首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
This study assessed the effect of biosolids applied at rates, 0, 30, 45, and 60?Mg?ha?1 on the chemical associations and bioavailability of Cu and Zn in soils from an important agricultural zone of the Metropolitan Region in Central Chile. Three methods were used to determine the bioavailability of Cu and Zn in soils: ryegrass (Lolium perenne) plants, diffusive gradients in thin films (DGT) technique, and Community Bureau of Reference (BCR) sequential extraction. The DGT effective concentration (C E) and sequential extract acid soluble fraction of the BCR extraction (most labile fraction of the soils, normally associated with bioavailability) were compared with total metal concentration in ryegrass plants as a means to compare the chemical and biological measures of bioavailability. Total Zn was higher in comparison to Cu for all treatments. Concentrations were within the limits set by the Chilean regulations for land-applied biosolids. Metals in the control soil were primarily found in the residual fraction of soils. Biosolids application generally decreased this fraction, with a subsequent increase observed mainly in the acid soluble fraction. The contents of Cu and Zn in ryegrass plants increased with increasing rates of biosolids. Comparison of the Cu and Zn content in ryegrass plants with C E, showed a good correlation for Zn. However, the C E for soil Cu was only related to plant Cu for some of the soils studied. Correlation between Zn in ryegrass plants and the labile fraction of Zn as measured by the sequential extraction was excellent, with correlation coefficients >0.9, while for Cu, correlation coefficients were lower.  相似文献   

2.
The risk assessment of heavy‐metal contamination in soils requires knowledge of the controls of metal concentrations and speciation. We tested the relationship between soil properties (pH, CEC, Corg, oxide concentrations, texture) and land use (forest, grassland, arable) and the partitioning of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn among the seven fractions of a sequential extraction procedure in 146 A horizons from Slovakia. Using a cluster analysis, we identified 92 soils as representing background metal concentrations while the remaining 54 soils showed anthropogenic contamination. Among the background soils, forest soils had the lowest heavy‐metal concentrations except for Pb (highest), because of the shielding effect of the organic layer. Arable soils had the highest Cr, Cu, and Ni concentrations suggesting metal input with agrochemicals. Grassland soils had the highest Cd and Zn concentrations probably for geogenic reasons. Besides the parent material (highest metal concentrations in soils from carbonatic rock, lowest in quartz‐rich soils with sandy texture), pedogenic eluviation processes controlled metal concentrations with podzols showing depletion of most metals in E horizons. Partitioning among the seven fractions of the sequential extraction procedure was element‐specific. The pH was the overwhelming control of the contributions of the bioavailable fractions (fractions 1–4) of all metals and even influenced the contributions of Fe oxide‐associated metals (fractions 5 and 6) to total metal concentrations. For fractions 5 and 6, Fe concentrations in oxides were the most important control of contributions to total metal concentrations. After statistically separating the pH from land use, we found that the contributions of Cu in fractions 1–4 and of NH4NO3‐extractable Al, Cd, Pb, and Zn to total metal concentrations were significantly higher under forest than under grassland and in some cases arable use. Our results confirm that metal speciation in soils is mainly controlled by the pH. Furthermore, land use has a significant effect.  相似文献   

3.
Abstract

A previous study indicated that agricultural biosolid applications increased the concentration of EPA3050‐digestible trace elements in soils on Pennsylvania production farms but could not indicate potential trace‐element environmental availability. This study was conducted to determine if biosolid application had altered the distribution of trace‐elements among operationally defined soil fractions and the relationship of trace element concentrations in soil and crop tissues. Biosolid‐amended and unamended soils from production farms in Pennsylvania were extracted using a modified Bureau Communautaire de Référence (BCR) sequential fractionation technique and analyzed for chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Trace‐element concentrations in crop tissues (soybean silage, sudangrass, corn grain, alfalfa hay, and orchardgrass hay) from the same farms were also determined. Fractionation results indicated that the proportion of Cr, Cu, Ni, Pb, and Zn that is potentially bioavailable is quite small in unamended soils. Biosolid applications significantly (P≤0.1) increased concentrations of Cu in all soil fractions (average increase over unamended soil=1.14, 8.27, 6.04, and 5.84 mg kg?1 for the exchangeable, reducible, oxidizable, and residual fractions, respectively), Ni (0.41, 1.65 mg kg?1 for the reducible and residual fractions, respectively), Pb (5.12 and 1.49 mg kg?1 for the reducible and residual fractions, respectively), and Zn (8.28, 7.12, 4.44, and 8.98 mg kg?1 for the exchangeable, reducible, oxidizable, and residual fractions, respectively) but did not significantly increase Cr in any soil fraction. Concentrations of Cu in all soil fractions were significantly (P≤0.01) correlated with concentrations of Cu in orchardgrass tissue (r=0.70, 0.66, 0.76, and 0.69 for the exchangeable, reducible, oxidizable, and residual soil fractions, respectively). Concentrations of exchangeable and reducible Zn were significantly correlated with Zn in sudangrass tissue (r=0.81 and 0.67), and reducible Zn was significantly correlated with Zn concentrations in orchardgrass tissue (r=0.65). Application of biosolids had little effect on bioavailability of Cr, Ni, or Pb, whereas higher loadings of Cu and Zn led to a shift toward the more labile soil fractions. Loadings of Cu and Zn were much smaller than cumulative loadings permitted under U.S. Environmental Protection Agency (USEPA) Part 503 regulations. Chemical soil fractionation was able to detect increases in labile soil Cu and Zn that relate to increased phytoavailability.  相似文献   

4.
Abstract

Three different chemical extractants were evaluated as to their extraction efficiency for copper (Cu), zinc (Zn), lead (Pb), aluminium (Al), iron (Fe), chromium (Cr), manganese (Mn), potassium (K), magnesium (Mg), and calcium (Ca) on forest soil profiles from the Romanian Carpathians. The extractants were hot 14 M nitric acid (HNO3), 0.05 M hydrochloric acid (HCl), and 0.1 M sodium pyrophosphate. By comparing amounts extracted by 0.05 M HCl and 0.1 M sodium pyrophosphate relative to that dissolved by hot 14 M HNO3, some conclusions were drawn concerning the chemical forms of the metals in the extractable pool. The amount released by 0.05 M HCl was generally less than 10% of the HNO3‐extractable fraction but showed considerable variation among the elements studied. The relative amount extracted by pyrophosphate increased with organic‐matter content of the soils for Cu, Zn, Pb, Al, Fe, and Cr; stayed more or less constant for Mn, K, and Mg; and decreased for Ca. These findings are discussed with respect to the different binding forms of the metals in the soil and the processes affecting their mobility. From the present results, the metals were ranked as follows with respect to their ability to form organic complexes in natural soils: Cu>Cr, Pb>Ca>Al>Fe, Zn, Mn, K>Mg. However, the use of cold dilute HCl as a fractionation step may be questionable in cases of soils with a high content of substances possessing large neutralization capacity for protons.  相似文献   

5.
Minerals with large specific surface areas promote the stabilization of soil organic matter (SOM). We analysed three acidic soils (dystric, skeletic Leptic Cambisol; dystric, laxic Leptic Cambisol; skeletic Leptic Entic Podzol) under Norway spruce (Picea abies) forest with different mineral compositions to determine the effects of soil type on carbon (C) stabilization in soil. The relationship between the amount and chemical composition of soil organic matter (SOM), clay content, oxalate‐extractable Fe and Al (Feo; Alo), and dithionite‐extractable Fe (Fed) before and after treatment with 10% hydrofluoric acid (HF) in topsoil and subsoil horizons was analysed. Radiocarbon age, 13C CPMAS NMR spectra, lignin phenol content and neutral sugar content in the soils before and after HF‐treatment were determined and compared for bulk soil samples and particle size separates. Changes in the chemical composition of SOM after HF‐treatment were small for the A‐horizons. In contrast, for B‐horizons, HF‐soluble (mineral‐associated) and HF‐resistant (non‐mineral‐associated) SOM showed systematic differences in functional C groups. The non‐mineral associated SOM in the B‐horizons was significantly depleted in microbially‐derived sugars, and the contribution of O/N‐alkyl C to total organic C was less after HF‐treatment. The radiocarbon age of the mineral‐associated SOM was younger than that of the HF‐resistant SOM in subsoil horizons with small amounts of oxalate‐extractable Al and Fe. However, in horizons with large amounts of oxalate‐extractable Al and Fe the HF‐soluble SOM was considerably older than the HF‐resistant SOM. In acid subsoils a specific fraction of the organic C pool (O/N‐alkyl C; microbially‐derived sugars) is preferentially stabilized by association with Fe and Al minerals. Stabilization of SOM with the mineral matrix in soils with large amounts of oxalate‐extractable Alo and Feo results in a particularly stable and relatively old C pool, which is potentially stable for thousands of years.  相似文献   

6.
Behaviour of heavy metals in soils. 1. Heavy metal mobility 158 soil samples with widely varying composition were analysed for their total, EDTA, DTPA and CaCl2 extractable contents of Cd, Zn, Mn, Cu and Pb. By means of single and multiple regressions the relations between the different heavy metal fractions and the pH, organic carbon and clay content were considered. The correlations between the total, EDTA and DTPA extractable contents are very close, whereas the CaCl2 extractable contents are not or only weakly correlated with these fractions. According to these statistical results the former fractions are considered to be the total quantity (total content) and the reactive quantity (EDTA and DTPA extractable contents) of the heavy metals, whereas the CaCl2 extractable fraction represents the mobile fraction of the heavy metals in soils. The multiple regressions show that the mobile content of heavy metals is closely correlated with each of the quantity fractions and with soil pH. In the same way the proportion of the mobile fraction (in %) of the total, EDTA and DTPA extractable heavy metal content of the soil samples is closely related to the soil pH. Hereby the proportion of the mobile content of the various elements increases in the pH range 6,5 - 3 below element-specific threshold pH values (in brackets) in the order Cd (6,5) > Mn (5,7) > Zn (5,3) > Cu (4,5) > Pb (3,5). In the pH range 6,5 - 7,5 mainly Cu and to a lesser degree also Pb show an increasing mobility due to the influence of soluble organic substances.  相似文献   

7.
施污土壤与污泥中Cu、Pb、Cd、Zn的形态分布   总被引:2,自引:0,他引:2  
污泥中的重金属元素是限制其大规模农田利用的重要因素。施污土壤和污泥中重金属的形态研究可以用来评价土壤中重金属的生物有效性以及它们在土壤中的移动性。用修正BCR三步连续提取法进行分步提取研究了污水污泥和施污后的西红柿地土壤中Cu、Pb、Cd、Zn的形态分布状况。施用污泥堆肥10t hm-2后的土壤中Cu、Pb、Cd、Zn的全量与各种形态含量无明显增加,Cu、Pb、Zn含量远低于国家土壤环境质量标准。土壤中Cu的各种形态分布关系是:残渣态>可还原态=可氧化态>可交换态和弱酸溶解态,Cu在土壤中的存在是以最稳定的残渣态为主。堆肥污泥与干化污泥相比,残渣态Cu的比例明显增加。土壤中Pb的各种形态分布关系是以残渣态和可还原态为主,但可氧化态的分布比例最小。土壤中Cd的可交换态、可还原态和残渣态各占据相等的含量,但可氧化态Cd的含量几乎为零。Zn在土壤中的各种形态分布关系是:可交换态和弱酸溶解态>可氧化态>可还原态>残渣态,Zn在土壤中的存在是以最易迁移的可交换态和弱酸溶解态为主。这些金属元素在土壤中的相对稳定性顺序为:Cu>Pb>Cd>Zn。Zn在土壤中的移动性要远高于Cu。  相似文献   

8.
Abstract

Agricultural use of sewage sludges can be limited by heavy metal accumulations in soils and crops. Information on background levels of total heavy metals in soils and changes in soil metal content due to sludge application are; therefore, critical aspects of long‐term sludge monitoring programs. As soil testing laboratories routinely, and rapidly, determine, in a wide variety of agricultural soils, the levels of some heavy metals and soil properties related to plant availability of these metals (e.g. Cu, Fe, Mn, Zn, pH, organic matter, texture), these labs could participate actively in the development and monitoring of environmentally sound sludge application programs. Consequently, the objective of this study was to compare three soil tests (Mehlich 1, Mehlich 3, and DTP A) and an USEPA approved method for measuring heavy metals in soils (EPA Method 3050), as extractants for Cd, Cu, Ni, Pb and Zn in representative agricultural soils of Delaware and in soils from five sites involved in a state‐monitored sludge application program.

Soil tests extracted less than 30% of total (EPA 3050) metals from most soils, with average percentages of total metal extracted (across all soils and metals) of 15%, 32%, and 11% for the Mehlich 1, Mehlich 3, and DTPA, respectively. Statistically significant correlations between total and soil test extractable metal content were obtained with all extractants for Cu, Pb, and Zn, but not Cd and Ni. The Mehlich 1 soil test was best correlated with total Cu and Zn (r=0.78***, 0.60***, respectively), while the chelate‐based extractants (DTPA and Mehlich 3) were better correlated with total Pb (r=0.85***, 0.63***). Multiple regression equations for the prediction of total Cu, Ni, Pb, and Zn, from soil test extractable metal in combination with easily measured soil properties (pH, organic matter by loss on ignition, soil volume weight) had R2 values ranging from 0.41*** to 0.85***, suggesting that it may be possible to monitor, with reasonable success, heavy metal accumulations in soils using the results of a routine soil test.  相似文献   

9.
化学萃取修复尾渣土壤的金属形态变化特征   总被引:4,自引:0,他引:4  
The efficiency of EDTA, HNO3 and CaCl2 as extractants to remove Pb, Zn and Cu from tailing soils without varying soil pH was investigated with distributions of Pb, Zn and Cu being determined before and after extraction using the sequential extraction procedure of the optimized European Community Bureau of Reference (BCR). Results indicated that EDTA and HNO3 were both effective extracting agents.The extractability of extractants for Pb and Zn was in the order EDTA 〉 HNO3 〉 CaCl2, while for Cu it was HNO3 〉 EDTA 〉 CaCl2. After EDTA extraction, the proportion of Pb, Zn and Cu in the four fractions varied greatly, which was related to the strong extraction and complexation ability. Before and after extraction with HNO3 and CaCl2, the percentages of Pb, Zn and Cu in the reducible, oxidizable and residual fractions changed little compared to the acid-extractable fraction. The lability of metal in the soil and the kinds of extractants were the factors controlling the effects of metal extraction.  相似文献   

10.
Abstract

The available (0.1M HCl‐ and DTPA‐extractable) and total forms of copper (Cu) and zinc (Zn) were determined in soils developed on various groups of basalts, namely, the Newer, Older, Lateritized‐Older, and Biu (undifferentiated) basalts. The HCl‐, DTPA‐extractable, and total Cu in the soils ranged from 0.40 to 5.60, 0.15 to 2.64, and 15 to 65 mg Cu kg‐1, respectively, with corresponding means values of 2.06, 0.89, and 41 mg Cu kg‐1. Similarly, HCl‐, DTPA‐extractable, and total Zn varied from 3.00 to 6.20, 0.14 to 2.15, and 25 to 265 mg Zn kg‐1 with respective mean values of 4.65, 0.52, and 89 mg Zn kg‐1. The soils were high in the total forms of Cu and Zn, generally sufficient in available Cu, but deficient in available Zn. Both the total and available forms of Cu and Zn were little correlated with soil properties in soils of the Lateritized‐Older and Biu basalts, while only the available forms were related mainly to silt, clay, pH, and organic carbon in soils of the Newer and Older basalts. Furthermore, the available forms were correlated with each other, but not with the total forms.  相似文献   

11.
杭州市城市土壤重金属的潜在可淋洗性研究   总被引:23,自引:0,他引:23  
章明奎  王美青 《土壤学报》2003,40(6):915-920
研究了杭州市城市土壤 8个重金属元素 (Cd、Co、Cr、Cu、Ni、Pb、Zn、Mn)的含量、形态和潜在可淋洗性。结果表明 ,该城市土壤中Cd、Cr、Cu、Ni、Pb、Zn和Mn均有明显的积累 ,其中Cd、Co、Cr和Ni主要以稳定的残余态为主 ,而Cu、Pb、Zn和Mn则以可提取态为主 ,因此在强还原、强酸性或有利于有机质分解条件下Cu、Pb、Zn、Mn的释放潜力较高。用荷兰能源研究中心的淋洗方法 (pH4 0 )测试表明 ,该市城市土壤的重金属可淋洗性较低 ,在一般条件下该城市土壤重金属不会有较大的释放 ,这与该城市土壤中酸可提取态重金属比例较低并含有较高的有机质及粘粒含量有关  相似文献   

12.
Abstract

In this study, a new parallel and sequential extraction procedure was proposed to investigate the solubility of metals [cadmium (Cd), zinc (Zn), copper (Cu), and nickel (Ni)] and their association with soil components in naturally metal‐rich soils of Norway. Two different soils, alum shale (clay loam) and moraine (loam), developed on alum shale minerals were used. Each soil had two pH levels. For parallel and successive extractions, H2O, 0.1M NH4OAc (soil pH), 0.3M NH4OAc (soil pH), 1M NH4OAc (soil pH), and 1M NH4OAc (pH 5.0) were used. A significant amount of Cd was extracted by NH4O Ac related to concentration of NH4OAc in the extracting solution. The amounts of Zn, Cu, and Ni extracted by these reagents were almost negligible except with 1M NH4OAc (pH 5.0). Thus these metals were strongly bound to soil components. A seven step sequential extraction procedure was applied to evaluate the association of metals with soil constituents. The extractions were performed sequentially by extracting the soil with reagents having an increasing dissolution strength: 1M NH4OAc (soil pH), 1M NH4OAc (pH 5.0), 1M NH2OH.HCl (in 25% HOAc), 1M NH2OH.HCl (in 0.1M HNO3), 30% H2O2 (in 0.1M HNO3), 30% H2O2 (1M HNO3), and aqua regia. In both soils at both pH levels investigated, appreciable percentages of total Cd (20–50%) were found associated with the NH4OAc extractable fraction (mobile fraction). For Zn, Cu, and Ni, the percentage of total metal extracted with NH4OAc was low (<4%), but it increased significantly by introducing a reducing agent (NH2OH.HCl). The NH2OH.HCl‐extractable fraction was the greatest fraction (>60%) for all four metals examined. These results suggest that among the metals studied, only Cd was easily desorbed from soil and should be considered mobile and potentially bioavailable. Other metals (Zn, Cu, and Ni) were strongly associated with the soil components and should be considered less available to plants. Using the sequential fractionation technique as a measure of availability, mobility and potential bioavailability of these four metals in the alum shale soils were: Cd>Zn>Ni>Cu.  相似文献   

13.
The present paper is a study of the heavy metal contamination ofnatural soils due to atmospheric transport in the northern partof Eastern Carpathians. The study area is located north of BaiaMare, the main Romanian centre for processing complex sulphideores. Ten undisturbed soil profiles of andosols and andic soilswere investigated. The distribution of heavy metals (Pb, Cu, Zn,Mn, Ni, Co, Cr and Cd) was studied along the soil profile and atspecific distances from the pollution sources. In addition tothe total nitric acid soluble fraction of the metals, amounts oflead, copper, zinc and manganese extractable with 0.05 Mhydrochloric acid were determined to evaluate the fraction ofeach metal potentially available to plants. Surface soils in theIgnis Mountains (10 km from Baia Mare) were more polluted withlead (200–800 ppm), with the concentration decreasing withdistance from the processing plants. Lower lead concentrationswere observed in the deeper soil horizons. The fraction of leadextractable in 0.05 M hydrochloric acid was generally higher athigh total concentrations of lead. From its geographical andsoil profile distributions it is also evident that cadmium wasalso supplied in appreciable amounts to the topsoil from thesame polution sources, whereas the trend was weaker for zincand chromium and not evident for copper, manganese, nickel, orcobalt. The fraction extractable with 0.05 M hydrochloric acidgenerally followed the order Pb > Cu > Zn > Mn.  相似文献   

14.
Abstract

The profile distribution of total, DTPA‐ and 0.1 N HC1‐extractable Zn was determined in 11 Nigerian soil profiles formed on various parent Materials including the coastal plain sands, shales, basalt, granite and banded gneiss.

The total content ranged from 9 to 84 ppm. Generally soils developed on igneous rocks contained more Zn than those on sedimenatary deposits. Among the soils on sedimentary rocks, those on shale had more total Zn than those on sandstones. Total Zn was weakly correlated with organic matter but strongly associated vith clay content and free oxides of iron and manganese.

The amounts of Zn extracted by DTPA and 0.1 N HC1 ranged from 0.01 to 10.98 and from 0.23 to 6.25 ppm, respectively. The dilute acid generally removed more Zn from the soils than did the DTPA. The amounts extracted generally decreased vith depth especially vith DTFA extractant. Soils developed on basalt and shales contained the highest amounts of 0.1 N HCl‐extractable Zn while those on basement complex rocks gave the highest values of DTPA‐extractable Zn. Extractable Zn from soils on coastal plain sands remained relatively lev. The extractable Zn was more associated vith organic matter than vith clay content.  相似文献   

15.
Heavy metal accumulations in Salic Fluvisols of the southern North Sea coast The total contents of Cd, Pb, Cu and Zn (HNO3 bomb digestion) and their EDTA extractable fractions in Salic Fluvisols were investigated. The mean total content of Cd was 0,09 mg/kg, of Pb 44,1 mg/kg, of Cu 11,4 mg/kg and of Zn 105,6 mg/kg. Mostly the highly developed soils showed higher contents than poorly developed ones. The EDTA extractable fractions were comparatively small: they were 59% (Cd), 44% (Pb), 15% (Cu) and 10% (Zn) of the total content. The heavy metal contents of the soils in Elisabeth-Außengroden were higher than of those in Jadebusen. The vertical heavy metal distribution showed a different sedimentation pattern over the last hundred years. Compared with the geological background values Cd was 2- to 3-fold enriched, Pb 7-fold, Cu 3- to 4-fold and Zn 3-fold in soils with high sedimentation rates. Even higher values are likely in soils with smaller sedimentation rates.  相似文献   

16.
Abstract

Two commonly used methods of dissolution of heavy metals in soils and sediments for atomic absorption spectrophotomety (AAS) determination were compared. Dry ashing and subsequent dissolution with 3 N HCl in a block digestor was shown to give a better estimate of the aqua regia‐soluble fraction than wet ash digestion with a mixture of HNO3 and HClO4 acids using reference materials. But both methods extracted significantly less than the certified total contents of most metals.

In soils and sediments from SW Spain, the amounts extracted by the block heater method were generally greater than those obtained by wet ash digestion. In agricultural soils, highly significant differences were found between the amounts of Fe, Cu, and Zn extracted by both methods, but the significance decreases if both methods are used on soils or sediments from mining areas where metal contents are likely to be from recent deposits.  相似文献   

17.
Abstract

Fifty soil samples (0–20 cm) with corresponding numbers of grain, potatoes, cabbage, and cauliflower crops were collected from soils developed on alum shale materials in Southeastern Norway to investigate the availability of [cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and manganese (Mn)] in the soil and the uptake of the metals by these crops. Both total (aqua regia soluble) and extractable [ammonium nitrate (NH4NO3) and DTPA] concentrations of metals in the soils were studied. The total concentration of all the heavy metals in the soils were higher compared to other soils found in this region. Forty‐four percent of the soil samples had higher Cd concentration than the limit for application of sewage sludge, whereas the corresponding values for Ni, Cu, and Zn were 60%, 38%, and 16%, respectively. About 70% the soil samples had a too high concentration of one or more of the heavy metals in relation to the limit for application of sewage sludge. Cadmium was the most soluble of the heavy metals, implying that it is more bioavailable than the other non‐essential metals, Pb and Ni. The total (aqua regia soluble) concentrations of Cd, Cu, Zn, and Ni and the concentrations of DTPA‐extractable Cd and Ni were significantly higher in the loam soils than in the sandy loam soils. The amount of NH4NCyextractable metals did not differ between the texture classes. The concentrations of DTPA‐extractable metals were positively and significantly correlated with the total concentrations of the same metals. Ammonium nitrate‐extractable metals, on the other hand, were not related to their total concentrations, but they were negatively and significantly correlated to soil pH. The average concentration of Cd (0.1 mg kg‐1 d.w.) in the plants was relatively high compared to the concentration previously found in plants grown on the other soils. The concentrations of the other heavy metals Cu, Zn, Mn, Ni, and Pb in the plants were considered to be within the normal range, except for some samples with relatively high concentrations of Ni and Mn (0–11.1 and 3.5 to 167 mg kg‘1 d.w., respectively). The concentrations of Cd, Cu, Zn, Ni, and Mn in grain were positively correlated to the concentrations of these respective metals in the soil extracted by NH4NO3. The plant concentrations were negatively correlated to pH. The DTPA‐extractable levels were not correlated with plant concentration and hence DTPA would not be a good extractant for determining plant availability in these soils.  相似文献   

18.
When acid soil has been contaminated by metals as a result of industrial discharges, accidental spills, or acid mine drainage it may be desirable to retain the metals in the soil rather than allow them to leach away. We have investigated the potential of phosphogypsum (PG), sugar foam (SF), and phosphoric rock (PR) to regulate the availability and mobility of Pb, Cd and Cu. We have also identified changes in attenuation during incubation for 1 year and the effect of aging on metal speciation in amended soils. We studied miscible displacement in columns of undisturbed soil previously treated with solutions of the amendments and soluble metals and, subsequently, single and sequential chemical metal extractions. All amendments increased the soil's metal retention capacity. This, in turn, increased the amount of metal extractable by diethylenetriaminepentaacetic acid (DTPA). However, over time the amounts of DTPA‐extractable metal decreased, particularly for Cu and Pb. Both Cu and Cd were held preferentially within the acetic acid‐extractable fraction (operationally defined exchangeable fraction – EX fraction), whereas Pb was associated mainly with the hydroxylammonium‐extractable fraction (operationally defined bound to Fe and Al hydroxides – OX fraction). Both Pb and Cu in the oxide and organic fractions increased in the PG‐ and SF‐treated soils. In general, the distribution of metal did not change in the PR‐treated columns after the incubation. Finally, scanning electron microscopy in back‐scattered electron mode (SEM–BSE) showed the formation of Al‐hydroxy polymers which provides the soils with additional cation sorption capacity. In the PG‐ and PR‐treated columns, P and S were associated with these formations. The three metals were associated with the Al polymers, probably through direct coordination or the formation of ternary complexes with the inorganic ligands phosphate and sulphate.  相似文献   

19.
Ectomycorrhizal fungi have been shown to affect metal transfer from the soil to the host plant, but the use of these fungi for increased phytoextraction of heavy metals has been scarcely investigated. Therefore, a two‐factorial pot experiment was conducted with Salix × dasyclados and (1) two contaminated soils with different concentrations of NH4NO3‐extractable metals and (2) two strains of the ectomycorrhizal fungus Paxillus involutus (one strain originating from a noncontaminated site—Pax1, and another from a contaminated site—Pax2). The inoculation with Pax2 increased the phytoavailability of Cd in the soils. Inoculation with both fungal strains increased the stem and root biomass, but had no effect on metal concentrations in the stems. Decreased Cd and increased Cu concentrations were observed in the roots of inoculated willows. The inoculation with P. involutus increased Cd (up to 22%), Zn (up to 48%), and Cu content in the stems. Decreased Pb content (Cu and Pb content were always <1 mg per plant) occurred in the stems from plants at the soil with the higher concentration of NH4NO3‐extractable metals. Contrary to this, in the soil with lower concentrations of NH4NO3‐extractable metals, the inoculation had no significant effects on the total uptake of Zn and Cu and even caused decreased Cd (Pax2) and Pb (Pax1) contents in the stems. Strain Pax2 had higher colonization densities, but the plants had lower mycorrhizal dependencies in the contaminated soils than after inoculation with the strain Pax1. Generally, metal extractability in the soils substantially affected the mycorrhizal dependency and heavy‐metal uptake of the willows. We concluded, that the inoculation with P. involutus offers an opportunity to particularly increase the phytoextraction of Zn, but the metal extractability and fungal strain effects have to be tested.  相似文献   

20.
 Cu, Ni and Zn were added at different rates (low and±25% of current limits) and combinations to sewage sludges and the effects on soil microorganisms were monitored in laboratory incubations. Respiration was measured frequently during weeks 1–7, whilst extractable metals (with EDTA and CaCl2), microbial biomass C and metabolic quotient were recorded at 3 and 7 weeks. Inputs of one metal affected extractable concentrations of that metal and of the second metal tested in each experiment. Cu behaved differently from Ni and Zn, with little extractable by CaCl2. Whereas CaCl2-Ni and -Zn increased markedly between weeks 3 and 7, Cu concentrations did not change. Respiration was reduced at 1 week by Ni inputs and by Cu in combination with Ni. Zinc inputs at 1 week, and all metal inputs after 3 weeks, increased respiration. Biomass C was lower at higher metal inputs and with Zn the exception occurred at 3 weeks when biomass C was higher. Metal inputs generally increased metabolic quotient, although responses to Zn were often non-significant. Not all metal responses were additive, with effects of one metal frequently more pronounced with high levels of another. For Cu, the organic bound fraction was a better predictor of microbial response than the exchangeable fraction. For Ni the reverse was the case in one experiment, whilst extractable Zn was not closely correlated with microbial indices. Metal inputs close to permitted levels, in particular Cu, affected microbial processes but responses varied with time after sludge application. Received 26 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号