首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing global temperatures could potentially cause large increases in root respiration and associated soil CO2 efflux. However, if root respiration acclimates to higher temperatures, increases in soil CO2 efflux from this source would be much less. Throughout the snow-free season, we measured fine root respiration in the field at ambient soil temperature in a sugar maple (Acer saccharum Marsh.) forest and a red pine (Pinus resinosa Ait.) plantation in Michigan. The objectives were to determine effects of soil temperature, soil water availability and experimental N additions on root respiration rates, and to test for temperature acclimation in response to seasonal changes in soil temperature. Soil temperature and soil water availability were important predictors of root respiration and together explained 76% of the variation in root respiration rates in the red pine plantation and 71% of the variation in the sugar maple forest. Root N concentration explained an additional 6% of the variation in the sugar maple trees. Experimental N additions did not affect root respiration rates at either site. From April to November, root respiration rates measured in the field increased exponentially with increasing soil temperature. For sugar maple, long-term Q10 values calculated from the field data were slightly, but not significantly, less than short-term Q10 values determined for instantaneous temperature series conducted in the laboratory (2.4 versus 2.62.7). For red pine, long-term and short-term Q10 values were similar (3.0 versus 3.0). Sugar maple root respiration rates at constant reference temperatures of 6, 18 and 24 degrees C were measured in the laboratory at various times during the year when field soil temperatures varied from 0.4 to 16.8 degrees C. No relationship existed between ambient soil temperature just before sampling and root respiration rates at 6 and 18 degrees C (P = 0.37 and 0.86, respectively), and only a very weak relationship was found between ambient soil temperature and root respiration at 24 degrees C (P = 0.08, slope = 0.09). We conclude that root respiration in these species undergoes little, if any, acclimation to seasonal changes in soil temperature.  相似文献   

2.
Larch (Larix decidua Mill.) seedlings of a low altitude (600 m) Austrian provenance were raised outdoors and acclimated in chambers for 14 to 24 days during August and September at either 8 degrees C and an atmospheric saturation vapor pressure deficit (DeltaW) of 2.5 Pa kPa(-1), or 24 degrees C and a DeltaW of 6.2 Pa kPa(-1). Subsequently, their rates of photosynthesis, dark respiration and transpiration were measured at temperatures between 5 and 30 degrees C with DeltaW either maintained below 10 Pa kPa(-1) or allowed to increase with temperature up to 38 Pa kPa(-1). Below 15 degrees C the photosynthetic rate of cold-acclimated plants was higher, but above 15 degrees C it was lower, than that of warm-acclimated plants. Temperature acclimation caused a greater shift in the temperature optimum for photosynthesis when DeltaW was kept small than when it was allowed to increase with temperature. When DeltaW was kept small, leaf conductance of cold-acclimated plants, unlike that of warm-acclimated plants, did not increase with temperature above 15 degrees C. When DeltaW increased with temperature, leaf conductance of cold-acclimated plants decreased more rapidly with temperature than that of warm-acclimated plants. Low temperature acclimation increased the rate of photosynthesis below 15 degrees C without affecting leaf conductance, which indicates that there was an adaptation in leaf internal processes. Further evidence of a metabolic adaptation to acclimation temperature is that dark respiration of cold-acclimated plants was twice that of warm-acclimated plants at all temperatures.  相似文献   

3.
If an increase in temperature will limit the growth of a species, it will be in the warmest portion of the species distribution. Therefore, in this study we examined the effects of elevated temperature on net carbon assimilation and biomass production of northern red oak (Quercus rubra L.) seedlings grown near the southern limit of the species distribution. Seedlings were grown in chambers in elevated CO(2) (700 μmol mol(-1)) at three temperature conditions, ambient (tracking diurnal and seasonal variation in outdoor temperature), ambient +3 °C and ambient +6 °C, which produced mean growing season temperatures of 23, 26 and 29 °C, respectively. A group of seedlings was also grown in ambient [CO(2)] and ambient temperature as a check of the growth response to elevated [CO(2)]. Net photosynthesis and leaf respiration, photosynthetic capacity (V(cmax), J(max) and triose phosphate utilization (TPU)) and chlorophyll fluorescence, as well as seedling height, diameter and biomass, were measured during one growing season. Higher growth temperatures reduced net photosynthesis, increased respiration and reduced height, diameter and biomass production. Maximum net photosynthesis at saturating [CO(2)] and maximum rate of electron transport (J(max)) were lowest throughout the growing season in seedlings grown in the highest temperature regime. These parameters were also lower in June, but not in July or September, in seedlings grown at +3 °C above ambient, compared with those grown in ambient temperature, indicating no impairment of photosynthetic capacity with a moderate increase in air temperature. An unusual and potentially important observation was that foliar respiration did not acclimate to growth temperature, resulting in substantially higher leaf respiration at the higher growth temperatures. Lower net carbon assimilation was correlated with lower growth at higher temperatures. Total biomass at the end of the growing season decreased in direct proportion to the increase in growth temperature, declining by 6% per 1 °C increase in mean growing season temperature. Our observations suggest that increases in air temperature above current ambient conditions will be detrimental to Q. rubra seedlings growing near the southern limit of the species range.  相似文献   

4.
We hypothesized that photoinhibition of shade-developed leaves of deciduous hardwood saplings would limit their ability to acclimate photosynthetically to increased irradiance, and we predicted that shade-tolerant sugar maple (Acer saccharum Marsh.) would be more susceptible to photoinhibition than intermediately shade-tolerant red oak (Quercus rubra L.). After four weeks in a canopy gap, photosynthetic rates of shade-developed leaves of both species had increased in response to the increase in irradiance, although final acclimation was more complete in red oak. However, photoinhibition occurred in both species, as indicated by short-term reductions in maximum rates of net photosynthesis and the quantum yield of oxygen evolution, and longer-term reductions in the efficiency of excitation energy capture by open photosystem II (PSII) reaction centers (dark-adapted F(v)/F(m)) and the quantum yield of PSII in the light (phi(PSII)). The magnitude and duration of this decrease were greater in sugar maple than in red oak, suggesting greater susceptibility to photoinhibition in sugar maple. Photoinhibition may have resulted from photodamage, but it may also have involved sustained rates of photoprotective energy dissipation (especially in red oak). Photosynthetic acclimation also appeared to be linked to an ability to increase leaf nitrogen content. Limited photosynthetic acclimation in shade-developed sugar maple leaves may reflect a trade-off between shade-tolerance and rapid acclimation to a canopy gap.  相似文献   

5.
Bostad PV  Reich P  Lee T 《Tree physiology》2003,23(14):969-976
We conducted controlled (chamber) and natural (field) environment experiments on the acclimation of respiration in Quercus alba L. and Quercus rubra L. Three-year-old Louisiana, Indiana and Wisconsin populations of Q. alba were placed in growth chambers and exposed to alternating 5-week periods of cool (20 degrees C mean) and warm (26 degrees C mean) temperatures. We measured respiration rates on fully expanded leaves immediately before and approximately every 2 days after a switch in mean temperature. In a second chamber experiment, 3-year-old potted Q. alba seedlings were exposed to alternating warm (26 degrees C mean) and cool (16 degrees C mean) temperatures at 4-day intervals. Leaf dark respiration rates were measured on days 2, 3 and 4 after each change in temperature. In a third, field-based study, we measured leaf respiration rates in the same three sources of Q. alba and in Arkansas, Indiana and Minnesota sources of Q. rubra before and after a natural 16 degrees C change in mean daily ambient temperature. We observed rapid, significant and similar acclimation of leaf respiration rates in all populations of Q. alba and Q. rubra. Cold-origin populations were no more plastic in their acclimation responses than populations from warmer sites. All geographic sources showed lower respiration rates when measured at 24 degrees C after exposure to higher mean temperatures. Respiration rates decreased 13% with a 6 degrees C increase in mean temperature in the first chamber study, and almost 40% with a 10 degrees C increase in temperature in the second chamber study. Acclimation was rapid in all three studies, occurring after 2 days of exposure to changed temperature regimes. Acclimation was reversible when changes in ambient temperature occurred at 4-day intervals. Respiration response functions, ln(R) = ln(beta0) + beta1T, were statistically different among treatments (cool versus warm, first chamber study) and among sources in a pooled comparison. Pair-wise comparisons indicated statistically significant (P<0.05) differences in cool- versus warm-measured temperature/respiration response functions for Indiana and Wisconsin sources of Q. alba. Log-transformed base respiration rates were significantly lower during periods of higher mean temperatures. Indiana Q. alba showed a significantly higher beta1 when plants were grown at 16 degrees C than when grown at 26 degrees C. Acclimation in Q. alba was unaccompanied by changes in leaf nitrogen concentration, but was associated with a change in leaf total nonstructural carbohydrate concentration. Total nonstructural carbohydrate concentration was slightly, but statistically, lower (13.6 versus 12%, P<0.05) after a 10 degrees C increase in temperature.  相似文献   

6.
Understory red spruce (Picea rubens Sarg.) trees, between 20 and 50 cm in height and 12 years or more in age, were collected from mid- and high-elevation stands in north-central Vermont and placed in a closed-cuvette system to measure photosynthetic and transpirational responses to photosynthetic photon flux density (PPFD) and temperature. Photosynthesis, dark respiration, transpiration and water-use efficiency of trees from both stands responded to changes in PPFD and temperature in similar ways. Trees from both stands exhibited maximum rates of net photosynthesis at temperatures between 15 and 20 degrees C, and exposure to higher temperatures resulted in reduced rates of photosynthesis and increased rates of respiration. Net photosynthetic rates generally increased with increasing light intensity but began to level off at 250 micro mol m(-2) s(-1). Water-use efficiency was maximal when temperature and PPFD were at 15 degrees C and above 400 micro mol m(-2) s(-1), respectively.  相似文献   

7.
We examined the photosynthetic responses of four species of saplings growing in the understory of the Duke Forest FACE experiment during the seventh year of exposure to elevated CO2 concentration ([CO2]). Saplings of these same species were measured in the first year of the Duke Forest FACE experiment and at that time showed only seasonal fluctuations in acclimation of photosynthesis to elevated [CO2]. Based on observations from the Duke Forest FACE experiment, we hypothesized that after seven years of exposure to elevated [CO2] significant photosynthetic down-regulation would be observed in these tree species. To test our hypothesis, photosynthetic CO2-response and light-response curves, along with chlorophyll fluorescence, chlorophyll concentration and foliar N were measured twice during the summer of 2003. Exposure to elevated [CO2] continued to increase photosynthesis in all species measured after seven years of treatment with the greatest photosynthetic increase observed near saturating irradiances. In all species, elevated [CO2] increased electron transport efficiency but did not significantly alter carboxylation efficiency. Quantum yield estimated by light curves, chlorophyll concentration, and foliar nitrogen concentrations were unaffected by elevated [CO2]. Contrary to our hypothesis, there is little evidence of progressive N limitation of leaf-level processes in these understory tree species after seven years of exposure to elevated [CO2] in the Duke Forest FACE experiment.  相似文献   

8.
Photosynthesis in balsam fir (Abies balsamea (L.) Mill.) was measured in the field at two locations in New Brunswick, Canada from late winter to late spring in 2004 and 2005. No photosynthesis was detectable while the soil remained below 0 degrees C throughout the rooting zone. In both years, photosynthesis began once soil temperature rose to 0 degrees C. In potted seedlings in growth chambers, there was no photosynthesis at an air temperature of 10 degrees C if the pots were frozen. These findings suggest that, once air temperatures permit photosynthesis, it is the availability of unfrozen soil water that triggers the onset of photosynthesis. In the field, full recovery of photosynthetic capacity following the onset of soil thaw was dependent on air temperature and took 5 weeks in 2005, but 10 weeks in 2004. There were two substantial frost events during the recovery period in 2004 that may explain the extended recovery period. In 2005, recovery was complete after the accumulation of 200 growing degree days above 0 degrees C after the start of soil thaw.  相似文献   

9.
Quercus robur saplings were exposed at an outdoor facility in the UK to supplemental levels of UV‐B radiation (280–315 nm) under arrays of cellulose diacetate‐filtered fluorescent lamps which also produced UV‐A radiation (315–400 nm). Saplings were also exposed to supplemental UV‐A radiation under arrays of polyester‐filtered lamps and to ambient levels of solar radiation under arrays of unenergized lamps. The UV‐B treatment was modulated to maintain a 30% elevation above the ambient level of erythemally weighted UV‐B radiation. Naturally occurring infections by oak powdery mildew (Microsphaera alphitoides) were more abundant, and developed more rapidly, on lammas leaves of saplings which were exposed to treatment levels of UV‐B radiation than on leaves of saplings exposed to supplemental UV‐A or to ambient levels of solar radiation over 12 weeks in summer and autumn 1996. An analysis of leaf photosynthetic capacities revealed that M. alphitoides infection reduced the quantum efficiency of photosystem (PS) II by 14% at moderate irradiance. Although there was no direct effect of UV‐B radiation on PSII photochemistry, exposure of saplings to supplemental UV‐A radiation under polyester‐filtered lamps resulted in a 17.5% decrease in PSII quantum efficiency, compared with saplings exposed to ambient solar radiation. The results from our study suggest that photosynthesis of Q. robur may be constrained by exposure to UV‐B radiation in the natural environment through impacts on the abundance of M. alphitoides.  相似文献   

10.
Long-term outdoor experiments were conducted to investigate the effects of elevated ultraviolet-B (UV-B, 280-320 nm) radiation on secondary metabolites (phenolics and terpenoids) and the main soluble sugars (sucrose, raffinose and glucose) in the bark of silver birch (Betula pendula Roth) saplings. Saplings were exposed to a constant 50% increase in erythemal UV irradiance (UV-B(CIE); based on the CIE (International Commission on Illumination) erythemal action spectrum) and a small increase in UV-A radiation (320-400 nm) for three growing seasons in an irradiation field in central Finland. Two control groups were used: saplings exposed to ambient radiation and saplings exposed to slightly increased UV-A radiation. Concentrations of sucrose, raffinose and glucose in bark were higher in UV-treated saplings than in saplings grown in ambient radiation, indicating that stem carbohydrate metabolism was changed by long-term elevated UV radiation. Saplings in the elevated UV-A + UV-B radiation treatment and the UV-A radiation control treatment had significantly increased concentrations of certain UV-absorbing phenolics, such as salidroside, 3,4'-dihydroxypropiophenone-3-glucoside, (+)-catechin and (-)-epicatechin compared with saplings in ambient radiation. In contrast, the radiation treatments had no effect on the non-UV-B-absorbing terpenoids, papyriferic acid and deacetylpapyriferic acid. We conclude that plant parts, in addition to leaves, accumulate specific phenolic UV-filters in response to UV radiation exposure.  相似文献   

11.
Pons TL  Welschen RA 《Tree physiology》2003,23(14):937-947
High midday temperatures can depress net photosynthesis. We investigated possible mechanisms underlying this phenomenon in leaves of Eperua grandiflora (Aubl.) Benth. saplings. This tropical tree establishes in small gaps in the rainforest canopy where direct sunlight can raise midday temperatures markedly. We simulated this microclimate in a growth chamber by varying air temperature between 28 and 38 degrees C at constant vapor pressure. A decrease in stomatal conductance in response to an increase in leaf-to-air vapor pressure difference (deltaW) caused by an increase in leaf temperature (Tleaf) was the principal reason for the decrease in net photosynthesis between 28 and 33 degrees C. Net photosynthesis decreased further between 33 and 38 degrees C. Direct effects on mesophyll functioning and indirect effects through deltaW were of similar magnitude in this temperature range. Mitochondrial respiration during photosynthesis was insensitive to Tleaf over the investigated temperature range; it thus did not contribute to midday depression of net photosynthesis. Internal conductance for CO2 diffusion in the leaf, estimated by combined gas exchange and chlorophyll fluorescence measurements, decreased slightly with increasing Tleaf. However, the decrease in photosynthetic rate with increasing Tleaf was larger and thus the difference in CO2 partial pressure between the substomatal cavity and chloroplast was smaller, leading to the conclusion that this factor was not causally involved in midday depression. Carboxylation capacity inferred from the CO2 response of photosynthesis increased between 28 and 33 degrees C, but remained unchanged between 33 and 38 degrees C. Increased oxygenation of ribulose-1,5-bisphosphate relative to its carboxylation and the concomitant increase in photorespiration with increasing Tleaf were thus not compensated by an increase in carboxylation capacity over the higher temperature range. This was the principal reason for the negative effect of high midday temperatures on mesophyll functioning.  相似文献   

12.
Teskey RO  Will RE 《Tree physiology》1999,19(8):519-525
To determine the extent to which loblolly pine seedlings (Pinus taeda L.) acclimate to high temperatures, seedlings from three provenances-southeastern Texas (mean annual temperature 20.3 degrees C), southwestern Arkansas (mean annual temperature 16.2 degrees C) and Chesapeake, Maryland (mean annual temperature 12.8 degrees C)-were grown at constant temperatures of 25, 30, 35 or 40 degrees C in growth chambers. After two months, only 14% of the seedlings in the 40 degrees C treatment survived, so the treatment was dropped from the experiment. Provenance and family differences were not significant for most measured variables. Total biomass was similar in the 25 and 30 degrees C treatments, and less in the 35 degrees C treatment. Foliage biomass was higher, and root biomass lower, in the 30 degrees C treatment compared with the 25 degrees C treatment. Net photosynthesis and dark respiration of all seedlings were measured at 25, 30 and 35 degrees C. Both net photosynthesis and dark respiration exhibited acclimation to the temperature at which the seedlings were grown. For each temperature treatment, the highest rate of net photosynthesis was measured at the growth temperature. Dark respiration rates increased with increasing measurement temperature, but the basal rate of respiration, measured at 25 degrees C, decreased from 0.617 &mgr;mol m(-2) s(-1) in the 25 degrees C treatment to 0.348 &mgr;mol m(-2) s(-1) in the 35 degrees C treatment, resulting in less carbon loss in the higher temperature treatments than if the seedlings had not acclimated to the growth conditions. Temperature acclimation, particularly of dark respiration, may explain why total biomass of seedlings grown at 30 degrees C was similar to that of seedlings grown at 25 degrees C.  相似文献   

13.
Zha T  Wang KY  Ryyppö A  Kellomäki S 《Tree physiology》2002,22(17):1241-1248
Sixteen 20-year-old Scots pine (Pinus sylvestris L.) trees growing in the field were enclosed in environment-controlled chambers that for 4 years maintained: (1) ambient conditions (CON); (2) elevated atmospheric carbon dioxide concentration [CO2] (ambient + 350 micromol mol-1; EC); (3) elevated temperature (ambient + 2-3 degrees C; ET); or (4) elevated [CO2] and temperature (EC+ET). Dark respiration rate, specific leaf area (SLA) and the concentrations of starch and soluble sugars in needles were measured in the fourth year. Respiration rates, on both an area and a mass basis, and SLA decreased in EC relative to CON, but increased in ET and EC+ET, regardless of needle age class. Starch and soluble sugar concentrations for a given needle age class increased in EC, but decreased slightly in ET and EC+ET. Respiration rates and SLA were highest in current-year needles in all treatments, whereas starch and soluble sugar concentrations were highest in 1-year-old needles. Relative to that of older needles, respiration of current-year needles was inhibited less by EC, but increased in response to ET and EC+ET. All treatments enhanced the difference in respiration between current-year and older needles relative to that in CON. Age had a greater effect on needle respiration than any of the treatments. There were no differences in carbohydrate concentration or SLA between needle age classes in response to any treatment. Relative to CON, the temperature coefficient (Q10) of respiration increased slightly in EC, regardless of age, but declined significantly in ET and EC+ET, indicating acclimation of respiration to temperature.  相似文献   

14.
Two-year-old beech (Fagus sylvatica L.) saplings were planted directly in the ground at high density (100 per m(2)), in an experimental design that realistically mimicked field conditions, and grown for two years in air containing CO(2) at either ambient or an elevated (ambient + 350 ppm) concentration. Plant dry mass and leaf area were increased by a two-year exposure to elevated CO(2). The saplings produced physiologically distinct types of sun leaves associated with the first and second growth flushes. Leaves of the second flush had a higher leaf mass per unit area and less chlorophyll per unit area, per unit dry mass and per unit nitrogen than leaves of the first flush. Chlorophyll content expressed per unit nitrogen decreased over time in plants grown in elevated CO(2), which suggests that, in elevated CO(2), less nitrogen was invested in machinery of the photosynthetic light reactions. In early summer, the photosynthetic capacity measured at saturating irradiance and CO(2) was slightly but not significantly higher in saplings grown in elevated CO(2) than in saplings grown in ambient CO(2). However, a decrease in photosynthetic capacity was observed after July in leaves of saplings grown in CO(2)-enriched air. The results demonstrate that photosynthetic acclimation to elevated CO(2) can occur in field-grown saplings in late summer, at the time of growth cessation.  相似文献   

15.
Mountain birch (Betula utilis) is the most important treeline species in alpine forests of southwestern China. In order to understand the effects of future warming on treeline birch, this study was conducted to examine the effects of experimental warming on leaf phenology, growth and gas exchange of B. utilis saplings using the open top chamber (OTC) method in a treeline ecotone of eastern Tibetan Plateau. The OTCs enhanced daily mean air temperature by 2.9 K throughout the growing season. Conversely, soil moisture within the OTCs on average declined by 3% over the experimental period. Experimental warming did not affect the timing of bud break, although treeline birch saplings growing in the OTCs manifested later leaf abscission, resulting in longer leaf life span. Artificial warming significantly accelerated the leaf and shoot growth rates of treeline birch saplings, resulting in larger leaf area and longer shoot elongation late in the growing season. Moreover, experimental warming significantly reduced the leaf fluctuating asymmetry (FA) and tended to increase specific leaf area (SLA). Moreover, elevated temperatures significantly enhanced the transpiration rate (E), stomatal conductance (g s), maximum net assimilation rate (A max), dark respiration rate (R d) and apparent quantum yield (AQY) but did not influence the light compensation point (LCP) and light saturation point (LSP) of treeline birch saplings. Taken together, our results indicated that short-term experimental warming markedly altered structural/functional leaf traits and enhanced photosynthetic capacity of treeline birch saplings; such positive responses in treeline birch would be favorable for the growth of this species under future warmer world.  相似文献   

16.
Oksanen E 《Tree physiology》2003,23(9):603-614
Physiological responses of 4-year-old potted saplings of an O3-tolerant clone of Betula pendula Roth to short-term ozone (O3) exposure (one growing season) were compared with those of 6-year-old open-soil-grown trees of the same clone fumigated with O3 for six growing seasons. In the 2001 growing season, both groups of plants were exposed to ambient (control) and 1.6x ambient (elevated) O3 concentration under similar microclimatic conditions in a free air O3 exposure facility. Growth, net photosynthesis, stomatal conductance, stomatal density, visible foliar injury, starch and nutrient concentrations, bud formation and differences in O3 responses between lower, middle and upper sections of the canopy were determined. The potted saplings were unaffected by elevated O3 concentration, whereas the open-soil-grown trees showed a 3-38% reduction in shoot growth, a 22% reduction in number of overwintering buds, a 26-65% decrease in autumnal net photosynthesis, 30% and 20-23% reductions in starch and nitrogen concentrations of senescing leaves, respectively, and disturbances in stomatal conductance. The greater O3 sensitivity of open-soil-grown trees compared with potted saplings was a result of senescence-related physiological factors. First, a lower net photosynthesis to stomatal conductance ratio in open-soil-grown trees at the end of the season promoted O3 uptake and decreased photosynthetic gain, leading to the onset of visible foliar injuries. Second, decreased carbohydrate reserves may have resulted in deleterious carry-over effects arising from the reduced formation of over-wintering buds. Finally, the leaf-level O3 load was higher for open-soil-grown trees than for potted saplings because of slower leaf senescence in the trees. Thus, O3 sensitivity in European white birch increases with increasing exposure time and tree size.  相似文献   

17.
The physiological basis of photosynthesis during winter was investigated in saplings of five evergreen broad-leaved species (Camellia japonica L., Cleyera japonica Thunb., Photinia glabra (Thunb.) Maxim., Castanopsis cuspidata (Thunb.) Schottky and Quercus glauca Thunb.) co-occurring under deciduous canopy trees in a temperate forest. We focused on temperature dependence of photosynthetic rate and capacity as important physiological parameters that determine light-saturated rates of net photosynthesis at low temperatures during winter. Under controlled temperature conditions, maximum rates of ribulose bisphosphate carboxylation and electron transport (Vcmax) and Jmax, respectively) increased exponentially with increasing leaf temperature. The temperature dependence of photosynthetic rate did not differ among species. In the field, photosynthetic capacity, determined as Vcmax and Jmax at a common temperature of 25 degrees C (Vcmax(25) and Jmax(25)), increased until autumn and then decreased in species-specific patterns. Values of Vcmax(25) and Jmax(25) differed among species during winter. There was a positive correlation of Vcmax(25) with area-based nitrogen concentration among leaves during winter in Camellia and Photinia. Interspecific differences in Vcmax(25) were responsible for interspecific differences in light-saturated rates of net photosynthesis during winter.  相似文献   

18.
Sap flow gauges were used to estimate whole-plant water flux for five stem-diameter classes of red maple (Acer rubrum L.) growing in the understory of an upland oak forest and exposed to one of three large-scale (0.64 ha) manipulations of soil water content. This Throughfall Displacement Experiment (TDE) used subcanopy troughs to intercept roughly 30% of the throughfall on a "dry" plot and a series of pipes to move this collected precipitation across an "ambient" plot and onto a "wet" plot. Saplings with a stem diameter larger than 10 cm lost water at rates 50-fold greater than saplings with a stem diameter of 1 to 2 cm (326 versus 6.4 mol H(2)O tree(-1) day(-1)). These size-class differences were driven largely by differences in leaf area and cross-sectional sapwood area, because rates of water flux expressed per unit leaf area (6.90 mol H(2)O m(-2) day(-1)) or sapwood area (288 mol H(2)O dm(-2) day(-1)) were similar among saplings of the five size classes. Daily and hourly rates of transpiration expressed per unit leaf area varied throughout much of the season, as did soil matrix potentials, and treatment differences due to the TDE were observed during two of the seven sampling periods. On July 6, midday rates of transpiration averaged 1.88 mol H(2)O m(-2) h(-1) for saplings in the "wet" plot, 1.22 mol H(2)O m(-2) h(-1) for saplings in the "ambient" plot, and 0.76 mol H(2)O m(-2) h(-1) for saplings in the "dry" plot. During the early afternoon of August 28, transpiration rates were sevenfold lower for saplings in the "dry" plot compared to saplings in the "wet" plot and 2.5-fold lower compared to saplings in the "ambient" plot. Treatment differences in crown conductance followed a pattern similar to that of transpiration, with values that averaged 60% lower for saplings in the "dry" plot compared to saplings in the "wet" plot and 35% lower compared to saplings in the "ambient" plot. Stomatal and boundary layer conductances were roughly equal in magnitude. Estimates of the decoupling coefficient (Omega) ranged between 0.64 and 0.72 for saplings in the three TDE treatment plots. We conclude that red maple saplings growing in the understory of an upland oak forest are responsive to their edaphic and climatic surroundings, and because of either their small stature or their shallow root distribution, or both, are likely to be impacted by precipitation changes similar to those predicted by global climate models.  相似文献   

19.
Wieser G 《Tree physiology》1997,17(7):473-477
Winter CO(2) gas exchange of the last three flushes of cembran pine (Pinus cembra L.) was studied under ambient conditions at the alpine timberline, an ecotone with strong seasonal changes in climate. During the coldest months of the year, December to March, gas exchange was almost completely suppressed and even the highest irradiances and temperatures did not cause a significant increase in net photosynthesis compared to spring and fall. In general, daily CO(2) balance was negative between December and March except during extended warm periods in late winter. However, because twig respiration was also reduced to a minimum during the December-March period, daily carbon losses were minimal. Total measured carbon loss during the winter months was small, equalling the photosynthetic production of one to two warm days in spring or summer when average air temperature was above 6 degrees C.  相似文献   

20.
Rey A  Jarvis PG 《Tree physiology》1998,18(7):441-450
To study the long-term response of photosynthesis to elevated atmospheric CO(2) concentration in silver birch (Betula pendula Roth.), 18 trees were grown in the field in open-top chambers supplied with 350 or 700 &mgr;mol mol(-1) CO(2) for four consecutive growing seasons. Maximum photosynthetic rates, stomatal conductance and CO(2) response curves were measured over the fourth growing season with a portable photosynthesis system. The photosynthesis model developed by Farquhar et al. (1980) was fitted to the CO(2) response curves. Chlorophyll, soluble proteins, total nonstructural carbohydrates, nitrogen and Rubisco activity were determined monthly. Elevated CO(2) concentration stimulated photosynthesis by 33% on average over the fourth growing season. However, comparison of maximum photosynthetic rates at the same CO(2) concentration (350 or 700 &mgr;mol mol(-1)) revealed that the photosynthetic capacity of trees grown in an elevated CO(2) concentration was reduced. Analysis of the response curves showed that acclimation to elevated CO(2) concentration involved decreases in carboxylation efficiency and RuBP regeneration capacity. No clear evidence for a redistribution of nitrogen within the leaf was observed. Down-regulation of photosynthesis increased as the growing season progressed and appeared to be related to the source-sink balance of the trees. Analysis of the main leaf components revealed that the reduction in photosynthetic capacity was accompanied by an accumulation of starch in leaves (100%), which was probably responsible for the reduction in Rubisco activity (27%) and to a lesser extent for reductions in other photosynthetic components: chlorophyll (10%), soluble protein (9%), and N concentrations (12%) expressed on an area basis. Despite a 21% reduction in stomatal conductance in response to the elevated CO(2) treatment, stomatal limitation was significantly less in the elevated, than in the ambient, CO(2) treatment. Thus, after four growing seasons exposed to an elevated CO(2) concentration in the field, the trees maintained increased photosynthetic rates, although their photosynthetic capacity was reduced compared with trees grown in ambient CO(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号