首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To clarify the effect of pore conformation on the dielectric anisotropy of wood, the relative permittivity along the longitudinal and tangential axes of flat-sawn oven-dry specimens of 12 different wood species was measured using terahertz time-domain transmission spectroscopy and compared with the values calculated using the eigenvalue problem for two-dimensional photonic crystals. The measured dielectric anisotropy, which is the ratio of the relative permittivity along longitudinal axis to that along the tangential axis, was well explained by the calculated value. It was concluded that the ratio of tangential to radial widths of wood pores affects the relative permittivity along the tangential axis, and that the dielectric anisotropy decreased with an increase in the ratio. This discussion can also be applied to the relative permittivity in frequencies below 0.15 THz. These findings show promise as a new method for evaluating the porous structure of wood.  相似文献   

2.
To evaluate the dielectric anisotropy caused by wood structure at a millimeter wave frequency of 100 GHz, the dielectric parameters for flat-sawn specimens of nine wood species at 0 and 11 % moisture content (MC) were measured using a free space method devised for reducing the multiple reflections under an electric field of millimeter waves parallel to longitudinal and tangential directions of wood, and those in radial direction were estimated using a conventional approximation theory. The dielectric parameters in the tangential and radial directions were almost identical and constantly smaller than those in the longitudinal direction. All the dielectric parameters increased with wood density and were larger at 11 than 0 % MC. The dielectric parameters in the longitudinal and transverse directions and the dielectric anisotropy between them were well fitted to the regression lines based on a dielectric mixture model composed of pores and dielectric isotropic wood substance, and a parallel capacitor and Lichtenecker’s exponential formulas were employed to represent the dielectric parameters of the mixture in the longitudinal and transverse directions, respectively. It was concluded that the dielectric anisotropy at 100 GHz is caused by the pore alignment and that the dielectric parameters are almost unaffected by anatomical structures, such as the rays. It was also confirmed that the free space method was effective for the measurement of the dielectric parameters for the flat-sawn specimens.  相似文献   

3.
For the application of millimeter wave (MMW) technique to nondestructive evaluation of wood, the effect of annual rings on the behavior of a 100 GHz MMW transmitted through wood was examined. The complex amplitude was measured for 2 mm thick flat- (LT) and quarter-sawn (LR) specimens of several species with different annual ring structures at 11 % moisture content, of which the density distribution was measured using X-ray radiography. For the LT specimens of all species and the LR specimens with small density fluctuation or with earlywood width smaller than the wavelength of the MMW (=3 mm), the amplitude and phase of the transmitted wave were similar to those of the wave without a specimen. For the LR specimen with large density fluctuation and with earlywood width close to or larger than the wavelength, the amplitude and phase were different from those of the wave without a specimen. All the measured complex amplitudes were well expressed using a diffraction model. It was concluded that the MMW is deformed by the density distribution, and then its components with periods shorter than the wavelength by diffraction are attenuated.  相似文献   

4.
A method for calculating the complex dielectric permittivity of an anisotropic wood structure at microwave frequencies is presented. A numerical model for describing the 3D wood structure containing fibers, rays, vessels and cracks with changeable dimensions and material composition is built. This model is introduced into an efficient solver that calculates the effective dielectric constant of any 3D structure of dielectric materials. Using our numerical model we succeeded in theoretically reproducing the results of recent measurements of the dielectric permittivity of wood, in various directions and various moisture contents. The qualitative agreement is realistic, reproducing all the trends of the changes in ɛ as the direction of the electric field and the moisture content are varied. The quantitative agreement is practical and reliable for engineering calculations with an average deviation of ±10% in ɛ′ and ±5% in ɛ′′. As microwave processing of wood involves internal temperatures as high as 150°C and pressures of up to 5 atm, the dielectric properties of wood were also calculated with the same numerical model by simulating high internal temperature and pressure. A comparison between the calculated and measured values shows once again how accurate the model reproduces the empirical study.  相似文献   

5.
Summary The existence of three overlapping dielectric relaxation spectra from oven dry yellow birch was found over the frequency range from 20 Hz ... 2 GHz and at the temperature range from 20 ... 100°C. Origin of the spectra is largely attributed to hindered reorientation of various dipolar groups in the material. The spectra were resolved in terms of the super-position principle for dielectric loss and permittivity, and the distribution of relaxation times. The spectral resolution was checked by the Cole-Cole plot. The values for the activation energies indicate, as expected, that the dipolar groups are imbedded by hydrogen bonding in the solid structure. The crystalline portion of native cellulose in the wood estimated from the spectra agrees with such data from other sources.  相似文献   

6.
We evaluated radio frequency (RF) dielectric heating for eradication of pinewood nematodes (PWN) in infested wood. Thirteen temperatures were tested (from ambient to 70 °C) on small wood samples (2.5 × 3.8 × 0.64 cm) to determine the minimum lethal temperature (100 % mortality), which was 56 °C [based on infra-red (IR) thermal images data 55.5–57.4 °C] with a 1 min hold time. We also used thermal probes inside the wood to confirm that temperatures were ≥56 °C. Thirty additional samples were tested bracketing the minimum lethal temperature using 54, 56 and 58 °C with additional replications to produce the minimum sample size equivalent of 100 % mortality of at least 93,616 nematodes to satisfy the Probit 9 efficacy requirement. This minimum lethal temperature was further verified by treating infested large wood blocks (10.2 × 10.2 × 25.4 cm). All samples that met or exceeded the 56 °C lethal temperature for the required 1 min hold time (as measured by probes inserted in the wood and on the wood surface by IR) produced 100 % mortality. The sample size required to show Probit 9 efficacy was also satisfied. This study supports the consideration of RF in addition to microwave (MW) dielectric heating as alternative treatments of wood packaging material for inclusion in ISPM No. 15, provided the treatment delivers the target lethal temperature throughout the profile of the material in industrial scale operations.  相似文献   

7.
Dielectric spectroscopy of Scots pine   总被引:1,自引:0,他引:1  
Dielectric properties of Scots pine (42 trees) were compared with density, moisture content (MC), and resin acid content (RAC) (of heartwood). The samples were measured in frozen, green, conditioned and non-conditioned dry moisture states to evaluate the potential of dielectric spectroscopy in determining the wood characteristics at different stages of wood processing. Heartwood and sapwood parts of each sample were measured separately, and through-transmission measurement was conducted in longitudinal and tangential direction at frequencies from 1 MHz to 1 GHz. The MC and density correlated significantly with the dielectric parameters in both measurement directions but especially in longitudinal direction. The RAC of the heartwood correlated significantly with tanδ and ε″/(ε′ ? 1) of the green samples measured in the tangential direction at frequencies above 200 MHz. The correlation at 1 GHz was ?0.56 for green samples, ?0.66 for conditioned samples and ?0.61 for non-conditioned samples (P < 0.001, for all). The study suggests that the extractives also affect radio-frequency dielectric responses, which might be used for extractive analyses of pine heartwood.  相似文献   

8.
THz-imaging: a new method for density mapping of wood   总被引:2,自引:0,他引:2  
Summary This paper presents a new technique for fast and non-intrusive density mapping of wood based on far-infrared spectroscopy. The transmission of a piece of beech 1.7 mm thick is investigated between 0.1 and 2.5 THz. In this spectral range we find wood to be fairly transparent, but density inhomogeneities and structural details such as annual rings become visible in the transmission profile. The measured absorption correlates well with the wood density independently obtained by the gravitometric-volumetric method. Thus it finally becomes possible to transform the THz images into 2-dimensional density maps.The skillful technical help of Mrs. M. Rinas is greatly appreciated.  相似文献   

9.
On the loss factor of wood during radio frequency heating   总被引:2,自引:0,他引:2  
 The radial direction loss factor of full-size western hemlock sapwood and heartwood, as well as western red cedar heartwood timbers was measured using the direct calorimetric method with a laboratory-scale radio frequency/vacuum dryer at the frequency of 13.56 MHz, moisture content range between 10 and 80%, temperature range between 25 and 55 °C, and root mean square (rms) electrode voltages of 0.8 and 1.1 kV, respectively. The results indicated that the moisture content, temperature, electric field strength and wood type significantly affected the loss factor. Empirical regression equations were derived based on the experimental data that made possible the calculation of the loss factor and power density within wood during RF heating. Received 18 January 1997  相似文献   

10.
Cyclocarya paliurus is a highly valued and multiple function tree species. There has been increasing interest in planting and managing C. paliurus for timber production and medical use owing to loss of harvestable acreage. Seed from six provenances was collected from the main natural range of this species. Significant variation in growth and wood properties was measured among the six provenances at age 7 years. Provenance mean height and DBH varied significantly from 730–991 and 6.7–10.0 cm, whereas provenance means of wood basic density and crystallinity ranged from 463–554 kg m?3 and 51.4–74.1 %, respectively. Mean provenance microfibril angle (MFA) at breast height ranged from 18.1° to 23.2°, while MFA at breast height varied from 11.0° to 34.5° among growth rings which showed a consistent pith-to-bark trend of declining angles. There was no significant relationship of growth rate with latitude or longitude of seed sources, however, provenances from low latitude and longitude grew faster at the trial site. Wood quality was significantly related to latitude of seed sources, showing a positive correlation for both wood basic density and wood crystallinity, but a highly negative association with MFA. Significant correlations between wood properties measured indicated that there exists a great opportunity to improve wood quality of C. paliurus through selection of juvenile trees with low MFA.  相似文献   

11.
The main objective of this study was to evaluate the effect of sample preparation on cell-wall density and porosity using gas pycnometry. Native and thermally modified twin samples of Norway spruce (Picea abies (L.) Karst.), sycamore maple (Acer pseudoplatanus L.), and European ash (Fraxinus excelsior L.) were analyzed. The samples differed in terms of shape, geometry, and climatic state. On the one hand, the samples were oven dry as usual and, on the other hand, conditioned at 22 °C and 95 % relative humidity. Furthermore, the samples were processed using solvent exchange drying. In addition to helium, nitrogen was used as a displacement gas. The tests show i.a. how this can lead to misinterpretation of the cell-wall density or porosity of wood determined by gas pycnometry. The results show that native spruce has a lower cell-wall density and higher porosity compared with native maple and ash. Due to thermal modification, the cell-wall densities are decreased. The investigations show that the determined cell-wall density and porosity of the wood are strongly dependent on the sample geometry and climatic state. The cell-wall densities of all investigated wood species in the conditioned state at 22 °C and 95 % relative humidity are significantly higher compared with the oven-dry cell-wall densities.  相似文献   

12.

Key message

Pith-to-bark wood density profiling is interesting in forestry science. By comparing it with the X-ray method, this study proved that a fiber optic NIR spectrometer with a high-precision displacement system could accurately measure intra-ring wood density with a spatial resolution of 0.5 mm.

Context

Most near-infrared spectroscopy (NIRS) studies for wood density determination use samples that have been pulverized beforehand. Attenuation of ionizing radiation is still the standard method to determine wood density with high spatial resolution. However, there is evidence that NIRS could be an accurate and affordable method for determining intra-ring density in solid wood strips.

Aims

In this study, we research whether the results published for intra-ring density predictions in wood can be improved when calibrated with X-ray microdensitometry.

Methods

The measurements were made using a fiber optic probe with a separation between measurement points of 0.508 mm in a range between 1200 and 2200 nm. A total of 4520 density points were used to create partial least squares regression (PLSR). X-ray densitometry data were used as reference values. Twenty PLSR calibrations were randomly executed on 31 samples collected from 28 Pinus radiata D. Don trees.

Results

Upon selecting 20 latent variables, the R 2 value was 0.873 for the training group and 0.895 for the validation group, while RMSEP values are 43.1 × 10?3 and 47.1 × 10?3 g cm?3 for the training and validation groups, respectively. The range error ratio (RER) was 13.7.

Conclusion

The RER was high and almost in the range suggested for quantification purposes. Results are superior to wood density studies in the literature which do not employ spatial resolution and to those found in studies using hyperspectral imaging.
  相似文献   

13.
Development of optimal ways to predict juvenile wood stiffness, strength, and stability using wood properties that can be measured with relative ease and low cost is a priority for tree breeding and silviculture. Wood static modulus of elasticity (MOE), modulus of rupture (MOR), radial, tangential, and longitudinal shrinkage (RS, TS, LS), wood density (DEN), sound wave velocity (SWV), spiral grain (SLG), and microfibril angle (MFA) were measured on juvenile wood samples from lower stem sections in two radiata pine test plantations. Variation between inner (rings 1–2 from pith) and outer (rings 3–6 from pith) rings was generally larger than that among trees. MOE and MOR were lower (50%) in inner-rings than in outer-rings. RS and TS were higher (30–50%) for outer-rings than inner-rings, but LS decreased rapidly (>200%) from inner-rings to outer-rings. DEN had a higher correlation with MOR than with MOE, while MFA had a higher correlation with dry wood MOE than with MOR. SLG had higher significant correlation with MOE than with MOR. DEN and MOE had a weak, significant linear relationship with RS and TS, while MOE had a strong negative non-linear relationship with LS. Multiple regressions had a good potential as a method for predicting billet stiffness (R 2 > 0.42), but had only a weak potential to predict wood strength and shrinkage (R 2 < 0.22). For wood stiffness acoustic velocity measurements seemed to be the most practical, and for wood strength and stability acoustic velocity plus core density seemed to be the most practical measurements for predicting lower stem average in young trees.  相似文献   

14.
15.
This paper presents a new method to determine the moisture content of solid wood based on the principle of dual-energy X-ray absorptiometry. The study investigates the theoretical relationship between X-ray wavelength and mass attenuation coefficients of wood, water, and reference substance. In accordance with this relationship, a theoretically obtained equation is proposed to calculate the moisture content in wood. The proposed equation is compared to experimental results using small blocks of sugi wood, which showed that the change in mass attenuation coefficient of wood with X-ray tube voltage increased with increasing moisture content as expected from the theoretical equation. A regression equation for moisture content estimation was determined based on the experimental results, and the standard error of estimate in the 0–120 % dry-basis moisture content range using the regression equation was determined to be 21.9 % with the most appropriate pair of tube voltages, 15 and 40 kVp. The accuracy of the method will be improved by reducing the duration of X-ray radiography and by increasing the disparity between paired tube voltages. This method has the potential to determine moisture content of solid wood using X-ray without oven-drying or assuming oven-dry density.  相似文献   

16.
In order to clarify the interaction between copper and wood substances in wood treated with copper containing water-borne wood preservatives, the dielectric constant ε′ and dielectric loss factor ε″ of untreated wood and wood treated with four concentration levels of copper-ethanolamine (Cu-EA) solutions were determined within a temperature range from –100 to 40°C and a frequency range from 100 to 1 MHz. Three dielectric relaxation processes were observed in the ε″ spectrum; among them R-I is based on the reorientation of methylol groups in the amorphous region of wood cell walls and R-II is related to wood extractives. R-III appeared in Cu-EA treated wood, and its magnitude decreases with the concentration of Cu-EA solutions used in this experiment. This relaxation process was considered to be based on the reorientation of copper-ethanolamine-wood complexes in wood cell walls. At low copper retention, the hydrogen in the complex can form hydrogen bonding with adjacent hydroxyl groups, which results in a strong bonding state between copper and wood; at high copper retention, the numerous copper-ethanolamine complexes not only hinder them from forming hydrogen bonding with adjacent wood molecules due to steric hindrance, but also weaken the interaction between wood molecules themselves, which corresponds to reducing ε″ values of both R-I and R-III processes. The results explain the fact of in-creasing copper leaching in wood treated with high concentration copper-based water-borne preservatives.  相似文献   

17.
A new approach is proposed for the evaluation of the brittleness of heat-treated Styrax tonkinensis wood. Heat treatment made wood more brittle when wood was heated at a higher temperature or for a longer time. The brittleness increased to four times that of the control when wood was heated at 200°C for 12 h. For treatment at 160°C, the increase in brittleness without any change in weight is thought to be possibly caused by the relocation of lignin molecules. At higher temperatures, loss of amorphous polysaccharides due to degradation is thought to become the main factor affecting brittleness. The crystallites that were newly formed after 2 h of treatment showed brittleness that was different from that of the inherent crystallites remaining after 12 h of heat treatment. This inherent crystalline cellulose possibly plays a role in brittleness. There is also the possibility of using color to predict the brittleness of heat-treated wood.  相似文献   

18.
The attenuation coefficients of 100-GHz millimeter waves polarized linearly were measured for cross-cut, quarter-sawn, and flat-sawn boards of hinoki (Chamaecyparis obtusa) that were 0.2–2.0 cm thick. This was done to examine the applicability of free-wave propagation theory for applying electromagnetic waves to wood. It was found that the transmittance of a millimeter wave through the specimen boards was lower when the fiber direction of a board was parallel to the direction of the electric field of the incident wave than when the fiber direction was perpendicular to the electric field, and there was little difference in the transmittance between the tangential and radial directions for the former case. These findings can be quantitatively explained by using propagation theory and the dielectric properties of wood.  相似文献   

19.
The objectives of this study were to evaluate the effect of heat treatment of eucalypt wood (Eucalyptus grandis Hill ex Maiden) on the dynamic modulus of elasticity by using the stress wave nondestructive method and also to determine the air-dry density variation, weight loss and equilibrium moisture content following treatment. Heat treatments were performed at four different temperatures (180, 200, 215 and 230°C) and for three different durations (15?min, 2 and 4?h). The results revealed a significant reduction in air-dry density following heat treatment independent of temperature and time. A significant weight loss was observed between and within treatments. The treatment at 230°C for 2 and 4?h produced a weight loss of 20.5 and 26.5%, respectively, which was statistically different from other treatment conditions. The dynamic modulus of elasticity decreased by about 13% in the most severe treatment (230°C for 4?h). Depending on the temperature and time, the equilibrium moisture content was significantly reduced within the range of 40–74%.  相似文献   

20.
Wood and fibre properties such as wood density, microfibril angle, and modulus of elasticity are industrially relevant factors in determining the mechanical properties of wood. Radial ring-level predictive models of these properties were developed using balsam fir data from a long-term trial in New Brunswick (Canada), where precommercial thinning was applied 8 years after the site was harvested. The mixed effects models developed accounted for most of the variability in wood density (68 %), microfibril angle (94 %), and modulus of elasticity (77 %) with low RMSE. This study shows that balsam fir wood and fibre properties are strongly related to distance from the pith, particularly in the first 20 mm, and much less to annual ring width. Disk height and selected weather variables related to air temperature during the growing season significantly improved the models, whereas the effect of precommercial thinning was not significant. These equations can be incorporated into computer models, such as Optitek, that simulate mill recovery and wood properties to obtain accurate information on wood products. The unexplained variation in these models is likely related in part to between-tree genetic variation, which is unknown in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号