首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three experiments were conducted to test the hypothesis that the standardized ileal digestibility (SID) of amino acids (AA), concentrations of digestible energy (DE) and metabolizable energy (ME), and the standardized total tract digestibility (STTD) of P in a new source of fermented soybean meal (Fermex 200) are greater than in conventional soybean meal (SBM-CV). In experiment 1, 9 barrows (initial body weight: 9.17 ± 1.03 kg) were surgically fitted with a T-cannula in the distal ileum and allotted to a triplicated 3 × 3 Latin square design. A nitrogen-free diet and 2 diets that contained cornstarch and SBM-CV or Fermex 200 as the sole source of crude protein (CP), and AA were formulated. Results indicated that there were no difference between SBM-CV and Fermex 200 for SID of CP and AA. In experiment 2, 24 growing pigs (initial body weight: 14.19 ± 1.18 kg) were housed individually in metabolism crates. Pigs were allotted to a corn-based diet or 2 diets that contained corn and SBM-CV or corn and Fermex 200. Feces and urine samples were collected using the marker-to-marker approach with 5-d adaptation and 4-d collection periods. Results indicated that the concentration of DE and ME in Fermex 200 were not different from DE and ME in SBM-CV. In experiment 3, 40 barrows (initial body weight: 11.01 ± 1.38 kg) were allotted to 1 of 4 diets with 10 replicate pigs per diet. Four diets were formulated to contain Fermex 200 or SBM-CV and either 0 or 1,000 units/kg of microbial phytase. Pigs were housed individually in metabolism crates. Fecal samples were collected as explained for experiment 2. Results indicated that the STTD of P in Fermex 200 was greater (P < 0.01) than in SBM-CV, but the addition of microbial phytase to the diets increased the ATTD and STTD of P in SBM-CV, but not in Fermex 200 (interaction; P < 0.01). In conclusion, the SID of AA and concentrations of DE and ME in Fermex 200 were not different from values determined for SBM-CV, but the STTD of P was greater in Fermex 200 than in SBM-CV if microbial phytase was not added to the diet.  相似文献   

2.
An experiment was conducted to test the hypothesis that the apparent total tract digestibility (ATTD) and the standardized total tract digestibility (STTD) of P in fermented soybean meal (FSBM) are greater than in conventional soybean meal (SBM-CV) when fed to growing pigs. Four diets were formulated to contain FSBM or SBM-CV and either 0 or 800 units/kg of microbial phytase. The only sources of P in these diets were FSBM and SBM-CV. A P-free diet to estimate basal endogenous losses of P was also formulated. Thirty barrows (initial BW: 14.0 ± 2.3 kg) were placed in metabolism cages and allotted to 5 diets in a randomized complete block design with 6 pigs per diet. Feces were collected for 5 d after a 5-d adaptation period. All samples of ingredients, diets, and feces were analyzed for P, and values for ATTD and STTD of P were calculated. Results indicated that the basal endogenous P losses were 187 mg/kg of DMI. As phytase was added to the diet, the ATTD and STTD of P increased (P < 0.01) from 60.9 to 67.5% and from 65.5 to 71.9%, respectively, in pigs fed FSMB. Likewise, addition of phytase to SBM-CV increased (P < 0.01) the ATTD and STTD of P from 41.6 to 66.2% and from 46.1 to 71.4%, respectively. The ATTD and STTD of P were greater (P < 0.01) in FSBM than in SBM-CV when no phytase was used, but that was not observed when phytase was added to the diet (soybean meal × phytase interaction, P < 0.01). In conclusion, the ATTD and STTD of P in FSBM was greater than SBM-CV when no microbial phytase was added, but when phytase was added to the diets, no differences between FSBM and SBM-CV were observed in the ATTD and STTD of P.  相似文献   

3.
Three experiments were conducted to measure energy, P, and AA digestibility in 2 novel co-products from the ethanol industry [i.e., high-protein distillers dried grains (HP DDG) and corn germ]. These products are produced by dehulling and degerming corn before it enters the fermentation process. Experiment 1 was an energy balance experiment conducted to measure DE and ME in HP DDG, corn germ, and corn. Six growing pigs (initial BW, 48.9 +/- 1.99 kg) were placed in metabolism cages and fed diets based on corn, corn and HP DDG, or corn and corn germ. Pigs were allotted to a replicated, 3 x 3 Latin square design. The DE and ME in corn (4,056 and 3,972 kcal/kg of DM, respectively) did not differ from the DE and ME in corn germ (3,979 and 3,866 kcal/kg of DM, respectively). However, HP DDG contained more (P < 0.05) energy (4,763 kcal of DE/kg of DM and 4,476 kcal of ME/kg of DM) than corn or corn germ. Experiment 2 was conducted to measure apparent total tract digestibility (ATTD) and true total tract digestibility of P in HP DDG and corn germ. Thirty growing pigs (initial BW, 33.2 +/- 7.18 kg) were placed in metabolism cages and fed a diet based on HP DDG or corn germ. A P-free diet was used to measure endogenous P losses. Pigs were assigned to treatments in a randomized complete block design, with 10 replications per treatment. The ATTD and the retention of P were calculated for the diets containing HP DDG and corn germ, and the endogenous loss of P was estimated from pigs fed the P-free diet. The ATTD was lower (P < 0.05) in corn germ (28.6%) than in the HP DDG (59.6%). The retention of P was also lower (P < 0.05) in pigs fed corn germ (26.7%) than in pigs fed HP DDG (58.9%). The endogenous loss of P was estimated to be 211 +/- 39 mg per kg of DMI. The true total tract digestibility of P for HP DDG and corn germ was calculated to be 69.3 and 33.7%, respectively. In Exp. 3, apparent ileal digestibility and standardized ileal digestibility values of CP and AA in HP DDG and corn germ were measured using 6 growing pigs (initial BW, 78.2 +/- 11.4 kg) allotted to a replicated, 3 x 3 Latin square design. The apparent ileal digestibility for CP and all AA except Arg and Pro, and the standardized ileal digestibility for CP and all AA except Arg, Lys, Gly, and Pro were greater (P < 0.05) in HP DDG than in corn germ. It was concluded that HP DDG has a greater digestibility of energy, P, and most AA than corn germ.  相似文献   

4.
An experiment was conducted to test the hypothesis that inclusion of hybrid rye in diets containing corn and soybean meal (SBM) without or with microbial phytase improves the apparent total tract digestibility (ATTD) and the standardized total tract digestibility (STTD) of P because of the intrinsic phytase activity in hybrid rye. Forty-eight growing barrows (initial body weight: 39.5 ± 7.7 kg) were allotted to six diets. A basal diet containing corn and SBM; a rye-based diet; and a diet containing corn, SBM, and rye were formulated. Each diet was formulated without and with microbial phytase (500 units/kg of diet) for a total of six diets. Fecal samples were collected for 4 d following a 5-d adaptation period according to the marker-to-marker procedure. Results indicated that no interactions between diets and concentration of phytase were observed for any of the response criteria measured. The ATTD and STTD of P and the ATTD of Ca differed (P < 0.05) among diets, but regardless of diet, the concentration of P in feces was reduced (P < 0.05) by adding microbial phytase to the diets. As a consequence, microbial phytase increased (P < 0.05) ATTD and STTD of P, and the ATTD of Ca was also increased (P < 0.05) by the use of microbial phytase. Measured values for the ATTD and STTD of P in the diets containing corn, SBM, and hybrid rye without or with phytase were greater (P < 0.05) than values that were predicted based on the ATTD and STTD of P for the corn–SBM and the hybrid rye diet. The observation that STTD predicted from the individual ingredients underestimated the STTD of P in the mixed diet indicates that the intrinsic phytase in hybrid rye resulted in increased digestibility of the P in the corn and SBM included in the corn–SBM–hybrid rye diet. In conclusion, microbial phytase increased the ATTD and STTD of P and the ATTD of Ca regardless of feed ingredients used in diets fed to pigs. In addition, the intrinsic phytase from hybrid rye increased the ATTD and STTD of P in corn and SBM.  相似文献   

5.
An experiment was conducted to measure DE and ME and the apparent total tract digestibility (ATTD) of energy, N, and P in distillers dried grains with solubles (DDGS) fed to growing pigs. Ten sources of DDGS were obtained from ethanol plants in South Dakota and Minnesota, and 11 diets were formulated. One diet was based on corn (96.8%), limestone, salt, vitamins, and microminerals. Ten additional diets were formulated by mixing the corn diet and each of the 10 sources of DDGS in a 1:1 ratio. Eleven growing pigs (initial BW of 29.3 +/- 0.42 kg) were allotted to an 11 x 11 Latin square design, with 11 periods and 11 pigs. Each of the 11 diets was fed to each pig during 1 period. Pigs were placed in metabolism cages that allowed for the total, but separate, collection of feces and urine. Samples were analyzed for GE, N, and P and energy and N balances, and the ATTD of GE, N, and P were calculated for each diet. By subtracting the contribution from the corn diet to the DDGS-containing diets, the energy and N balances and the ATTD for GE, N, and P for each source of DDGS were calculated. Results of the experiment showed that the DE and ME differed (P < 0.001) among the 10 sources of DDGS (3,947 to 4,593 kcal of DE/kg of DM and 3,674 to 4,336 kcal of ME/kg of DM). The average DE and ME in DDGS were 4,140 and 3,897 kcal/kg of DM, respectively. These values were not different from the DE and ME in corn (4,088 and 3,989 kcal/kg of DM, respectively). Based on the analyzed GE and nutrient composition of DDGS and the calculated values for DE and ME, prediction equations for DE and ME were developed. These equations showed that DE and ME in DDGS may be predicted from the concentration of ash, ether extract, ADF, and GE. The retention of N from DDGS was greater (P < 0.001) than from corn, but when calculated on a percentage basis, the N retention did not differ between DDGS and corn. The ATTD of P in DDGS was 59.1% on average for the 10 samples. This value was greater (P < 0.001) than the ATTD of P in corn (19.3%). It is concluded that the DE and ME in DDGS is not different from the DE and ME in corn. However, if DDGS is included in diets fed to growing swine, a greater portion of the organic P will be digested and absorbed, thus reducing the need for adding inorganic P to the diets.  相似文献   

6.
Two experiments were conducted to determine DE and ME, the apparent total tract digestibility (ATTD) of P, and the standardized total tract digestibility (STTD) of P in whey powder (3,646 kcal/kg), whey permeate (3,426 kcal/kg), and low-ash whey permeate (3,657 kcal/kg) fed to weanling pigs. The DE and ME in the 3 whey products were determined using 32 barrows (9.2 ± 0.4 kg of BW). A basal diet based on corn, soybean meal, and fish meal and 3 diets containing 70% of the basal diet and 30% of each whey product were prepared. Each diet was fed to 8 pigs that were housed individually in metabolism cages. The total collection method was used for fecal and urine collections with 5-d adaptation and 5-d collection periods, and the difference procedure was used to calculate DE and ME in the 3 whey products. The concentrations of DE in whey powder and low-ash whey permeate were greater (P < 0.001) than in whey permeate (3,646 and 3,683 vs. 3,253 kcal/kg of DM). The concentrations of ME in whey powder and low-ash whey permeate were also greater (P < 0.001) than in whey permeate (3,462 and 3,593 vs. 3,081 kcal/kg of DM). The ATTD and STTD of P in the 3 whey products were determined using 32 barrows (11.0 ± 0.81 kg of BW). Three cornstarch-sucrose-based diets containing 30% of each whey product as the sole source of P were prepared. A P-free diet that was used to estimate the basal endogenous losses of P was also formulated. The ATTD of P in whey powder and in whey permeate was greater (P < 0.001) than in low-ash whey permeate (84.3 and 86.1 vs. 55.9%), but the STTD values for P were not different among the 3 ingredients (91.2, 93.1, and 91.8% in whey powder, whey permeate, and low-ash whey permeate, respectively). In conclusion, whey permeate contains less GE, DE, and ME than whey powder and low-ash whey permeate, but all 3 ingredients have an excellent digestibility of P.  相似文献   

7.
Three experiments were conducted to evaluate the effect of supplementing phytase and xylanase on nutrient digestibility and performance of growing pigs fed wheat-based diets. In Exp. 1, 10 diets were fed to 60 pigs from 20 to 60 kg of BW to determine the effect of combining phytase and xylanase on apparent total tract digestibility (ATTD) of nutrients and growth performance. The 10 diets included a positive control diet (PC; 0.23% available P; 0.60% Ca) and a negative control diet (NC; 0.16% available P; 0.50% Ca) supplemented with phytase at 0, 250, and 500 fytase units (FTU)/kg and xylanase at 0, 2,000, and 4,000 xylanase units (XU)/kg in a 3 x 3 factorial arrangement. In Exp. 2, 6 ileally cannulated barrows (initial BW = 35.1 kg) were fed 4 wheat-based diets in a 4 x 4 Latin square design, with 2 added columns to determine the effect of combining phytase and xylanase on apparent ileal digestibility (AID) of nutrients. The 4 diets were NC (same as that used in Exp. 1) or NC supplemented with phytase at 500 FTU/kg, xylanase at 4,000 XU/kg, or phytase at 500 FTU/kg plus xylanase at 4,000 XU/kg. In Exp. 3, 36 barrows (initial BW = 55.5 kg) were fed 4 diets based on prepelleted (at 80 degrees C) and crumpled wheat for 2 wk to determine the effect of phytase supplementation on ATTD of nutrients. The 4 diets fed were a PC (0.22% available P; 0.54% Ca) and a NC (0.13% available P; 0.43% Ca) alone or with phytase at 500 or 1,000 FTU/kg. All diets in the 3 experiments contained Cr(2)O(3) as an indigestible marker. No synergistic interactions were detected between phytase and xylanase on any of the response criteria measured in Exp. 1 or 2. There were no dietary effects on growth performance in Exp. 1. In Exp. 1, phytase at 250 FTU/kg increased the ATTD of P and Ca by 51 and 11% at 20 kg of BW or by 54 and 10% at 60 kg of BW, respectively, but increasing the level of phytase to 500 FTU/kg only increased (P < 0.05) ATTD of P at 20 kg of BW. In Exp. 2, phytase at 500 FTU/kg increased (P < 0.05) the AID of P and Ca by 21 and 12%, respectively. In Exp. 3, phytase at 500 FTU/kg improved (P < 0.05) ATTD of P by 36%, but had no further effect at 1,000 FTU/kg. Xylanase at 4,000 XU/kg improved (P < 0.05) AID of Lys, Leu, Phe, Thr, Gly, and Ser in Exp. 2. In conclusion, phytase and xylanase improved P and AA digestibilities, respectively, but no interaction between the 2 enzymes was noted.  相似文献   

8.
Energy values and amino acid (AA) digestibility of dried yeast (DY) and soybean meal (SBM) were determined in 2 experiments with growing pigs. Experiment 1 was conducted to determine the digestible energy (DE) and metabolizable energy (ME) in DY and SBM. Thirty barrows with a mean initial body weight (BW) of 20.6 kg (SD = 1.04) were assigned to 5 dietary treatments in a randomized complete block design with period and BW as blocking factors. A reference diet was prepared with corn, canola meal, and soybean oil as energy-contributing ingredients. Four additional diets were prepared by adding 5% and 10% DY or SBM at the expense of energy-contributing ingredients in the reference diet. The ratio of corn, canola meal, and soybean oil was kept consistent across the experimental diets. Each experimental period consisted of 5-d adaptation and 5-d quantitative collection of feces and urine. Test ingredient-associated DE or ME intake (kcal/d) was regressed against test ingredient intake [kg dry matter (DM)/d] to estimate the DE or ME in test ingredients as the slope of linear regression model. The DE in DY was estimated at 3,933 kcal/kg DM, which was not different from the estimated DE in SBM at 4,020 kcal/kg DM. Similarly, there was no difference between DY and SBM in the estimated ME (3,431 and 3,756 kcal/kg DM, respectively). Experiment 2 was conducted to determine the standardized ileal digestibility (SID) of AA in DY and SBM. Twenty-one barrows with a mean initial BW of 20.0 kg (SD = 1.31) were surgically fitted with T-cannulas at the distal ileum and assigned to 3 dietary treatments in a randomized complete block design with BW as a blocking factor. Two semi-purified diets containing DY or SBM as the sole nitrogen source and one nitrogen-free diet (NFD) were prepared. The NFD was used to estimate the basal ileal endogenous losses of CP and AA. Pigs were fed the 3 diets for 5 d as adaptation, followed by 2 d of feeding with ileal digesta collection. The SID of AA, except Gly and Pro, in DY was less (P < 0.05) than in SBM. The SID of indispensable AA in DY ranged from 64.1% for Thr to 85.2% for Arg, and those in SBM ranged from 83.9% for Thr to 91.8% for Arg. In conclusion, energy values of DY are not different from those of SBM, whereas AA in DY is less digestible than in SBM. The estimated DE and ME as well as the SID of AA in DY and SBM can be used in diet formulation for growing pigs using these ingredients.  相似文献   

9.
This experiment aimed at evaluating the effects of including the enzyme, β-mannanase, in dog (Canis lupus familiaris) diets based on either poultry (Gallus gallus domesticus) by-product meal (PBM) or soybean [Glycine max (L.) Merr.] Meal (SBM). The second objective was to evaluate 3 methods for determining energy and nutrient digestibility values in diets fed to dogs: total fecal collection (TFC) and use of aia or crude fiber (CF) as a marker. Eight dogs were allotted to a replicated latin square (4 by 4) design. There were 2 diets based on PBM as the major protein source and 2 diets based on SBM as the major protein source. Within each protein source, 1 diet contained no β-mannanase and 1 diet contained 0.01% β-mannanase. Diets were fed for an adaptation period of 5 d followed by 5 d of TFC. Fecal score (1 = watery feces to 5 = dry, hard pellets), pH, DM, and fecal volume were determined. The apparent total tract digestibility (ATTD) of DM, OM, CP, ether extract (EE), N-free extract (NFE), and GE, and ME content were calculated using the methods of TFC, AIA, and CF. Data were analyzed as a 2 by 2 by 3 split-split-plot design (β-mannanase, protein source, and digestibility calculation procedure). There were interactions between protein source and β-mannanase (P < 0.05). Supplementation of β-mannanase increased ATTD of nutrients and energy and ME (+ 195.3 kcal/kg) and also reduced fecal production in the diet with SBM, but not in the diet that contained PBM. There was an interaction between digestibility calculation procedure and protein source (P < 0.05). The use of AIA overestimated ATTD of the diets containing PBM, but digestibility values estimated based on TFC and CF were not different. Dogs fed diets containing SBM produced more feces with greater moisture content and lower pH compared with dogs fed the PBM diet (P < 0.05). Addition of 0.01% β-mannanase increased (P < 0.05) the digestibility and ME content of the diets containing SBM, but did not improve (P > 0.05) fecal texture. Results indicated that values for ATTD of energy and nutrients in diets containing sbm are not different if they are calculated based on TFC, AIA, or CF, but use of AIA may result in an overestimation of values for ATTD of energy and nutrients in diets containing PBM.  相似文献   

10.
Twenty corn coproducts from various wet- and dry-grind ethanol plants were fed to finishing pigs to determine DE and ME and to generate equations predicting DE and ME based on chemical analysis. A basal diet comprised corn (97.05%), limestone, dicalcium phosphate, salt, vitamins, and trace minerals. Twenty test diets were formulated by mixing the basal diet with 30% of a coproduct, except for dried corn solubles and corn oil, which were included at 20 and 10%, respectively. There were 8 groups of 24 finishing gilts (n = 192; BW = 112.7 ± 7.9 kg). Within each group, gilts were randomly assigned to 1 of 5 test diets or the basal diet for a total of 4 replications per diet per group. Two groups of gilts were used for each set of coproducts, resulting in 8 replications per coproduct and 32 replications of the basal diet. The experiment was conducted as a completely randomized design. Gilts were placed in metabolism crates and offered 3 kg daily of their assigned test diet for 13 d, with total collection of feces and urine during the last 4 d. Ingredients were analyzed for DM, GE, CP, ether extract, crude fiber, NDF, ADF, total dietary fiber (TDF), ash, AA, and minerals, and in vitro OM digestibility was calculated for each ingredient. The GE was determined in the diets, feces, and urine to calculate DE and ME for each ingredient. The DE and ME of the basal diet were used as covariates among groups of pigs. The DE of the coproducts ranged from 2,517 kcal/kg of DM (corn gluten feed) to 8,988 kcal/kg of DM (corn oil), and ME ranged from 2,334 kcal/kg of DM (corn gluten feed) to 8,755 kcal/kg of DM (corn oil). By excluding corn oil and corn starch from the stepwise regression analysis, a series of DE and ME prediction equations were generated. The best fit equations were as follows: DE, kcal/kg of DM = -7,471 + (1.94 × GE) - (50.91 × ether extract) + (15.20 × total starch) + (18.04 × OM digestibility), with R(2) = 0.90, SE = 227, and P < 0.01; ME, kcal/kg of DM = (0.90 × GE) - (29.95 × TDF), with R(2) = 0.72, SE = 323, and P < 0.01. Additional equations for DE and ME included NDF in the instance that TDF data were not available. These results indicate that DE and ME varied substantially among corn coproducts and that various nutritional components can be used to accurately predict DE and ME in corn coproducts for finishing pigs.  相似文献   

11.
A study was conducted to evaluate the impact of feeding soybean meal (SBM) from low-phytate (LP) or traditional phytate (TP) soybeans on performance and excretions from growing swine. Ninety-six crossbred barrows (initial BW = 18 +/- 0.3 kg) were allocated by BW to 24 pens and fed 1 of 4 treatment diets: TP SBM without supplemental phytase; TP SBM plus 500 phytase units of phytase/kg, as-fed basis [Ronozyme P (CT) 2500; DSM Nutritional Products, Basel, Switzerland]; LP SBM (USDA-ARS breeding line CX1834-1) without supplemental phytase, and LP SBM plus phytase. All diets within a feeding phase were formulated to be isocaloric and have similar available Lys and nonphytin P content. Pens were assigned randomly to treatments at the beginning of each of the 4 feeding phases. An indigestible marker was added to the mash feed. Individual pig weights and fecal samples were collected, and feed disappearance by pen was recorded weekly. No phytase inclusion or SBM source effects were observed for pen ADG, ADFI, or G:F (P > 0.05). Total tract apparent digestibility of DM and OM was not different among treatment groups (P > 0.05). Apparent digestibility of P was greater for pigs fed diets containing the LP SBM (48.9 vs. 42.4%; P < 0.01) and less when diets included phytase (44.3 vs. 47.0%; P < 0.0001). Total P (tP) and water-soluble P (WSP) excreted were affected by dietary treatment (tP: 20.0, 18.0, 16.8, and 13.8 g/kg of feces DM, P < 0.01; and WSP: 10.9, 10.1, 9.1, and 8.5 g/kg, P < 0.01, for TP SBM without supplemental phytase, TP SBM plus 500 phytase units of phytase/kg, LP SBM without supplemental phytase, and LP SBM plus phytase diets, respectively). Inclusion of phytase decreased tP and WSP excreted (P < 0.01), as did use of LP SBM (P < 0.01). Diet effects on the fraction of excreted tP that was WSP were observed (P < 0.01); however, there was not a significant effect of SBM source. Inclusion of exogenous phytase in diets increased the proportion of tP that was excreted as WSP from 55% in diets without phytase to 59% in diets containing phytase. The findings suggest that there is a need for LP soybeans as a dietary component to minimize environmental impacts.  相似文献   

12.
Fermentation of cereal grains may degrade myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate) (InsP6) thereby increasing nutrient digestibility. Effects of chemical acidification or fermentation with Limosilactobacillus (L.) reuteri with or without phytase of high β-glucan hull-less barley grain on apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of nutrients and gross energy (GE), standardized ileal digestibility (SID) of crude protein (CP) and amino acids (AAs), and standardized total tract digestibility (STTD) of P were assessed in growing pigs. Pigs were fed four mash barley-based diets balanced for water content: 1) unfermented barley (Control); 2) chemically acidified barley (ACD) with lactic acid and acidic acid (0.019 L/kg barley grain at a ratio of 4:1 [vol/vol]); 3) barley fermented with L. reuteri TMW 1.656 (Fermented without phytase); and 4) barley fermented with L. reuteri TMW 1.656 and phytase (Fermented with phytase; 500 FYT/kg barley grain). The acidification and fermentation treatments occurred for 24 h at 37 °C in a water bath. The four diets were fed to eight ileal-cannulated barrows (initial body weight [BW], 17.4 kg) for four 11-d periods in a double 4 × 4 Latin square. Barley grain InsP6 content of Control, ACD, Fermented without phytase, or Fermented with phytase was 1.12%, 0.59%, 0.52% dry matter (DM), or not detectable, respectively. Diet ATTD of DM, CP, Ca, and GE, digestible energy (DE), predicted net energy (NE) value, and urinary excretion of P were greater (P < 0.05) for ACD than Control. Diet ATTD of DM, CP, Ca, GE, DE and predicted NE value, urinary excretion of P was greater (P < 0.05), and diet AID of Ca and ATTD and STTD of P tended to be greater (P < 0.10) for Fermented without phytase than Control. Diet ATTD of GE was lower (P < 0.05) and diet ATTD and STTD of P, AID and ATTD of Ca was greater (P < 0.05) for Fermented with phytase than Fermented without phytase. Acidification or fermentation with/without phytase did not affect diet SID of CP and AA. In conclusion, ACD or Fermented without phytase partially degraded InsP6 in barley grain and increased diet ATTD of DM, CP, and GE, but not SID of CP and most AA in growing pigs. Fermentation with phytase entirely degraded InsP6 in barley grain and maximized P and Ca digestibility, thereby reducing the need to provide inorganic dietary P to meet P requirements of growing pigs.  相似文献   

13.
Three experiments (exp.) were conducted to determine and compare the digestibility of nutrients and energy of corn distillers dried grains with solubles (DDGS) from the United States (USDDGS), a dried mixture of corn bran with solubles (CBS) from Brazil (BRCBS), and high protein corn distillers dried grains (HP-DDG) from the United States (USHPDG) and Brazil (BRHPDG) in growing pigs. The feed ingredients were evaluated for apparent total tract digestibility (ATTD) of gross energy (GE), dry matter (DM), crude protein (CP), ether extract, neutral and acid detergent fiber (NDF and ADF, respectively), and digestible and metabolizable energy (DE and ME, respectively) using the total collection and index methods in exp. 1; ATTD and standardized total tract digestibility (STTD) of phosphorus (P) in exp. 2; and apparent (AID) and standardized (SID) ileal digestibilities of CP and amino acids (AA) in exp. 3. Fifty crossbred barrows (32.4 ± 6.9, 38.3 ± 5.2, and 46.2 ± 5.3 kg body weight [BW], in exp. 1, 2, and 3, respectively) were fed a corn basal diet in exp. 1, a P-free diet in exp. 2, and an N-free diet in exp. 3 or diets with 40% inclusion of test ingredients to provide 10 replications per treatment. Pigs were housed individually in metabolism cages (exp. 1) or in pens (exp. 2 and 3) and fed at 2.8 times the maintenance DE requirement (110 kcal/kg BW0.75) based on their BW at the beginning of each experiment. Except for ATTD of NDF, which tended (P = 0.058) to be greater by the index method compared with the total collection method, no difference between the total collection and index methods was observed for ATTD of remaining nutrients and DE. The ATTD of DM, GE, NDF, and DE content of BRHPDG were greater (P < 0.001) than USHPDG, BRCBS, and USDDGS. The AID of CP, Arg, His, Ile, Leu, Lys, Thr, and Val and the SID of His, Leu, Lys, and Val of BRHPDG were 8% to 36% greater (P < 0.05) than those from USHPDG. Except for Trp, all AID and SID AA values were greater (P < 0.05) in BRHPDG than in USHPDG. The ATTD of DM, GE, NDF, and ADF; DE and ME content; AID of CP, Arg, Ile, Leu, Phe, Thr, and Trp; and SID of CP, Arg, Phe, and Thr of USDDGS were 9% to 45% greater (P < 0.05) than those in BRCBS. The ATTD and the STTD of P in USHPDG and USDDGS were 26% to 42% greater (P < 0.05) compared with BRHPDG and BRCBS. In conclusion, BRHPDG had a greater digestibility of energy and most of the AA than USHPDG, while the BRCBS evaluated had lower nutritional value than the USDDGS source.  相似文献   

14.
Supplementation of microbial phytase usually improves the digestibility and utilization of phosphorus in feedstuffs of plant origin. The effect of phytase supplementation on the digestibilities of AA also has been examined, but the results have been inconsistent. This study was carried out to determine the effect of phytase (Natuphos) supplementation, at a rate of 2,000 phytase units/kg, to two basal diets on the apparent ileal digestibilities (AID) of GE, CP, and AA, and on the apparent total-tract digestibilities (ATTD) of CP and GE. The basal diets contained 18% CP and were formulated (as-fed basis) to contain either a low (0.22%) or high content (0.48%) of phytate P. The high-phytate diet contained 20% rice bran, which is a rich source of phytate and has low intrinsic phytase activity. Eight barrows (average initial BW = 40.6 kg), fitted with a simple T-cannula at the distal ileum, were fed the four diets according to a replicated 4 x 4 Latin square design. The pigs were fed twice daily at 0800 and 2000, equal amounts each meal, at a rate of 2.4 times the daily maintenance requirement for ME. Each experimental period comprised 14 d. Ileal digesta were collected from 0800 to 2000 on d 12, 13, and 14. Feces were collected from 0800 on d 8 until 0800 on d 12. Chromic oxide was used as the digestibility marker. The AID of GE, CP, and AA and the ATTD of CP and GE were less in the high- than in the low-phytate diet (P < 0.01). With the exception of glutamic acid, phytase supplementation did not affect (P > 0.10) the AID of CP and AA. There was no effect (P > 0.05) of phytase on the ATTD of CP and GE. These results show that if a response occurs to phytase supplementation, it is independent of the dietary phytate content.  相似文献   

15.
Canola meal (CM) contains less crude protein (CP) and more fiber and anti-nutritional factors such as glucosinolates than soybean meal (SBM) and consequently has a lower nutrient digestibility. Therefore, processing strategies that may increase the feeding value of CM warrant study. In two experiments, the effects of extrusion of Brassica napus CM on apparent (AID) and standardized ileal digestibility (SID) of amino acids (AA), apparent total tract digestibility (ATTD) of gross energy (GE) in growing pigs, and growth performance and diet digestibility in weaned pigs were assessed. Solvent-extracted CM was extruded using a single-screw extruder at three screw speeds: 250 (CM-250), 350 (CM-350), or 450 (CM-450) rpm. In exp. 1, in a double 4 × 4 Latin square, eight ileal-cannulated barrows (initial body weight [BW], 68.1 kg) were fed corn starch-based diets containing 50% CM or extruded CM. The CM sample contained 43.2% CP, 33.2% total dietary fiber (TDF), and 8.9 µmol of total glucosinolates/g on a dry matter (DM) basis. Extrusion increased (P < 0.05) the AID of CP, reduced (P < 0.05) apparent hindgut fermentation of CP, and decreased (P < 0.05) predicted net energy (NE) value of diets. Extrusion increased diet AID and CM SID of most indispensable AA by 3.1 to 5.3%-units. In exp. 2, 200 weaned pigs (initial BW, 8.3 kg) were fed diets containing 20% SBM, CM, or extruded CM starting 2 wk postweaning for 3 wk. The CM sample contained 42.7% CP, 28.3% TDF, and 5.3 µmol total glucosinolates/g DM. Wheat-based diets provided 2.3 Mcal NE/kg and 5.1 g SID Lys/Mcal NE. Dietary inclusion of extruded CM replacing SBM decreased (P < 0.05) diet ATTD of DM, GE and CP, and DE value. Average daily feed intake, average daily gain (ADG), and gain:feed (G:F) of pigs did not differ between extruded CM and SBM diets and were not affected by extrusion, but increasing extruder screw speed linearly increased (P < 0.05) ADG for day 1 to 7 and G:F for the entire trial. In conclusion, extrusion increased diet AID and CM SID of AA but not DE and predicted NE values of CM. However, increasing extruder speed did not further increase the SID of most of the AA of CM in growing pigs. Dietary inclusion of 20% CM or extruded CM did not affect the growth performance in weaned pigs.  相似文献   

16.
A total of 36 piglets with an initial body weight (BW) of 5.6 ± 0.7 kg, fitted with simple T‐cannulas at the distal ileum, were used to evaluate the effect of three graded feeding levels (50, 75 or 100 g/kg BW0.75 day) on apparent ileal digestibility (AID) and total tract digestibility (ATTD) of dry matter (DM), nitrogen (N) and energy, and on ATTD of organic matter (OM), ether extracts (EE), neutral detergent fibre (NDF), acid detergent fibre (ADF) and digestible (DE), metabolisable (ME) and net energy (NE) content in soybean meal (SBM)–casein–cornstarch‐based diets. The AID of DM, N and energy and ATTD of NDF, ADF and EE in the diets were not affected (p > 0.05) by the feed intake (FI) level. There was a small decrease in ATTD of DM, N (CP), OM, ash and energy, and in DE, ME and NE content in the diets (p < 0.05) with increasing FI level. The net disappearance in the large intestine (in % of ileal recovery) decreased for DM, N and energy (p < 0.05) with increasing FI level. The design of the study allowed for estimating ileal endogenous loss of N and total tract endogenous loss of ash, N and EE, for estimating corresponding true ileal and total tract digestibility values, and for estimating urinary endogenous N loss. High variability in estimates of ileal endogenous N loss and total tract endogenous losses of N, EE and ash reflects great variation in individual endogenous losses between animals. Estimation of true total tract digestibility of N, EE and ash by regression analysis was affected by their decrease in ATTD with increasing FI level, as estimates for true digestibility were lower compared to their apparent values. The present results suggest that FI level can affect both apparent and true total tract nutrient digestibility in piglets.  相似文献   

17.
Four experiments were conducted with weanling pigs fitted with a simple T-cannula at the distal ileum, to determine the effect of phytase supplementation to four diets on the apparent ileal digestibilities (AID) of CP and AA, and the apparent total-tract digestibilities (ATTD) of CP and DE. Phytase (Natuphos, DSM Food Specialties, Delft, The Netherlands) was supplemented at rates of 0, 500 or 1,000 FTU/kg to the four diets. A 20% CP (as-fed basis) corn-soybean meal diet was used in Exp. 1; a 20% CP wheat-soybean meal diet in Exp. 2; a 20% CP wheat-soybean meal-canola meal diet in Exp. 3; and a 19% CP barley-peas-canola meal diet in Exp. 4. In each experiment, six barrows, fitted with a simple T-cannula at the distal ileum, were fed the basal plus phytase-supplemented diets according to a repeated 3 x 3 Latin square design. Each experimental period comprised 14 d. The piglets were at fed 0800 and 2000 daily, equal amounts for each meal, at a daily rate of at least 2.4 times the maintenance requirement for ME. Feces were collected from 0800 on d 8 until 0800 on d 12 of each experimental period. Ileal digesta were collected from 0800 to 2000 on d 12, 13, and 14. Chromic oxide was used as the digestibility marker. The average initial and final BW (average of all experiments) were 7.9 and 16.5 kg, respectively. Phytase supplementation did not improve the AID of CP and AA in Exp. 1, 2, and 4; however, there were improvements (P < 0.05) or tendencies (P < 0.10) toward improvements in the AID of CP and AA or the ATTD of CP and the content of DE with phytase supplementation in Exp. 3. These results suggest that the AA response factor to microbial phytase supplementation depends on diet composition.  相似文献   

18.
Three experiments were conducted to evaluate P bioavailability, growth performance, and nutrient balance in pigs fed high available P (HAP) corn with or without phytase. The bioavailability of P in normal and HAP corn relative to monosodiumphosphate (MSP) for pigs was assessed in Exp. 1. In a randomized complete block design, 96 pigs (average initial BW 9.75 kg) were fed eight diets for 28 d. The reference and test diets were formulated by adding P as MSP, HAP, or normal corn at 0, 0.75, or 1.5 g/kg to a corn-starch-soybean meal basal diet (2.5 g/kg P) at the expense of cornstarch. Plasma inorganic P concentration responded linearly (P < 0.05) to supplemental P intake. Estimates of P bioavailability from HAP andnormal corn when plasma P was regressed on supplemental P intake were 46 and 33%, respectively. In Exp. 2 and 3, pigs were fed corn-soybean meal-based diets containing HAP corn or normal corn and 0 or 600 units of phytase per kilogram in a 2 x 2 factorial arrangement (two corn sources and two levels of phytase). In Exp. 2, 48 crossbred pigs (barrow:gilt, 1:1) averaging 9.25 kg were used to evaluate growth performance. There were no detectable interactions between corn source and phytase for any of the performance criteria measured. Pigs receiving normal corn had the lowest (P < 0.05) BW and rate of gain. Feed efficiency was lower (P < 0.05) in pigs fed normal compared with those fed the HAP corn phytase-supplemented diet. In Exp. 3, 24 crossbred barrows averaging 14.0 kg were used to evaluate nutrient digestibility. There were no detectable interactions between corn and phytase for any of the N and Ca balance criteria. Nitrogen and Ca retention were improved in pigs receiving HAP corn with phytase (P < 0.05). Retention and digestibility of P was lowest (P < 0.01) for pigs on normal corn diet without phytase. The percentage of P digested and retained was improved and fecal P excretion lowered (P < 0.05) by feeding HAP corn.The results of this study indicate that the bioavailability and balance of P in HAP corn is superior to that of normal corn. The addition of 600 phytase units (Natuphos 600, BASF) to HAP corn-based diets further improved P digestibility and reduced P excretion in pigs.  相似文献   

19.
Nine growing barrows were equipped with a T-cannula in the distal ileum and used to determine apparent ileal (AID) and apparent total-tract digestibility (ATTD) coefficients of Ca and P in low-phytate corn, normal corn, soybean meal, and in diets where soybean meal was mixed with low-phytate corn or normal corn. The AID and the standardized ileal digestibility coefficients (SID) of CP and AA also were determined. The animals (initial BW = 29.3 +/- 1 kg) were allotted to a 9 x 9 Latin square with nine diets and nine periods. Three diets contained low-phytate corn, normal corn, and soybean meal as their sole source of CP, AA, Ca, and P, respectively. Three additional diets were identical to these diets except that limestone and monosodium phosphate were added. Two diets contained low-phytate corn or normal corn and soybean meal, limestone, and monosodium phosphate, and the final diet was a N-free diet. The AID and ATTD of Ca were higher (P < 0.05) for low-phytate corn than for normal corn (70.0 and 69.1% vs. 47.4 and 49.6%, respectively). The AID and ATTD for Ca in soybean meal (50.9 and 46.7%, respectively) did not differ from values for normal corn but were lower (P < 0.05) than for low-phytate corn. The AID and ATTD for P from low-phytate corn (56.5 and 54.5%, respectively) were greater (P < 0.05) than from normal corn (28.3 and 28.8%, respectively), whereas soybean meal had intermediate AID and ATTD for P (37.2 and 38.0%, respectively). The AID and ATTD of P increased (P < 0.05) when monosodium phosphate was added to normal corn (44.9 and 49.8%, respectively) and soybean meal (49.6 and 46.2%, respectively), but adding monosodium phosphate to low-phytate corn, did not alter either AID (49.7%) or ATTD (50.7%) of P. No differences between AID and ATTD for Ca or P within the same diet were observed. The AID of Arg, Asp, Gly, Ile, Lys, Phe, Thr, and Val were greater (P < 0.05) in low-phytate corn than in normal corn. The AID of all AA in soybean meal were greater (P < 0.05) than in both types of corn, with the exception of Ala, Cys, Leu, and Met. The SID of Lys, Phe, and Thr were higher (P < 0.05) in low-phytate corn than in normal corn. Because low-phytate corn has a higher digestibility of Ca and P, less inorganic Ca and P need to be supplemented to diets containing low-phytate corn than to those containing normal corn, and P excretion may be decreased when low-phytate corn is used in the diet.  相似文献   

20.
Two studies were conducted to determine the effect of diets containing low-phytate barley or supplemented with phytase on P balance and excretion in grower pigs. In Exp. 1, eight 32-kg barrows were assigned to a repeated, 4 x 4 Latin square design and fed 4 diets that contained 96% barley: normal-phytate hulled barley (HB), low-phytate hulled barley (LPHB), normal-phytate hull-less barley (HLB), and low-phytate hull-less barley (LPHLB). The barley cultivars contained 0.16, 0.05, 0.24, and 0.03% phytate, respectively. Inorganic P (iP) was added to the HB and HLB diets to meet the 1998 National Research Council recommendation of available P (aP, 0.23%), whereas LPHB and LPHLB contained sufficient aP. The diets were fed at 2.5 times the maintenance requirement for ME. The apparent total tract digestibilities (ATTD) of P did not differ between the hulled and hull-less barley diets, but P retention (%) and excretion were greater in pigs fed the hull-less barley diets (P < 0.05). The ATTD of P was greater and P excretion was 35% lower in pigs fed the low-phytate compared with the normal-phytate diets (P < 0.001). The amount of P retained (g/d) was greater (P < 0.001) in pigs fed low-phytate barley, reflecting an ATTD of P of 65 and 49% for low-phytate and normal-phytate barley, respectively (P < 0.001). In Exp. 2, eight 21-kg barrows were assigned to a repeated, 4 x 4 Latin square design and fed 4 diets based on barley and soybean meal (SBM): HB-SBM, HB-SBM + iP, HB-SBM + phytase, and LPHB-SBM. The HB-SBM and HB-SBM + phytase diets were deficient in aP, whereas the HB-SBM + iP and LPHB-SBM diets had adequate aP. The feeding regimen was similar to that of Exp. 1. Adding iP to the HB-SBM diet did not affect the ATTD but increased the amount of P retained (g/d) and excreted (P < 0.001). The ATTD and amount of P retained (g/d) did not differ among pigs fed the HB-SBM + iP, HB-SBM + phytase, and LPHB-SBM diets. However, pigs fed the HB-SBM + phytase and LPHB-SBM diets excreted 32 and 29% less P, respectively, than pigs fed the HB-SBM + iP diet (P < 0.05), confirming that low-phytate barley is as effective as supplemental phytase in improving P digestibility and utilization and decreasing P excretion in grower pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号