiazole,NBD-Cl)对不同稗种群抗性水平的影响,并对替代药剂进行筛选。结果显示,广东省水稻田多数稗种群对五氟磺草胺仍表现敏感,但采自湛江市的1个种群BC-7对五氟磺草胺产生了抗性,抗性倍数达6.5倍。与敏感种群BC-2相比,BC-7种群并未发生已报道的ALS靶标抗性相关突变。PBO和NBD-Cl均可显著提高BC-7种群对五氟磺草胺的敏感性,其干重抑制中量GR50由31.1 g/hm2分别降为11.0 g/hm2和24.7 g/hm2。BC-7种群对氰氟草酯和噁唑酰草胺仍较敏感,但对二氯喹啉酸和双草醚产生了抗性。表明P450和GST介导的代谢抗性是稗BC-7种群产生抗性的重要原因,氰氟草酯和噁唑酰草胺适用于治理该抗性种群。  相似文献   

12.
A failure of acetyl‐coenzyme A carboxylase (ACCase)‐inhibiting herbicides to control a population of Hordeum leporinum Link (barleygrass) occurred following eight applications of these herbicides in both crops and pastures. This population was 7.6‐fold resistant to fluazifop‐P‐butyl compared with standard susceptible populations. The population was between 3.6‐ and 3.8‐fold resistant to other ACCase‐inhibiting herbicides, except butroxydim to which it was susceptible. ACCase extracted from resistant plants and assayed in the presence of herbicides in vitro was susceptible to fluazifop acid and other aryloxyphenoxypropanoate herbicides, but was 4‐fold less sensitive to sethoxydim compared with ACCase from susceptible plants. Resistant plants metabolised fluazifop acid about 1.3‐fold more rapidly compared with susceptible plants; however, sethoxydim was metabolised equally in both populations. Resistance to fluazifop‐P‐butyl and other aryloxyphenoxypropanoate herbicides may be the result of increased herbicide detoxification, whereas resistance to sethoxydim appears to be due to a modified target enzyme. Herbicide resistance in this population is unusual in that different mechanisms appear to confer resistance to the aryloxyphenoxypropanoate and cyclohexanedione herbicides. © 2000 Society of Chemical Industry  相似文献   

13.
Diclofop-resistant Lolium species (ryegrass) is a major weed problem in wheat production worldwide. This study was conducted to determine the resistance pattern of diclofop-resistant ryegrass accessions from the southern United States to mesosulfuron-methyl, a recently commercialized herbicide for ryegrass control in wheat; to determine the cross-resistance pattern of a Lolium multiflorum Lam. (Italian ryegrass) accession, 03-1, to acetolactate synthase (ALS) and acetyl-CoA carboxylase (ACCase) inhibitors; and to determine the resistance mechanism of Italian ryegrass to mesosulfuron-methyl. Seventeen ryegrass accessions from Arkansas and Louisiana, including standard resistant and susceptible accessions, were used in this experiment. Fourteen of the 17 accessions were more resistant (four- to > 308-fold) to diclofop than the standard susceptible biotype. One accession, 03-1, was resistant to mesosulfuron-methyl as well as to other ALS inhibitor herbicides such as chlorsulfuron, imazamox and sulfometuron. Accession 03-1, however, did not show multiple resistance to the ACCase inhibitor herbicides diclofop, fluazifop, clethodim, sethoxydim and pinoxaden, nor to glyphosate. The in vivo ALS activity of the 03-1 biotype was less affected by mesosulfuron-methyl than the susceptible biotype. This indicates that the resistance mechanism of Italian ryegrass to mesosulfuron-methyl is partly due to an alteration in the target enzyme, ALS. It is concluded that diclofop-resistant ryegrass in the southern United States can be generally controlled by mesosulfuron-methyl. However, mesosulfuron-methyl must be used with caution because not all ryegrass populations are susceptible to it. There is a need for more thorough profiling of ryegrass resistance to herbicides.  相似文献   

14.
BACKGROUND: Hordeum populations are becoming increasingly difficult to control in cropping fields. Two herbicide‐resistant H. leporinum populations were identified during a random crop survey after herbicides were applied. The study aimed to determine the herbicide resistance profile of these H. leporinum biotypes to a range of herbicides used for their control. RESULTS: Based on dose–response studies, one H. leporinum population was very highly resistant to sulfosulfuron and sulfometuron (both sulfonylurea herbicides) and also displayed low‐level resistance to imazamox (an imidazolinone herbicide). Reduced sensitivity of the ALS enzyme was identified with in vitro activity assays. Gene sequence analysis revealed a proline‐to‐threonine substitution at amino acid position 197 of ALS, which is likely to be the molecular basis for resistance in this population. Herbicide screening also revealed a different H. leporinum population with resistance to the bipyridyl herbicide paraquat. CONCLUSION: This study established the first cases of (1) sulfonylurea‐to‐imidazolinone cross‐resistance and (2) field‐evolved paraquat resistance in a Hordeum species in Western Australia. Copyright © 2012 Society of Chemical Industry  相似文献   

15.
An investigation, using herbicidal pot tests in a greenhouse condition, was conducted to determine the whole‐plant dose–response relationships to several acetolactate synthase (ALS)‐inhibiting herbicides of sulfonylurea (SU)‐resistant Schoenoplectus juncoides with various Pro197 mutations in ALS that was collected from Japanese rice paddy fields. All the tested SU‐resistant accessions with a Pro197 mutation were highly resistant to two commonly used SU herbicides (imazosulfuron and bensulfuron‐methyl), but were much less resistant to another SU herbicide, metsulfuron‐methyl, and were substantially not resistant to imazaquin‐ammonium. These cross‐resistance patterns have been known previously in fragments of S. juncoides and other weed species and were comprehensively confirmed in this study with a whole set of Pro197 mutations. The analyses of resistance levels, based on ED90 values, newly showed that different accessions with a common amino acid substitution in ALS1 showed similar responses to these herbicides (confirmed with four amino acid substitutions), that the rankings of resistance levels that were conferred by various Pro197 mutations in ALS1 differed among the SU herbicides and that the resistance levels of the ALS2‐mutated accessions were higher than, lower than or similar to those of the corresponding ALS1‐mutated accessions, depending on the compared pair, but the deviation patterns were generally similar among the SU herbicides in each compared pair. The final finding might suggest that the abundance of ALS2 is not as stable as that of ALS1. In addition, as a result of these new findings, together with expected further research, a suggested possibility is that substituting amino acids at Pro197 generally could be estimated by plotting each accession's ED90 values of imazosulfuron and bensulfuron‐methyl in a two‐dimensional graph.  相似文献   

16.
Herbicide resistance is a widespread issue that impacts management of conventional farms, but also has ramifications for the weed community assembly; it is therefore important to see how these species factor into the weed community assembly of farms throughout the countryside. This research analysed species richness and community diversity in 98 field relevés from 48 organic and 50 conventional farms evenly distributed between two major production regions of the Czech Republic and then evaluated the incidence of species which have been reported resistant in the Czech Republic and its neighbouring countries. Farms were selected independently of any acknowledged resistant species. Out of 164 species found in this survey, only eight species have had herbicide-resistant biotypes reported in the Czech Republic, while a total of 19 species had herbicide-resistant biotypes reported in neighbouring countries. Species with recorded resistance to PSII inhibitors in the Czech Republic tended to be found together and were mostly associated with the beet production region, characterised by low altitude: Amaranthus retroflexus, Chenopodium album, Echinochloa crus-galli and Solanum nigrum. Species with reported resistance to ALS and ACCase-inhibiting herbicides were not clearly associated with a particular region or farming type. Of the species which have had reported herbicide resistance in the neighbouring countries, several were found in conventional fields within the growing season and we recommend immediate screening for herbicide resistance in these species and more diligent action in management according to anti-resistance strategies: Bromus sterilis resistant to ACCase-inhibiting herbicides, A. retroflexus resistant to ALS-inhibiting herbicides or Avena fatua resistant to ACCase and ALS-inhibiting herbicides. This work is unique in that it is evaluating weed species diversity in organic and conventional farms and using the context to frame the prevalence of high-risk herbicide-resistant species; thereby putting the potential incidence of herbicide resistance into perspective at the landscape level.  相似文献   

17.
BACKGROUND: Wild radish, a problem weed worldwide, is a severe dicotyledonous weed in crops. In Australia, sustained reliance on ALS‐inhibiting herbicides to control this species has led to the evolution of many resistant populations endowed by any of several ALS mutations. The molecular basis of ALS‐inhibiting herbicide resistance in a novel resistant population was studied. RESULTS: ALS gene sequencing revealed a previously unreported substitution of Tyr for Ala at amino acid position 122 in resistant individuals of a wild radish population (WARR30). A purified subpopulation individually homozygous for the Ala‐122‐Tyr mutation was generated and characterised in terms of its response to the different chemical classes of ALS‐inhibiting herbicides. Whole‐plant dose‐response studies showed that the purified subpopulation was highly resistant to chlorsulfuron, metosulam and imazamox, with LD50 or GR50 R/S ratio of > 1024, > 512 and > 137 respectively. The resistance to imazypyr was found to be relatively moderate (but still substantial), with LD50 and GR50 R/S ratios of > 16 and > 7.8 respectively. In vitro ALS activity assays showed that Ala‐122‐Tyr ALS was highly resistant to all tested ALS‐inhibiting herbicides. CONCLUSION: The molecular basis of ALS‐inhibiting herbicide resistance in wild radish population WARR30 was identified to be due to an Ala‐122‐Tyr mutation in the ALS gene. This is the first report of an amino acid substitution at Ala‐122 in the plant ALS that confers high‐level and broad‐spectrum resistance to ALS‐inhibiting herbicides, a remarkable contrast to the known mutation Ala‐122‐Thr endowing resistance to imidazolinone herbicide. Copyright © 2012 Society of Chemical Industry  相似文献   

18.
为明确河南省部分地区的多花黑麦草Lolium multiflorum种群对乙酰辅酶A羧化酶(acetylCoA carboxylase,ACCase)和乙酰乳酸合成酶(acetolactate synthase,ALS)抑制剂类除草剂的抗性水平和抗性机理,采用整株生物测定法测定采自新乡市和驻马店市的多花黑麦草种群对ACCase抑制剂类除草剂精噁唑禾草灵、炔草酯、唑啉草酯和ALS抑制剂类除草剂甲基二磺隆、氟唑磺隆、啶磺草胺的抗性水平,并对多花黑麦草ACCase和ALS靶标酶编码基因进行克隆及氨基酸序列比对,分析其靶标抗性机理。结果显示,与多花黑麦草敏感种群HNXX01相比,HNZMD04和HNXX05种群对6种除草剂均产生了抗性,HNZMD04种群对精噁唑禾草灵和啶磺草胺的相对抗性倍数分别为44.65和40.31,对炔草酯和氟唑磺隆的相对抗性倍数分别为11.91和11.93;HNXX05种群对精噁唑禾草灵和氟唑磺隆的相对抗性倍数分别为27.70和25.67。HNZMD04和HNXX05抗性种群的ACCase基因均发生了D2078G突变,2个种群的突变率分别为55%和70%;HNZMD04...  相似文献   

19.
Acetolactate synthase (ALS) from one susceptible and two chlorsulfuronresistant biotypes of Stellaria media(L.) Vill. was assayed in the presence of eight known ALS inhibitors. As expected, ALS from the chlorsulfuronresistant biotypes (R1 and R2) showed reduced sensitivity to chlorsulfuron and other sulfonylurea herbicides. The patterns of cross-resistance varied, however, indicating that the alteration in ALS that confers chlorsulfuron resistance does not confer the same level of resistance to other sulfonylurea herbicides. The resistant biotypes were highly cross-resistant to sulfometuron-methyl and DPX-A7H81, but less cross-resistant to triasulfuron. Both R1 and R2 were highly cross-resistant to DTPS (N-[2,6-dichlorophenyl]-5,7-dimethyl-1,2,4-iriazolo[1,5a]pyrimidine-2-siilfoiiamide), but only slightly cross-resistant to imazamethahenz, an imidazolinone herbicide. The differences in the patterns of cross-resistance observed presumably reflect differences in the binding affinity of the herbicides for the altered ALS. The data presented suggest, but do not confirm, that R1 and R2 contain the same ALS mutation.  相似文献   

20.
The issue of cross‐ or multiple resistance to acetolactate synthase (ALS) inhibitors and the auxinic herbicide 2,4‐D was investigated in Papaver rhoeas L., a common and troublesome weed in winter cereals, in a broad‐scale study across four European countries. A combination of herbicide sensitivity bioassays and molecular assays targeting mutations involved in resistance was conducted on 27 populations of P. rhoeas originating from Greece (9), Italy (5), France (10) and Spain (3). Plants resistant to the field rate of 2,4‐D were observed in 25 of the 27 populations assayed, in frequencies ranging from 5% to 85%. Plants resistant to ALS‐inhibiting herbicides (sulfonylureas) were present in 24 of the 27 populations, in frequencies ranging from 4% to 100%. Plants resistant to 2,4‐D co‐occurred with plants resistant to sulfonylureas in 23 populations. In four of these, the probability of presence of plants with cross‐ or multiple resistance to 2,4‐D and sulfonylureas was higher than 0.5. ALS genotyping of plants from the field populations or of their progenies, identified ALS alleles carrying a mutation at codon Pro197 or Trp574 in 2,4‐D‐sensitive and in 2,4‐D‐resistant plants. The latter case confirmed multiple resistance to 2,4‐D and ALS inhibitors at the level of individual plants in all four countries investigated. This study is the first to identify individual plants with multiple resistance in P. rhoeas, an attribute rarely assessed in other weed species, but one with significant implications in designing chemical control strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号